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ABSTRACT

In Zombie Vortex Instability (ZVI), perturbations excite critical layers in stratified, rotating shear flow (as in
protoplanetary disks (PPDs)), causing them to generate vortex layers, which roll up into anticyclonic zombie
vortices and cyclonic vortex sheets. The process is self-sustaining as zombie vortices perturb new critical layers,
spawning a next generation of zombie vortices. Here, we focus on two issues: the minimum threshold of
perturbations that trigger self-sustaining vortex generation, and the properties of the late-time zombie turbulence on
large and small scales. The critical parameter that determines whether ZVI is triggered is the magnitude of the
vorticity on the small scales (and not velocity); the minimum Rossby number needed for instability is ~Ro 0.2crit
for b º W =N 2, where N is the Brunt–Väisälä frequency. While the threshold is set by vorticity, it is useful to
infer a criterion on the Mach number; for Kolmogorov noise, the critical Mach number scales with Reynolds
number: ~ -Ma Ro Recrit crit

1 2 . In PPDs, this is ~ -Ma 10crit
6. On large scales, zombie turbulence is characterized

by anticyclones and cyclonic sheets with typical Rossby number ∼0.3. The spacing of the cyclonic sheets and
anticyclones appears to have a “memory” of the spacing of the critical layers. On small scales, zombie turbulence
has no memory of the initial conditions and has a Kolmogorov-like energy spectrum. While our earlier work was in
the limit of uniform stratification, we have demonstrated that ZVI works for non-uniform Brunt–Väisälä frequency
profiles that may be found in PPDs.
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1. INTRODUCTION

1.1. Background

Without a doubt, we know that(1) gas accretes inward
through protoplanetary disks (PPDs) while angular momentum
is transported outward through some combination of hydro-
dynamic and/or magnetohydrodynamic waves, instabilities,
and turbulence; and (2) sub-millimeter dust particles coalesce
to form super-kilometer size planetesimals, through some
combination of collisional agglomeration and/or gravitational
clumping. The ubiquity and diversity of planetary systems
imply that these processes are indeed robust; and yet, there
persists uncertainty as to the exact nature of the relevant
dynamical mechanisms. Theoretical research has progressed on
two parallel tracks: purely hydrodynamic processes versus
magnetohydrodynamic (MHD) processes. See Armitage (2011)
and Turner et al. (2014) for comprehensive reviews.

Balbus & Hawley (1991) applied the magnetorotational
instability (MRI) of Velikhov (1959) and Chandrasekhar
(1960), and demonstrated that magnetic fields can destabilize
Keplerian shear, leading to turbulence and outward transport of
angular momentum. However, there exist relatively dense,
cool,and nearly neutral “dead zones” in PPDs (∼1–10 au) that
likely lack sufficient coupling between matter and magnetic
fields (Blaes & Balbus 1994; Turner & Drake 2009), except
perhaps in thin surface layers that have been ionized by cosmic
rays or protostellar X-rays (Gammie 1996). A review of the
substantial MRI in PPD literature is beyond the scope of this

work; we refer readers to the relatively recent review ofTurner
et al. (2014) on transport and accretion processes in PPDs. We
do note that recent work has moved far beyond ideal MHD to
include non-ideal effects such as the Hall term and ambipolar
diffusion, both ofwhich seem to make MRI-driven turbulence
less effective in dead zones (Bai & Stone 2011; Kunz &
Lesur 2013; Simon et al. 2015). AsMRI wanes as a viable
mechanism in PPDs, anolder idea, magnetocentrifugal winds
(MCW), has resurged (Blandford & Payne 1982; Bai 2013; Bai
& Stone 2013). With the Hall term included, MCWs are more
robust for topologies in which the vertical magnetic field
threading the disk is aligned with the rotation of the disk; the
vertical magnetic flux is also concentrated in azimuthal zonal
flows (Bai 2014, 2015; Lesur et al. 2014).
Convective overstability (ConO) and the vertical shear

instability (VSI) have gained attention on apurely hydro-
dynamic front. In ConO, radial entropy gradients that would be
stable according to the Solberg–Høiland criterion in the
adiabatic limit may yet be unstable in the limit of efficient
thermal relaxation (Klahr & Hubbard 2014; Lyra 2014). The
chief obstacles for ConO are that the cooling time must be
relatively short, tW ~ 1cool , and the radial entropy gradient
must be negative so that < - < WN0 r

2 2, where Nr is the radial
Brunt–Väisälä frequency. The latter constraint requires a disk
surface density profile that is significantly flatter than most
standard models. In VSI, vertical shear induced by radial
gradients of temperature (e.g., a thermal wind, a baroclinic
effect) that would otherwise be stable to the Kelvin–Helmholtz
Instability (KHI) in the adiabatic limit may yet be unstable in
the limit of rapid thermal relaxation (Urpin 2003; Nelson et al.
2013; Stoll & Kley 2014; Barker & Latter 2015; Umurhan et al.
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2016). However, the cooling times must be especially short:
tW ~ hcool , where h=H/r is the aspect ratio of the disk (Lin

& Youdin 2015).

1.2. Previous Work on the Zombie Vortex Instability (ZVI)

In Barranco & Marcus (2005), while we were trying to
develop models for 3D vortices in the midplanes of PPDs, we
serendipitously discovered that the stratified regions above and
below the midplane rapidly filled with anticyclonic vortices and
cyclonic vortex sheets. At the time, we hypothesized that
internal gravity waves propagated away from the midplane and
deposited their energy in stratified regions where the shear
rolled vorticity perturbations into new vortices. However, our
original explanation was not entirely complete. Marcus et al.
(2013), hereafter MPJH13, correctly diagnosed the true
mechanism for the formation of these vortices and in the
process identified a new purely hydrodynamic instability,
which we now call the “Zombie Vortex Instability” or ZVI. In
order to get at the essential nature of the phenomenon, MPJH13
stripped out complicating features of a PPDs (e.g., spatially
varying gravity and Brunt–Väisälä frequency) and numerically
investigated simple Couette flow with constant gravity and
constant Brunt–Väisälä frequency in the limit of the Boussi-
nesq approximation. In this far simpler system, MPJH13 found
that a small perturbing vortex could trigger an instability in a
rapidly rotating, strongly stratified flow, yielding vigorous,
space-filling vortices, vortex layers,and turbulence.

The crucial new insight in MPJH13 was the recognition of
“baroclinic critical layers” as being sites that are receptive to
perturbations. Critical layers are special locations in a shear
flow where the coefficients of the highest derivatives of the
linearized equations vanish, indicating that the neutrally stable
eigenmodes are singular there (Drazin & Reid 1981; Maslowe
1986). Critical layers are already well-studied in incompres-
sible flow; a neutral eigenmode of a shear flow has a wave
speed that matches the actual fluid flow at some special
location, the critical layer. In a frame of reference moving at
this speed, the streamlines of the flow in the vicinity of the
critical layer form the familiar Kelvin’s cat’s eye pattern
(Kelvin 1880; Kundu 1990). Despite the singularities, critical
layers are not spurious numerical solutions, but are true
physical feature within the flow. In the presence of dissipation
in the form of (hyper)viscosity or thermal (hyper)diffusivity, or
with the inclusion of nonlinear effects, the eigenmodes are no
longer truly singular, but still retain highly localized regions
where the gradients of the density, pressure, and velocity can
be extremely large (Figure 1). We discuss the role critical
layers play in ZVI in Section 4.2.

