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We have conducted a numerical studv of spherical Couette Vlow -- 

the flow between differentiallv rotatin~ concentric spheres. When the 

qa D ratio o{(R2-RI)/RI (where R 1 and R 2 are the radii of the inner and 

outer spheres) is small, the flow near the e~uator resembles that bet- 

ween cylinders, the classic Tavlor-Couette ~roblem. As in Tavlor-Couet- 

te flow, when the angular momentum gradient, measured by the Reynolds 

number Re ~RI2QI/~ (where Q1 is the anaular velocitv of the inner sphe- 

re and v the kinetic viscosit}7) exceeds a critical value, Taylor vorti- 

ces form to redistribute anaular momentum between radial shells. 

For ~ = 0.18, the aa o ratio studied exDerimentally bv Sawatzki and 

Ziereo (1970) and Wimmer (1976), there exist three steadv axisymmetric 

steady states, each with a different number of Taylor vortices (zero, 

one, or two) per hemisphere. The e~uilibrium attained bv the flow de- 

bends on the history of its acceleration. Previous initial value codes 

(Bonnet & Alziarv de Roquefort 1976, Yavorskava et al. 1978, and Bar- 

tels 1982) have reproduced the steady states and some of the transi- 

tions, but have been unable to qenerate the one-vortex state as a tran- 

sition from the basic zero-vortex flow. 

We answer two questions arisinq from these previous studies, name- 

ly : I) Why has generation of the one-vortex state eluded previous ini- 

tial value studies ? 

2) What is the mechanism by which the history of the flow determi- 

nes the final steady state ? 

Methods 

We have written an initial value code to solve the axisymmetric 

incompressible time-dependent Navier-Stokes equations in a spherical 

geometry. We use a pseudospectral method (Gottlieb & Orszag 1977). 

Functions are represented as sums of basis functions -- in this case, 

Chebyshev polynomials in radius multiolied by sines in theta. Derivati- 

ves are taken in the spectral representation, multiplications are per- 

formed in physical space, and Fast Fourier Transforms are used to trans- 

form between the two representations. Evolution in time is accomplished 

by an algorithm of global accuracy O(At)2: on the nonlinear terms, the 
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Adams-Bashforth approximation is used, while on the linear terms we em- 

ploy the Crank-Nicolson approximation. We used a resolution of 16 poly- 

nomials in radius and 128 sine functions in angle 9, and 70 time steps 

per inner sphere revolution. 

The elliptic operator resulting from the Crank-Nicolson approxima- 

tion is block-upper triangular in the sine series basis. It can there- 

fore be inverted using a sub-matrix back-solve, analogous to an ordina- 

ry back-solve for upper triangular matrices. The sub-matrix equations, 

one for each sine basis function, are solved using an eigenvector-eiqen- 

value decomposition. The sub-matrices differ only by a multiple of the 

identity, so the eigenvector-eigenvalue factorization need be done only 

once. Dirichlet and Neumann boundary conditions on the meridional stream 

function, which obeys a fourth-order equation, are imposed by a Greens 

function technique. 

The algorithm requires little modification to perform linear sta- 

bility analysis. To calculate the eigenvalues and eigenvectors of the 
+ 

Navier-Stokes equations linearized about a steady state U, it suffices 

to replace the full nonlinear interaction (u.V) u by the linearized 

term (u.V) U + (U.V) u, and to impose homogeneous boundary conditions. 

Iteration in time is then equivalent to the power method, and causes 

an initial guess to converge to the eigenvector with the largest eigen- 

value. The Rayleigh quotient is used to estimate the eigenvalue from 

two successive approximations to the eigenvector. 

Results 

We have numerically reproduced the experimentally observed states 

and the transitions between them for Re <i000. In particular, we find 

that the transition from the zero- to the one- vortex state takes 

place asymmetrically with respect to the equator, despite the equato- 

rial symmetry of the initial and final states. This is why the transi- 

tion was not seen in previous inital value simulations, which imposed 

equatorial symmetry in addition to axisymmetry. The Reynolds number 

Re = 652 at which the transition occurs agrees exactly with that found 

experimentally by Wimmer. 

The reverse transition, from the one- to the zero- vortex state, 

when Re is decreased, takes place symmetrically with respect to the 

equator, as does the transition from the zero- to the two- vortex state. 

We observe another asymmetric transition, not in the previous published 

literature, from the two- to the one- vortex state. Buhler (private 

communication) has confirmed experimentally the qualitative form of all 

of these transitions. 
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Zero- to one- vortex transition. Pictured are meridional streamlines 
in the equatorial region. Solid and dashed streamlines represent coun- 
ter-clockwise and clockwise circulation, respectively. Time is shown in 
inner smher~ revolutions. Note the breaking of equatorial symmetry. 
Re = 700~ 
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One- tO zero- vortex transition at Re =645. 

t6 0 

Zero- to two-vortex transition at Re =800. 
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Two- to one- vortex transition at Re = 750. 

~0 

Schrauf (1983)'s steady state calculation has revealed that the 

one-vortex states lie on a separate solution branch which never inter- 

sects the branch containing zero-vortex states. Schrauf's study and 

ours discovered that the zero- and the two- vortex states lie on the 

same solution branch, called the primary branch. That is, the zero- 

vortex states evolve continuously into the two-vortex states as the 

Reynolds number is increased, the demarkation between the two occur- 

ring at Re =740. This branch structure is similar to that predicted 

by Benjamin (1978 for Tavlor-Couette flow between cylinders of finite 

length. 

By calculating eigenvectors and eigenvalues, we 

find that an interval of the primary branch is linearly 

unstable to an equatorially antisvmmetric eigenvector. 

This instability initiates the transition to the one- 

vortex state ; therefore, we call the unstable interval 

651 < Re < 775 a "window" from the primary branch to the 

one-vortex branch. The window contains both zero- and 

two- vortex states, and the two-vortex states at 

Re > 775 are stable. This explains the non-uniqueness 

seen experimentally by Wimmer : in accelerating the 

system to its final angular velocity, a one-vortex sta- 

te will be generated if the time snent in the window 

is sufficient for the antisymmetric instability to 

attain the threshold level necessarv for transition. Antisymmetric 
eigenvector at 

Otherwise a two-vortex state will be generated. Re = 700. 

This work was supported in part by NSF Grants MEA-82-15695 and 

AST-82-10933. The computations were performed on the CRAY-I at NCAR. 
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Left : Torque vs. Re of steady states in region of window. Solid, short- 
dashed, and long-dashed curves represent zero-, one-, and two- vortex 
states, respectivel}7. Arrows show schematically transitions between 
states. Note that the curves representing zero- and two- vortex states 
join continuously, but that the one-vortex states are on an unconnected 
curve. ("Intersection" at Re ~790 is a projection effect). 

Right : Growth rate vs.Re of antisvmmetric eiqenvector to which the 
primary branch is unstable. 
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