In Marcus et al. (2015), hereafter MPJBHL15, we presented
a cartoon model for ZVI (see Figure 1 in that paper). Initial
perturbations (either a vortex or noise with a power-law energy
spectrum) excite baroclinic critical layers. These critical layers
then generate dipolar vortex layers (two juxtaposed oppositely
signed layers of vorticity); while cyclonic vortex layers remain
stable, anticyclonic vortex layers roll up into anticyclonic
vortices (i.e., anticyclones). The crux of ZVI is that these new
zombie vortices then “infect” neighboring critical layers with
perturbations, which generate new vortex sheets, which spawn
new zombie vortices—and this self-sustaining process con-
tinues unabated until the dead zone is filled with zombie
vortices. The instability is not an artifact of the numerical
method as we have observed it with spectral codes and finite-

volume codes (e.g., Athena), with fully compressible, anelastic,
and Boussinesq treatments of the continuity equation, with and
without the shearing box, and with either hyperviscosity or real
molecular viscosity. We believe ZVI was not observed in many
earlier numerical studies because they were missing one of the
necessary ingredients: vertical stratification, high resolution to
resolve the narrow critical layers, a broad spectrum of
perturbations (i.e., Kolmogorov, but not Gaussian-peaked),
and enough simulation time to allow the critical layers to
amplify perturbations.

1.3. Goals and Outline

ZVI is a subcritical (finite-amplitude) instability. One of the
chief goals of this work is to quantify the minimum threshold
of perturbations to excite critical layers and trigger the onset of
ZVI. In MPJH13, we instigated the onset of ZVI with a single
perturbing vortex, whereas in MPJBHL15 we investigated
triggering ZVI with random noise. Both work to kick-off the
instability, but using a single vortex has a couple advantages:
first, it is far easier to observe the excitation of individual
critical layers; second, one can more readily characterize the
strength of the perturbation and initialize a vortex with a well-
defined vorticity. We have found, numerically, that a perturb-
ing vortex can excite neighboring critical layers, creating
localized regions of vertical velocity. In a fluid rotating rapidly
around the z-axis, vertical velocity causes “vortex stretching”
and the intensification of vorticity (Pedlosky 1979). The newly
created vorticity is then stretched by the shear, forming dipolar
vortex layers. We observe that a weaker perturbing vortex (as
measured by the strength of vorticity) yields weaker vortex
layers, and a stronger perturbing vortex yields stronger vortex
layers. It is well known that vortex layers with sufficient
strength of their vorticity are linearly unstable to the
development of waves, which break and roll up into discrete
vortices (Marcus 1990, 1993). In our numerical experiments,
we find that the strength of the initial perturbing vortex must
exceed a certain threshold to yield vortex layers that are strong
enough to become linearly unstable. When this occurs, the
resultant first generation of zombie vortices become a source
for new perturbations that excite neighboring critical layers.
However, this does not always yield a run-away process. We
have observed cases in which the first generation of zombie
vortices may be weaker than the original perturbing vortex,
enough so that thestrength of the perturbing vorticity is below
the threshold to create sufficiently strong vortex layers can go
linearly unstable, halting the further development of ZVI. On
the other hand, if the strength of the vorticity in the original
perturbing vortex is above some higher threshold, we observe
in numerical experiments that the first generation of zombie
vortices can be just as strong, exciting new critical layers and
yielding vortex layers that are strong enough to be linearly
unstable to roll up into a next generation of zombie vortices,
and so on. We say that the flow zombifies when this process
becomes self-sustaining, filling the domain with zombie
vortices and non-isotropic zombie turbulence.
Our numerical experiments revealed that the threshold of the

initial perturbation needed to trigger ZVI dependson the
magnitude of the vorticity of the initial vortex, rather than on its
velocity (which could be varied while maintaining a fixed value
of vorticity by changing the diameter of the initial vortex), or
any other feature that we could identify. However, it is still
unclear whether this remains true when the initial perturbations
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are some spectrum of random noise (e.g., turbulence with a
Kolmogorov energy spectrum) rather than a coherent vortex. Is
it still the magnitude of the vorticity (or a dimensionless form
of the vorticity such as the Rossby number Ro) that determines
whether or not ZVI is triggered, or does the initial velocity,
energy, or some other property of the initial noise determine the
onset of instability? What are the threshold values of Ro, or of
the velocity (or the dimensionless expression of the velocity,
such as its Mach number Ma or Reynolds number Re) of the
noise when ZVI is triggered?

The second goal of this paper is to characterize the properties
of fully developed zombie turbulence. By doing so, we can
distinguish zombie turbulence from other forms of turbulence
and illustrate its unique properties—in particular, those that
might contribute to its ability to transport angular momentum,
to concentrate or mix dust, and to disrupt other dynamics that
might occur in a fully laminar PPD. We shall show that zombie
turbulence is far from laminar or weakly chaotic and has many
properties in common with fully developed, homogeneous
turbulence. However, zombie turbulence is not isotropic, and
unlike other forms of turbulence it has a “memory” of how it
formed. The “memory” is not of its initial conditions, but rather
of the linear eigenmodes responsible for triggering the
instability. Those eigenmodes, especially, their structure in
the radial direction remain imprinted on the flow indefinitely
and lead to persistent anticyclonic vortices and cyclonic layers
at large length scales and a more classic Kolmogorov
turbulence at all other lengths.

The outline of the remainder of this paper is as follows. In
Section 2, we present the hydrodynamic equations and offer a
brief review of basic turbulence concepts. In Section 3, we
describe the results of a series of numerical experiments
focused on elucidating what triggers ZVI, and demonstrate that
it is the value of the Rossby number of the initial noise, rather
than its Mach number or energy that determines whether ZVI is
triggered. In Section 4,we investigate the properties of space-
filling zombie turbulence on large and small scales and show
how it differs from other forms of turbulence. A summary and
description offuture work appear in Section 5.

2. HYDRODYNAMIC EQUATIONS AND ABRIEF
REVIEW OF TURBULENCE CONCEPTS

2.1. Equations of Motion and Steady-state Background

Consider a three-dimensional box located at a cylindrical
radius R0 from the protostar that co-rotates with the gas with
the Keplerian angular rate W º W ( )RK0 0 . The box is suffi-
ciently small that we ignore curvature and choose Cartesian
coordinates ( )x y z, , for the local radial, azimuthal, and vertical
directions, respectively (Goldreich & Lynden-Bell 1965; Hill
1878). Corresponding unit vectors are x̂, ŷ, and ẑ. Stratification
is measured by the Brunt–Väisälä frequency

º( ) ( )( ¯ )N z g C ds dzP , where g is the vertical component
of the acceleration of gravity, CP is the specific heat at constant
pressure, and ¯ ( )s z is the vertical entropy profile. As
in MPJBHL15, we limit our study to flows with spatially
uniform vertical stratification, so we choose a uniform
background temperature =T T0 and constant acceleration of
gravity =g g0, which yields a constant Brunt–Väisälä
frequency =N g C TP0 0 0 . The steady-state equilibrium of
the stratified, rotating, sheared flow is thus

= = - Wv v v v¯ ( ) (¯ ¯ ¯ ) ( ) ( )x x, , 0, 3 2, 0 , 1ax y z 0

r r= = -¯ ( ) ¯ ( ) ( ) ( )z P z T z Hexp , 1b0 0 0

where v is the velocity in the rotating frame, ρ is gas density, P
is gas pressure, r0 is the equilibrium density at the disk
midplane, º H T g0 0 0 is the vertical pressure scale height,
and  is the gas constant. Overbars are used to indicate
equilibrium steady-state variables. We model the temporal
evolution of the flow with the Euler equations with the
continuity equation replaced by the anelastic approximation:

= -v v· ( )H0 , 2az 0

 ¶
¶

=- - W ´ + W - P

+ -

v v v v( · ) ˆ ˆ

( ) ˆ ( )

z x

z
t

x

T T g

2 3

1 , 2b

0 0
2

0 0

¶
¶

= - -v( · ) ( ) ( )
T

t
T N g Tv , 2cz0

2
0

where Π is the anelastic pressure (which has units of pressure
divided by density). The anelastic approximation has been
extensively used in the study of deep, subsonic convection in
planetary atmospheres (Ogura & Phillips 1962; Gough 1969;
Bannon 1996) and stars (Gilman & Glatzmaier 1981; Glatz-
maier & Gilman 1981a, 1981b). We have previously used the
anelastic approximation to study three-dimensional vortices in
PPDs (Barranco et al. 2000; Barranco & Marcus 2005, 2006)
and the KHI of settled dust layers in PPDs (Barranco 2009; Lee
et al. 2010a, 2010b). The basic idea is that there may be large
variations in the background pressure and density in hydrostatic
equilibrium, but that at any height in the atmosphere, the
fluctuations of the pressure and density are small compared to
the background values at that height.
We use shearing box boundary conditions (Goldreich &

Lynden-Bell 1965; Marcus & Press 1977; Rogallo 1981) in the
horizontal directions, and periodic boundary conditions (rather
than rigid lid boundaries) in the vertical directions. The latter is
justified by noting that for the case of vertically uniform
temperature and gravity, the stratification (as measured by the
Brunt–Väisälä frequency) is also uniform; in the anelastic

Figure 1. Vertical velocity component (real and imaginary parts) of the
neutrally stable critical layer eigenmode + -ˆ ( ) [ ( )]v x i k y k z stexp y z that leads
to ZVI. Eigenmode was computed with a linear eigensystem solver. Vertical
velocity coupled with rapid rotation around the vertical axis causes vortex
stretching and the intensification of vorticity, creating vortex layers at the
location of the critical layers. The unit of length is H0, and the unit of velocity
is arbitrary. The purpose of the figure is to show that the eigenmode has near-
zero amplitude everywhere except within the thin critical layers. Viscosity was
included to show that the critical layer can be numerically resolved; the
Reynolds number was Re∼107. The eigenmode here was computed with the
Boussinesq equations with W =N 20 0 , p= =k L k L 2y y z z , and with the
boundary condition =v̂ 0x at =∣ ∣x 4, rather than shearing box boundary
conditions, which do not have temporal eigenmodes. The number of
Chebyshev modes to compute the eigenmode in the x direction was Nx=2048.
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equations of motion (2), the explicit functional form of the
density drops out and the only “signature” of the density profile
is the -v Hz 0 term in the anelastic constraint 2(a). This also
allows us to more easily analyze energy spectra of turbulence
with a3D Fourier analysis.

In our computations, we choose M 256 Fourier modes in
each of the three spatial directions. Generally, M indicates the
amount of spatial resolution, and if a numerical experiment is
sensitive to the value of M, we are generally skeptical of the
results and assume the simulation is under-resolved. However,
M has a physical meaning, not just a numerical one. As shown
below, M is a measure of the “length” of the turbulent spectrum
in wavenumber space, and this length represents a physical
quantity that turns out to be relevant to whether or not ZVI is
triggered. In a simulation of Kolmogorov turbulence, the ratio
of the largest length (the production range of the self-similar
inertial part of the energy spectrum) to the smallest length (the
dissipation or Kolmogorov length), is Re3 4 , where Re is the
Reynolds number (Tennekes & Lumley 1972). In the
“dissipationless” numerical simulations presented here, the
flows are computed with a hyperviscosity and hyperdiffusivity
to stabilize the calculations and the effective ratio of the largest
to smallest length scale in the numerical computations, as well
in the initial turbulence, is M 2.

2.2. Review of Turbulent Spectra, Eddy Velocities, Eddy
Vorticities, and Fourier Modes

To better understand how ZVI is triggered from initial noise,
we now review the nomenclature and ideas used in describing
homogeneous, isotropic turbulence with no spatial structures or
correlations (which is how we define initial “noise” in this
paper). To simplify our analysis and avoid unnecessary
confusion, we restrict this discussion to incompressible
turbulence (r r=¯ 0, which is not an unreasonable approx-
imation when there is not a large variation in the value of r̄ ( )z
in the computational domain). The differential kinetic energy
spectrum E(k ) as a function of spatial wavenumber
º = + +∣ ∣kk k k kx y z

2 2 2 is

r= =( ) ( ) ( ) ( )∣ ∣v r rdE d E k dk1 2 , 30
2 3

where the velocity in a periodic cubic box of size L3 is written
as a discrete sum of Fourier modes:

ååå=v v( ) ˜ ( )·r e , 4
n n n

k
i k r

x y z

where º Dk n kj j for j=x, y, z, pD ºk L2 , and nj are
integers in the interval - +[ ]M M2, 2 . The condition that
v ( )r is real implies =- *v v˜ ˜k k , where *() indicates complex
conjugation. Often, the spectrum has a power-law dependence
on k, so = -( )E k E k a

0 with normalization constant E0 and
spectral index a. For example, Kolmogorov turbulence has
=a 5 3. Moments of the energy spectrum yield useful

quantities: the total kinetic energy is trivially the zeroth
moment òº

¥
( )E E k dk

0
, while enstrophy is the second

moment òº
¥

( )E E k k dk2 0
2 . From these moments, we can

define rms velocity rºv E L2rms 0
3 , rms Mach number

º vMa Csrms rms , rms vorticity w rº E L2rms 2 0
3 , and rms

Rossby number wº W( )Ro 2rms rms 0 , where r L0
3 is the domain

gas mass. If we consider only the vertical component of
vorticity, then =Ro Ro 3z,rms rms for homogeneous, isotropic
turbulence.
It is instructive to think of turbulence as a sequence of eddies

in which the diameter of an eddy in the sequence is equal to
half the diameter of the preceding eddy in the sequence
(Tennekes & Lumley 1972). An eddy with wavenumber k and

length scale pºℓ k2 has kinetic energy ò ¢ ¢( )E k dk
k

k

2
and has

an rms eddy velocity of ( )V ℓeddy = òr ¢ ¢[( ) ( ) ]L E k dk2
k

k
0

3
2

1 2.

We relate the eddy Rossby number
~( )Ro k and the eddy Mach

number
~( )Ma k by

º W º W~ ~( ) ( ) ( ) ( ) ( ) ( )Ro k V ℓ ℓ C Ma k ℓ2 2 . 5seddy 0 0

For an energy spectrum E(k ) with spectral index a,

=
-

( ) ( ) ( )
( )⎡

⎣⎢
⎤
⎦⎥V ℓ V L

ℓ

L
, 6a

a

eddy eddy

1 2

µ~ -( ) ( )( )Ma k k , 6ba1 2

µ~ -( ) ( )( )Ro k k . 6ca3 2

For a Kolmogorov spectrum with =a 5 3,

=( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥V ℓ V L

ℓ

L
, 7aeddy eddy

1 3

µ~ -( ) ( )Ma k k , 7b1 3

µ~( ) ( )Ro k k . 7c2 3

For turbulence with spectral index < <a1 3, eddy velocity
and kinetic energy decrease with decreasing length scale, while
eddy vorticity and enstrophy increase. Equivalently, with
increasing k,

~( )Ro k increases and
~( )Ma k decreases. The

implication of this is that most of the kinetic energy is at the
large length scales and that the largest eddies contribute the
most to the rms Mach number, while most of the enstrophy is at
the smallest length scales and that the smallest eddies
contribute most to the rms Rossby number. For a turbulent
spectrum with a large inertial range (i.e., the ratio of largest to
smallest wavenumbers is big), the ratio of the rms velocity of
the largest eddies to the rms velocity of the total flow is

= - -( ) [ ( ) ] ( )( )V L v 1 1 2 , 8a
eddy rms

1 1 2

so for Kolmogorov turbulence, the rms Mach number of the
largest eddy is~60% that of the rms Mach number of the total
flow. If the smallest length scale of the turbulence is set by
viscous dissipation, then that length is nºn n( )ℓ V ℓeddy , where
ν is the kinematic viscosity, and Equation 6(a) shows that

=n
- + ( )( )ℓ L Re , 9a2 1

where nº [ ( )]Re LV Leddy is the Reynolds number of the flow.
For Kolmogorov turbulence, nℓ is called the Kolmogorov
length and is equal to -Re L3 4 .
It is crucial to note that an eddy is not equivalent to a Fourier

mode ṽk of the velocity field, as defined in Equation (4).4

4 Unfortunately, there has been some confusion in the astrophysics literature,
whichincorrectly states that ˜∣ ∣vk scales with k in the same way that Veddy does,
which is not true.
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Rather, an eddy is defined by the sum or integral of a band of
Fourier modes with different wavenumbers near wavenumber
∣ ∣k . For example, consider eddies containing wavenumbers

between k and k2 ; there are òp p ¢ ¢=( )L k dk2 4
k

k3 2 2

p p( )( )Lk7 4 3 2 3 Fourier modes in this band. Equate the
energy in these Fourier modes with the eddy kinetic
energy, p p v[ ( )( ) ] ˜∣ ∣Lk7 4 3 2 k

3 2 = r p( )[ ( )]L V k2 20
3

eddy
2,

which yields

µ - +ṽ ( )( )∣ ∣ k . 10k
a 2 2

The velocity of the initial noise used in the calculations in this
paper were created using Equations (4) and(10) where the ṽk

have random phases. Figure 2 illustrates how the spectral index
a affects the spatial pattern and length scales of the vertical
velocity and vertical vorticity of the initial noise in our
calculations. The first row of figures shows noise with spectral
index =a 5 3, demonstrating that the largest length scales
dominate the velocity, while the smallest length scales
dominate the vorticity. In the second row, the spectral index
is a=5, and both the velocity and vorticity are dominated by
the largest length scales.

3. NUMERICAL EXPERIMENTS TO ELUCIDATE THE
TRIGGER FOR ZVI

One of our goals is to disentangle the exact nature of the
trigger for ZVI. What matters most:the peak perturbation
velocity, the non-Keplerian kinetic energy, the peak perturba-
tion vorticity, or non-Keplerian enstrophy? We shall separate
the non-Keplerian part of the flow from the Keplerian
differential rotation and define perturbation velocity ṽ, non-
Keplerian kinetic energy KE, relative vorticity w̃, and point-
wise Rossby number of the vertical component of the relative
vorticity ( )Ro x y z t, , , :

º -v v v˜ ¯ ( ), 11a

Figure 2. Vertical velocity (panels a and c) and vertical vorticity (panels b and d) in the x–y plane for Kolmogorov noise with spectral indices =a 5 3 (panels a and b)
and a=5 (panels c and d). The color-map ranges from blue (positive) to red (negative) with green as zero. For =a 5 3, the largest length scales dominate the
velocity, while the smallest length scales dominate the vorticity. For a=5, both the velocity and vorticity are dominated by the largest length scales.

Table 1
Summary of Numerical Experiments in Section 3

Set Resolution M Spectral Index a Spectral Magnitude E0

1 256 5/3 vary
2 256 vary vary (holding ò ( )E k dk fixed)

3 vary 5/3 fixed
4 vary 5/3 vary
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ò rº v( ) ¯ ˜ ( )∣ ∣KE dV1 2 , 11b2

w º ´ v˜ ˜ ( ), 11c

wº W( ) ˜ ( ) ( ) ( )Ro x y z t x y z t, , , , , , 2 . 11dz 0

We have found that initial noise with a wide range of parameter
values can trigger ZVI. Equations (2) can be rewritten in
nondimensional form such that they contain only five
dimensionless parameters: b º WN0 0, g º C CP V , L Hx 0,
L Hy 0, and L Hz 0, where the computational box is of size

´ ´L L Lx y z. We set g = 5 35 and
= = =L H L H L H 1x y z0 0 0 . As in MPJBHL15, we consider

only uniform stratification and set b = 1 or 2 (corresponding to
roughly »∣ ∣z H1.5 0 or 3H0). In the following sets of numerical
experiments in this section, we vary only properties of the
energy spectrum = -( )E k E k a

0 of the initial noise, or the
resolution M (see Table 1). As in MPJBHL15, we identify
instability via exponential growth of the perturbation kinetic
energy, Equation (11(b). All the simulations in this work use a
suite of related codes all based on the original pseudo-spectral
code of Barranco & Marcus (2006), which has specially
tailored algorithms to handle shear, rotation and stratification.
This code has been used in our previous related studies of
vortex dynamics in PPD and the stability of dust layers to KHI
(Barranco & Marcus 2005; Barranco 2009; Lee
et al. 2010a, 2010b; Marcus et al. 2013, 2015).

3.1. First Set of Experiments—Effect of Overall Magnitude of
Energy Spectrum, E0

Figure 3 summarizes the initial conditions for a series of
numerical experiments to determine what triggers ZVI. First,
we computed a reference run with a Kolmogorov spectrum
( =a 5 3) of noise with low initial amplitude E0 specifically
chosen to be somewhat below the threshold to trigger ZVI; the
initial non-Keplerian kinetic energy of this stable reference run
simply decayed in time. The vorticity spectrum

~( )Ro k for this
stable reference run is illustrated by the thick dashed line in all
three panels of Figure 3. Consistent with Equation 7(c),

~( )Ro k
increases with wavenumber as k2 3 (and thus appears as a line
with aslope of 2/3 in a log–log plot), while

~( )Ma k (not
plotted) decreases as -k 1 3. The reference run had M=256
Fourier modes in each spatial dimension and the resolution
wavenumber (i.e., maximum wavenumber included in simula-
tion) was pº »k M L 800res . The vertical dotted line in all
three panels of Figure 3 shows the resolution wavenumber of
this reference run.
Keeping spectral index =a 5 3 fixed and spectral resolution

M=256 fixed, we varied only the overall magnitude of the
Kolmogorov energy spectrum E0. The goal here was not to pin
down the exact triggering amplitude to any sort of high precision,
but more so to establish a baseline run to see which characteristics
of the initial perturbations are critical to ZVI. The initial vorticity
spectra

~( )Ro k for this set of runs appear as parallel lines to the
thick dashed line of the reference run in Figure 3; lines above
have a greater E0, and lines below have a smaller E0.
As expected, all initial conditions with E0 smaller than that

of the reference run failed to destabilize the flow, but a
sufficiently larger value of E0 triggered ZVI. In the left panel in
Figure 3, one can see that increasing E0, holding spectral index
a fixed, causes the entire vorticity spectrum to shift upward,
resulting in the peak vorticity at the smallest scales to exceed
some critical value. While we found a critical value of E0 for

Figure 3. Vorticity spectra
~( )Ro k of the initial noise as a function of wavenumber k (in units of -L 1), for the set of numerical experiments in Section 3 to elucidate the

trigger for ZVI. b º W =N 20 0 for numerical experiments in this section. In all panels, the thin horizontal dashed line is =
~
Ro 0.19, which corresponds to the

threshold Rossby number
~( )Ro kres of the initial Kolmogorov noise that triggers zombie turbulence for M=256. The thin vertical dotted line in all panels indicates the

resolution wavenumber p= »k 256 800res , which is the resolution used in the first two sets of experiments. In all panels, the thick dashed line with a slope of 2/3
represents the vorticity spectrum

~( )Ro k of the reference run, which did not exhibit ZVI. (a) First set of experiments. The energy spectra of the initial noise was
Kolmogorov with =a 5 3; only E0 was varied. Not all initial conditions are shown, but instead we show one representative initial condition: the thick solid line
corresponds to an initial condition with >

~( )Ro k 0.19;res this initial condition triggered ZVI. (b) Second set of experiments. The spectral index a was varied, while the
value of E0 was chosen to keep the total kinetic energy of the initial noise fixed at the same value as in the reference run. Not all initial conditions are shown, but
instead we show one representative initial condition: the thick solid line corresponds to aspectral index ofa=1; this case triggered ZVI, consistent with our
hypotheses that the criterion for instability is >

~( )Ro k 0.19res . (c) Third set of experiments. The resolution kres was varied, holding a and E0 constant. The thick solid
straight line corresponds to M=512 and »k 1600;res this case triggered ZVI, consistent with our hypotheses that the criterion for instability is >

~( )Ro k 0.19res .

5 The adiabatic index g = 7 5 for a diatomic gas with translational and
rotational degrees of freedom, but only at temperatures sufficient to excite
rotational transitions. For molecular hydrogen, rotational transitions are excited
around 100K. The bulk of a protoplanetary disk beyond a few astronomical
units is below this temperature, so we assume that the molecular hydrogen only
has translational degrees of freedom.
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Kolmogorov noise that results in triggering ZVI at this
resolution, our working hypothesis is that this is not the
relevant parameter for determining the onset of instability;
rather, we believe it is the peak vorticity or Rossby number that
is the discriminant. For the run with the Kolmogorov spectrum
with the minimum amplitude to trigger ZVI, we determined the
peak vorticity, which is on the smallest resolved length scale:

=
~( )Ro k 0.193res . This value is plotted as a thin horizontal
dashed line in all three panels of Figure 3.

3.2. Second Set of Experiments—Effect of Spectral Index, a

We now hypothesize that the requirement for triggering ZVI
is that the initial noise haspeak Rossby number greater than
some threshold level. For < <a1 3, the peak Rossby number
occurs at the smallest scales, so the criterion may be
~ ( )Ro k 0.2res . In this next set of experiments, we want to
increase the vorticity on the smallest scales without increasing
the total energy or the vorticity and velocity on the largest
scales. We hold the resolution fixedM=256 ( »k 800res ), and
we vary spectral index a,while normalizing the energy
spectrum so that the total perturbation kinetic energy

ò= ( )E E k dk is kept at the same value as the reference run.
In Figure 3(b), the thick solid line corresponds to spectral

index a=1. The peak Rossby number at the smallest scales
exceeds 0.2, and the noise triggers ZVI, producing sustained
zombie turbulence. Using a bisection search algorithm, we
determined the threshold value of a needed to trigger ZVI.
However, this value of a is not important or universal, but will
depend on the spectral resolution kres and the overall magnitude
of the noise E0. If one decreased the overall magnitude of
noise, one could always decrease (within reason) the spectral
index so that the peak vorticity at thesmallest scales
exceeds ∼0.2.

Thus, this second set of numerical experiments is consistent
with, but does not yet definitively prove, our hypothesis that the
required condition for noise to trigger ZVI is determined by
~( )Ro kres . In addition, this set of experiments proves that the
necessary condition for triggering ZVI does not uniquely
depend upon the amplitude of the kinetic energy of the initial
noise (or, equivalently, its rms Mach number) because the
initial energy of the noise was the same in all of these
experiments. This is an important finding because it appears
that the necessary condition to trigger instability in many other
finite-amplitude unstable flows (e.g., plane channel flow,
axisymmetric pipe flow) is set by the energy of the initial
perturbation (Orszag & Patera 1980; Patera & Orszag 1981).

3.3. Third Set of Experiments—Effect of Resolution, kres

In the third set of numerical experiments, we fix the spectral
index =a 5 3 and the overall magnitude of the noise E0 to
have the same value as in the stable reference run, which had a
peak vorticity at the resolution scale below 0.193. What would
happen if we increased the extent of the inertial range by
increasing the spectral resolution? Because the vorticity
spectrum increases as k2 3, including higher wavenumbers
will yield higher peak vorticity on the smallest scales, without
changing the velocity and vorticity on the largest scales. The
simulation corresponding to the solid line in Figure 3(c) has
M=512, »k 1600res , and produces sustained zombie turbu-
lence via ZVI. By carrying out a bisection search on kres
between 800 and 1600, we found the threshold value of kres that

produces zombie turbulence. However, this critical value of kres
is not important or universal, but will depend on the overall
magnitude of the noise E0 and the spectral index a. With larger
values of E0 or a, ZVI can be triggered with a smaller inertial
range or lower resolution.
Thus, this third set of numerical experiments is consistent

with, but does not yet definitively prove, our hypothesis that the
required condition for noise to trigger ZVI is determined by
~( )Ro kres . In addition, this set of experiment proves that the
necessary condition for triggering ZVI does not uniquely
depend upon the functional form of the kinetic energy spectrum

= -( )E k E k a
0 of the initial noise because all of the spectra in

this set of experiments have the same values of E0 and a.
Neither the Mach number nor the Rossby number of largest
eddies in the initial noise determines whether ZVI is triggered
because the values of these numbers were the same in this set
of experiments. Although the values of the kinetic energy of the
initial noise was not explicitly fixed in the third set of
experiments, it turns out that in practice the kinetic energy was
nearly the same: the difference in the kinetic energies of runs

with resolutions of kres and ¢kres is ò
¢ -E k dk

k

k
0

5 3

res

res , which is

negligible (of theorder of 1%) compared to the total energy of

the initial noise, ò p

¢ -E k dk
L

k

2 0
5 3res .

3.4. Fourth Set of Experiments—Does the Threshold Peak
Vorticity Depend on Resolution?

One tantalizing implication of the third set of experiments is
that at sufficiently high resolution, the peak vorticity will
always exceed some threshold level and therefore trigger ZVI,
no matter how weak the noise is initially, as measured by total
energy, or Rossby number and Mach number of the large-scale
eddies. The logic is as follows.(1)

~( )Ro kres increases with kres
for a spectrum with < <a1 3, (2) the threshold value
~[ ( )]Ro kres crit is invariant with respect to the value of kres, and
therefore (3) for large enough kres, initial noise with a given
value of E0 will always go unstable to ZVI. The caveat in this
reasoning is that we have not yet shown that the threshold value
~[ ( )]Ro kres crit is invariant with respect to the values of kres.
The purpose of the fourth set of numerical experiments is to

investigate the behavior of the threshold value
~[ ( )]Ro kres crit

with varying resolution. If the threshold value
~[ ( )]Ro kres crit is

invariant with respect to the value of kres or if it decreases with
increasing kres, then for large enough kres a flow with a given E0

will always go unstable to ZVI. In essence, we repeat the first
set of experiments, but now at different resolutions. That is, we
fix the spectral index =a 5 3, then vary E0 until we find the
minimum value that triggers ZVI, and then record the eddy
Rossby number at the resolution wavenumber. We repeat at
different resolutions to determine

~[ ( )]Ro kres crit as a function of
resolution. Figure 4 illustrates that, in fact, the threshold value
~[ ( )]Ro kres crit decreases with increasing kres and that the critical
value is less than or equal to 0.14 at the highest resolution we
investigated.6

We did not investigate higher resolutions because the
computational costs were prohibitive, so we were not able to

6 It is possible that our numerical calculations with low values of kres may
contain numerical errors due to our use of hyperviscosity. Hyperviscosity
artificially dissipates energy for wavenumbers near the resolution limit; flows
with larger values of kres have a smaller fraction of their eddies dissipated by
hyperviscosity and therefore are more accurate.
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determine whether
~[ ( )]Ro kres crit asymptotically approaches a

plateau. However, the precise value of the threshold value of
~( )Ro kres is not important, only that it is bounded from above.

3.5. Implications for Triggering ZVI in PPDs

Our conclusions from the fourth set of numerical experi-
ments have important implications for astrophysical flows.
Generally, linear instabilities are viewed as more “reliable” in
destabilizing a flow than finite-amplitude instabilities because
of concerns that the threshold for the latter may be too large.
However, we will now show that the triggering threshold will
be very small in PPDs.

From our numerical experiments, we expect ZVI to be
triggered when the peak vorticity on the smallest scales exceeds
some critical value: > ~

~( )Ro k Ro 0.1max crit , where kmax is the
largest wavenumber in the flow. This value of the critical
Rossby number assumes b º W =N 2, and will be larger for
smaller β. In a numerical calculation, kmax would be kres, but in
a real fluid with viscosity, p~ º nk k ℓ2max visc , where nℓ is
the viscous dissipation length. Using Equation 6(c), we can
write the criterion for instability to be

= >~ ~ -

( ) ( ) ( )
( )⎛

⎝⎜
⎞
⎠⎟Ro k Ro k

k

k
Ro , 12

a

max min
max

min

3 2

crit

where p=k L2min , the wavenumber for largest length scale in
the flow. Using Equation (5), we can write the instability
criterion in terms of the Mach number on the largest scale:

W
>~

n

-

( ) ( )
( )⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Ma k

C

L

L

ℓ
Ro

2
, 13s

a

min
0

3 2

crit

where we substituted = nk k L ℓmax min . For PPDs,
» WC Hs 0 0. The largest length scales with respect to turbulence

will not exceed the scale height, so we also take L∼H0. From
Equation (8), we can also take ~

~( )Ma k Mamin rms. Using
Equation (9) to express the dissipation length in terms of the
Reynolds number, the instability criterion becomes

> ~- - +
- +

( )

[( ) ( )]
[( ) ( )]⎛

⎝⎜
⎞
⎠⎟Ma Ro Re Ro

ℓ

H
,

14

a a mfp
a a

rms crit
3 1

crit

3 1

where the Reynolds number is nº L ~Re U H ℓmfp, U is a
characteristic velocity, which we take to be the sound speed, Λ
is a characteristic length,which we take to be equal tothe scale
height, n ~ C ℓs mfp is the kinematic viscosity of an ideal gas,
and ℓmfp is the gas mean free path. For Kolmogorov turbulence,
=a 5 3, yielding

> ~- ( )
⎛
⎝⎜

⎞
⎠⎟Ma Ro Re Ro

ℓ

H
. 15

mfp
rms crit

1 2
crit

1 2

At 1 au in a minimum-mass solar nebula, ~ -ℓ H 10mfp
12

(Cuzzi et al. 1993; Chiang & Goldreich 1997), so
> -Ma 10rms

6, which corresponds to rms velocities
∼1 mm s−1.
Note that if the initial noise has a spectral index >a 3, then

the energy spectrum is so steep that
~( )Ro k decreases, rather

than increases, with increasing k. In this case, the initial noise
must have a much larger Mach number, of theorder of unity, to
trigger ZVI. Thus, it is extremely important when considering
the stability of flows to ZVI to consider initial noise with
realistic spectra. An example of an initial energy spectrum so
steep that

~( )Ro k decreases with k is the Gaussian initial noise
used by Balbus et al. (1996) in arguing that Keplerian flow is
stable to all purely hydrodynamic perturbations. We argued
in MPJBHL15 that the equilibrium flow examined in Balbus
et al. (1996) would have been unstable to ZVI and would have
produced sustained zombie turbulence if their calculations had
included vertical gravity along with the vertically stratified
density in equilibrium with that gravity (and if the simulations
had a sufficiently small grid size in the x direction to resolve the
critical layers). In fact, even with those changes, the
calculations by Balbus et al. (1996) would not have exhibited
ZVI because the Gaussian noise with which they initialized
their simulations had

~( )Ro k decreasing with increasing k and
the rms velocity of the initial noise was too small.

4. CHARACTERIZATION OF ZOMBIE TURBULENCE

4.1. Zombie Turbulence is Turbulence

Fully developed zombie turbulence has a well-defined large-
scale spatial signature that sets it apart from other types of
turbulence. As can be seen in Figure 5, the turbulent flow
consists of thin cyclonic layers (red) and large anticyclonic
vortices (blue) with an approximate cross-stream spacing

p b pD º W =( ) ( )L N L3 3y y0 0 . The point-wise Rossby num-
ber ( )Ro x y z t, , , is typically approximately−0.3 in the large
anticyclones and approximately+0.3 in the cyclonic layers.
On much smaller scales, zombie turbulence has properties in

common with classical fully developed homogeneous, isotropic
turbulence. Figure 6 shows the time-evolution of perturbation

Figure 4. Threshold value of
~( )Ro kres as a function of pºM Lkres .

b º W =N 20 0 and spectral index of =ia 5 3. For each value of M, a
bisection search was carried out on the value of E0 to determine the threshold
value of

~( )Ro kres . In other words, this is similar to the first set of numerical
experiments, but carried out for varying resolution. Circles show the values of
~( )Ro kres of the initial Kolmogorov noise that produced sustained zombie
turbulence, while the diamonds shows the values of

~( )Ro kres of the initial
Kolmogorov noise that decayed. The threshold values of

~( )Ro kres are between
the diamonds and circles for any given M. It is not clear (nor important)
whether

~[ ( )]Ro kres crit asymptotically plateaus at some value at higher
resolution; all that matters is that it is bounded from above.
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kinetic energy for five simulations that differed only in the
initial conditions: three initial conditions had spectral index
=a 5 3 but different values for E0, one had a spectral index

a=1, and another was initialized with a laminar, nearly steady
coherent vortex. All of these initial conditions triggered ZVI
and developed zombie turbulence at late times. What is
interesting is that all of these initial conditions evolved toward

the same final state with nearly identical values of the late-time
kinetic energy within the perturbations. Figure 7 shows the
energy spectra of the five flows at late time. For almost all
wavenumbers k, the five spectra are nearly identical, supporting
the conclusion that the five flows evolve toward a common
turbulent attracting state. The figure shows that for mid-range
and large wavenumbers ( k 80), the late-time flow has
aspectral index of 5/3 like classic Kolmogorov turbulence.
Perhaps this resultis not surprising for the three flows that were
initialized with Kolmogorov noise; however, one initial
condition had a different spectral index, and another was
initialized with a laminar, coherent nearly steady-state vortex
(which has a decidedly non-power-law energy spectrum).
The large-scale anticyclonic vortices and cyclonic vortex

layers in the late-time flow in Figure 5 have features of both
laminar and turbulent flows. The fact that the anticyclonic
vortices look “ragged” with a great deal of small-scale variation
in the magnitude of the vorticity in their interiors is in marked
contrast with laminar vortices where the vorticity is smooth in
their interiors. However,the large anticyclones and cyclonic
vortex layers in zombie turbulence are long-lived. We define
the autocorrelation function of the vertical component of the
relative vorticity: c w w w wº á + ¢ ¢ ñ á ¢ ¢ ñ( ) ( ) ( ) ( ) ( )t t t t t tz z z z
averaged over a sample of Lagrangian fluid elements inside a
large anticyclone (where angle brackets indicate time-aver-
aging). Defining the characteristic lifetime T of a vortex by
c =( )T 0.5, we find that the lifetimes of anticyclones are ∼30
vortex turn-around times, where the latter time is defined as
p w4 z. The lifetimes of a vortex or eddy in the picture of
classic turbulence are approximately one eddy turn-around
time, meaning that an eddy falls apart and passes its energy
onto small eddies in one turn-around (Tennekes & Lum-
ley 1972). Thus, the large anticyclones in zombie turbulence
have long lifetimes compared to eddies in classical turbulence.

Figure 5. Point-wise Rossby number ( )Ro x y z t, , , at late-times (∼1370 orbital periods) for zombie turbulence with b = 1.0. Left panel: x–y plane. Right panel: x–z
plane at y=0 (but the flow is statistically invariant in y). Note that the unit of length for the axes in this figure is pD = H 30 (rather than H0). Anticyclonic vorticity
is indicated by blue, while cyclonic vorticity is red,the darkest red/blue colors correspond to = Ro 0.25, while green indicates Ro=0. The large-scale spatial
structure is dominated by persistent anticyclonic (blue) vortices aligned in the streamwise direction separated by cyclonic (red) vortex layers. The cross-stream spacing
between the large anticyclones is approximately Δ. Movies show the temporal evolution for approximately 1500 orbital periods.

(Animations (a and b) of this figure are available.)

Figure 6. Non-Keplerian component of the kinetic energy as a function of time
in units of orbital periods for five initial conditions: Kolmogorov noise with
initial rms Mach number of 0.01 (black); Kolmogorov noise with initial rms
Mach number of 0.007 (green); Kolmogorov noise with initial rms Mach
number of 0.004 (blue); noise with an energy spectral index of 1.0 and initial
rms Mach number of 0.007 (red); and the run initialized with an isolated vortex
with a characteristic » -Ro 0.5 (yellow). All of these initial conditions are
attracted to the same statistically steady final state, which shows the flow loses
its “memory” of its initial conditions. Other parameters for these simulations:
b = 1.0, = = =L L L Hx y z 0 resolved with 2563 spectral modes.
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The autocorrelation time of the large-scale cyclonic layers is of
the same order as autocorrelation time of the large-scale
anticyclones, so they too are long-lived.

4.2. Memory of the Critical Layer Eigenmodes

We now show that the patterns of the persistent anticyclones
and cyclonic vortex layers in late-time zombie turbulence are
set by the “memory” of the neutrally stable critical layers,
rather than initial conditions or any other properties of the flow.
In MPJH13, we analyzed the linearized equations for a rotating,
uniformly stratified fluid, assuming eigenmodes proportional to

+ -[ ( )]i k y k z stexp y z (i.e., periodic in streamwise y and
vertical z directions). The eigenequation obtained from this
linearization (a generalization of the Rayleigh equation for the
inviscid stability of shear flows (Drazin & Reid 1981)) is a
second-order ordinary differential equation in which the
coefficient of the highest-derivative term is

= - - -v v( ) [¯ ( ) ]{[¯ ( ) ] ( ) } ( )A x x s k x s k N k . 16y y y y y
2

0
2

While this was derived under the assumption of the Boussinesq
approximation, we demonstrated its validity for the anelastic
approximation in MPJBHL15. For >N 00 , it can be shown
that the flow is neutrally stable (i.e., s is real and eigenmodes
neither grow nor decay). Critical layers are special locations in
the flow in which the coefficient of the highest-derivative term
of the eigenequation is zero and the eigenmodes are singular
(Drazin & Reid 1981). For = - Wv̄ ( ) ( )x x3 2y 0 , Equation (16)
vanishes for two families of critical layers; one family is
located at p= - W* ( )x sL m3y 0 , and a second family is at

p= -  W* ( ) ( ) ( )x s N L m3 , 17y0 0

where m is anon-zero integer. The first family, barotropic
critical layers, has already been well-studied because it also
occurs in shear flows with no gravity, and/or no density

stratification, and/or no rotation. It has been found that this first
family of critical layers is difficult to excite, which is consistent
with our own numerical experiments in MPJH13. However, the
second type, baroclinic critical layers, is easily excited by
perturbations; MPJH13 showed that when the flow is perturbed
locally via a small vortex, then the excited critical layers (when
observed in the Galilean frame in which the perturbing vortex
is stationary) have a temporal frequency s=0. The equations
of motion and boundary conditions are invariant under
translation in the cross-stream direction x by any distance δ,
if there is also a Galilean shift to a frame moving in the
streamwise direction y with velocity d- W( )3 2 0 (this is the
same invariance that is exploited when one uses shearing box
boundary conditions). Due to this invariance, we are free to
choose an arbitrary origin of the x coordinate. So how then do
we interpret Equation (17) with respect to the location of the
critical layers? This conundrum is solved by noting that the
only physical process that breaks the invariance of the flow is
the location of the perturbing vortex. The vortex is implicitly
assumed to be at the origin, and the cross-stream distance x
between a localized perturbation and the s=0 critical layer it
excites is

p
b
p

º
W

= º
D

*( ) ( )x m
N L

m

L

m m3 3
. 18

y y0

0

In plots of vertical velocity, it is quite easy to pinpoint
the baroclinic critical layers because the vertical velocity is
generally very small except in the immediate vicinity of critical
layers (as in Figure 1). Vertical vorticity is also an excellent
signature because baroclinic critical layers generate vortex
layers with relatively large vorticity. The vertical component of
the curl of the momentum equation Equation (2b) yields the

Figure 7. Energy spectra E(k ) of the non-Keplerian component of kinetic energy of late-time zombie turbulence for the same five runs in Figure 6. The right panel is a
blow-up of the left panel. The figure shows the late-time flows are all attracted to the same energy spectrum, regardless of the initial conditions. Dissipation from
hyperviscosity is responsible for the rapid downturn in energy at k 300. The Kolmogorov spectral index of 5/3 is indicated by the slope of the thin solid black lines.
For  k80 300, the spectra are approximately Kolmogorov, but for k 80, there are departures from the −5/3 slope. The peaks and valleys in this part of the
spectra indicate the presence of large-scale structures in the flow. The vertical dotted line is at p= Dk 2 , the wavenumber of the approximate cross-stream spacing of
the large anticyclonic vortices and of the cyclonic layers.
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vorticity equation:
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With the Boussinesq approximation,  =v· 0. We can also
separate the Keplerian shear vorticity from the perturbation
vorticity: w w= - W˜ ( )3 2z z 0. The perturbation vorticity
equation is
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The first term on the right-hand side of (20) is the “vortex
tilting” term; a horizontal gradient of the vertical velocity will
cause existing horizontal vortex lines to tilt into the vertical
direction. The second term on the right is the “vortex
stretching” term; a vertical gradient of the vertical velocity
will differentially stretch (or compress) fluid elements in the
vertical direction, leading to compression (or expansion) in the
orthogonal horizontal directions. The term w + W -˜ 2z 0

W( )3 2 0 is the absolute vorticity in the inertial frame, and
consists of local vorticity in the rotating frame plus solid body
and shear vorticity. Any embedded vertical vortex lines (local
or absolute) will also be stretched (or compressed) vertically
and expanded (or compressed) horizontally, which will lead to
increased (decreased) angular rotation due to theconservation
of angular momentum. Whereas vortex tilting requires existing
local vorticity, vortex stretching can tap into the absolute
vorticity of the rotation and shear to create new local vorticity.
Figure 8 (which is a reproduction of Figure 1 from MPJH13)
shows w̃z in an x–y plane at a height of = - Dz 0.4 for a
Boussinesq simulation with b = 2. The flow was initialized
with a coherent quasi-steady 3D vortex centered on the
midplane z=0, so the vortex core is not visible at this height.

One can readily see the vortex layers created by the baroclinic
critical layers with m=1, 2, and3 at the locations = D*x m
as predicted by Equation (18). Note that the m is the
wavenumber in the y direction, so m also corresponds to the
number of vortices generated within a vortex layer (see Figure
1 in MPJBHL15). In accordance with Equation (18), all of the
critical layers and vortex layers in Figure 8(a) have
locations D*∣ ∣x .
Vortex layers embedded in a background shearing flow tend

to be linearly stable [unstable] when the relative vertical
vorticity of the layer w̃z has the opposite [same] sign as the
vertical vorticity of the background shearing flow (Mar-
cus 1988, 1990). For example, a cyclonic vortex layer
embedded in Keplerian anticyclonic shear will be stable,
whereas an anticyclonic vortex layer will be linearly unstable.7

The nonlinear evolution of the instability results in an
anticyclonic vortex layer developing waves, which grow and
break up into a streamwise series of vortices, and eventually the
vortices merge together into one large anticyclone. However, a
cyclonic layer (in anticyclonic shear), even when strongly
perturbed and twisted, remains intact. Figures 8(b)–(c) show
these signatures.
Figures 8(c)–(d) show another phenomenon—the spawning

of next generation zombie vortices. The vortices generated by
the critical layers at = Dx act as perturbation sources and
excite new critical layers at = D + Dx 3, = D + Dx 2,
and = Dx 2 . The creation of a new generation of critical layers
and vortex layers by the previous generation is the crux of
zombie turbulence. Clearly, the pattern of anticyclones and
cyclonic layers is due to the original spacings of the critical

Figure 8. Reproduced from MPJH13. Point-wise Rossby number ( )Ro x y z t, , , in anx–y plane at = - Dz 0.4 , for a Boussinesq flow with b = 2. The simulation was
initialized with a quasi-steady-state vortex in the midplane ( =z 0), and thus isnot visible at this height. The vortex layers associated with baroclinic critical layers are
clearly seen at the locations predicted by = D*x m for non-zero integer m. Anticyclonic vorticity is indicated by blue, while cyclonic vorticity is red; the darkest red/
blue colors correspond to = Ro 0.10, while green indicates Ro=0. (a) =t N64 0, (b) =t N256 0, (c) =t N576 0, and (d) =t N2240 0.

7 This linear instability [stability] of the anticyclonic [cyclonic] vortex layers
embedded in anticyclonic shear extends to layers of vortensity (or potential
vorticity, as it is referred to by geophysicists Pedlosky 1979). Marcus (1993)
showed thatthe instability was responsible for the roll up of anticyclonic zonal
flows on Jupiter into Great Red Spot-like large anticyclones, and Lovelace et al.
(1999) identified the instability as the Rossby Wave Instability when they
investigated vortensity layers in accretion disks.

11

The Astrophysical Journal, 833:148 (14pp), 2016 December 20 Marcus et al.



layers as given in Equation (18), and not due to the initial
conditions. We remind the reader that the pattern in Figure 8
was due to an initial perturbation consisting of a single vortex,
while the pattern in Figure 5 was initiated by space-filling
noise.

4.3. Large-scale Patterns in PPD Flows

Equation (18) for the critical layers’ positions was derived
assuming the Boussinesq approximation with constant vertical
gravity and constant Brunt–Väisälä frequencyMPJH13. How-
ever, in MPJBHL15 and in Figure 5 here, we demonstrated
numerically that Equation (18) also successfully predicts the
critical layer locations for anelastic and fully compressible

flows with constant vertical gravity and constant Brunt–Väisälä
frequency. Now, we numerically demonstrate that the spacing
formula is valid for anon-constant N(z), yielding critical layer
spacings that are also non-constant. Figure 9 shows anelastic
simulations of the excitation of baroclinic critical layers by a
quasi-steady-state 3D perturbing vortex in the midplane of a
PPD with linear gravity. The left panels are plots of the point-
wise Rossby number ( )Ro x y z t, , , in the x–z plane at y=0 as
in Figure 5, whereas the right panels show the Brunt–Väisälä
frequency N(z) as functions of height. The first row is for a
uniform background temperature and gravity linear in z, which
yields µ( ) ∣ ∣N z z . The second row is for a background
temperature with a cool midplane and a warm upper

Figure 9. Anelastic simulations of the excitation of baroclinic critical layers by a quasi-steady-state 3D perturbing anticyclone in the midplane of a PPD with linear
gravity. Units of length for x and z axes is H0. Integration times were short, just long enough to see vortex layers being created at the critical layers. Left panels: point-
wise Rossby number ( )Ro x y z t, , , in the x–z plane at y=0. The gray scale ranges from −0.1 (black) to+0.1 (white). The peak Rossby number inside the vortex is
−0.3125. The eight thin, black-and-white nearly straight lines extending symmetrically out of the anticyclone are vortex layers created by and at the critical layers. The
dashed colored lines are the locations of the m=1 (blue) and m=2 (red) critical layers as predicted by Equation (18), but with N0 replaced with N(z). Right panels:
Brunt–Väisälä frequency profile N(z). Top panels: isothermal background, which yields µ( ) ∣ ∣N z z . Bottom panels: background temperature with a cool midplane and
a warm upper atmosphere; with linear gravity, this yields a Brunt–Väisälä frequency profile N(z) that has local maxima and minima.
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atmosphere; with linear gravity, this yields a Brunt–Väisälä
frequency profile N(z) that has local maxima and minima. The
locations of the critical layers, as predicted by Equation (18) are
illustrated in color: = m 1 in blue and±2 in red. The critical
layers in the simulation exactly match up with the predicted
locations. Barranco & Marcus (2005) observed these patterns
of the vorticity in their simulations of 3D vortices, but initially
interpreted them as the St. Andrew cross patterns associated
with propagation of internal gravity waves (Kundu 1990). We
note that baroclinic critical layers seem to be especially excited
in the vicinity of local extrema in the Brunt–Väisälä frequency
profile N(z) (bottom row); we will explore this in a future
paper.

5. SUMMARY AND OUTSTANDING ISSUES

5.1. Summary

In the ZVI, perturbations can excite baroclinic critical layers
in rotating, stratified flow, which then create vortex layers that
can roll up and form anticyclones and cyclonic sheets onlarge
scales, and Kolmogorov-like turbulence onsmaller scales. This
is not a linear instability, but a finite-amplitude one. The main
results of this work are as follows.

1. For initial perturbations with a power-law energy
spectrum, the threshold for triggering ZVI is set by the
magnitude of the vorticity (or Rossby number) or the
enstrophy on the small scales, and not on the magnitude
of the velocity (or Mach number) or energy. For
b º W =N 2, we find that the minimum Rossby
number needed for instability is ~Ro 0.2crit on the
smallest scales.

2. While the threshold for ZVI is set by vorticity or Rossby
number, it is nonetheless useful to infer a criterion on the
Mach number. We find that the critical Mach number
scales with the inverse square root of the Reynolds
number: ~ -Ma Ro Recrit crit

1 2 . In PPDs, this
is ~ -Ma 10crit

6.
3. On small scales, zombie turbulence has no memory of the

initial conditions and has a Kolmogorov-like energy
spectrum.

4. On large scales, zombie turbulence is characterized by
anticyclones and cyclonic sheets with atypical Rossby
number of ∼0.3. The spacing of the cyclonic sheets and
anticyclones appears to have a “memory” of the spacing
of the baroclinic critical layers that gave rise to the vortex
layers. The wavenumber for this spacing is evident in the
energy spectrum before the turnover to the inertial range
of the Kolmogorov turbulence.

5. While our earlier work was in the limit of uniform
stratification, we have demonstrated that our formula for
the critical layer spacing is also valid for non-uniform
Brunt–Väisälä frequency profiles that may be found
in PPDs.

5.2. Outstanding Issues

In Section 4.3, we demonstrated that ZVI operates in flows
with non-uniform vertical gravity and non-uniform stratifica-
tion, as would be found in PPDs. Future work should consider
a more thorough investigation of spatially varying Brunt–
Väisälä frequency N(z), with a focus on two issues: the effects

of local extrema in N(z), and determining how close zombie
turbulence can penetrate into the unstratified midplane.
In MPJH13andMPJBHL15, and this work, we worked in

the adiabatic limit. Cooling and radiative diffusion will
suppress temperature anomalies in the baroclinic critical layers,
which may effectively make them barotropic, halting ZVI.
Relaxing adiabaticity and simulating ZVI with both optically
thin cooling and optically thick radiative diffusion should be
investigated, with a focus on determining the minimum cooling
times that can sustain zombie turbulence. Optically thick
cooling works on all size scales, whereas radiative diffusion
operates most effectively on small size scales, especially the
scale of critical layers. Two other purely hydrodynamic
instabilities, VSI and ConO, also operate in PPDs, but these
require very short cooling times. A potential area of study
could be the interplay of these instabilities in regions of
parameter space where they may overlap.
Of high priority is investigating the role of ZVI in star and

planet formation. Compressible modes excited by zombie
turbulence may transport angular momentum. Zombie vortices
may also trap and concentrate dust. Of special interest will be
to look at the competition or interplay of ZVI with the
streaming instability. Finally, one might envision investigating
ZVI with MRI, in global simulations, or in laboratory flows.
Magnetohydrodynamic processes (MRI, MHD-induced

winds) and purely hydrodynamic instabilities (ConO, VSI,
ZVI) may leave their own unique signatures on dust emission.
In the age of ALMA (and with JWST in the very near future),
we can expect direct observations of these dust patterns, which
might allow us to discriminate among the various mechanisms
that drive turbulence within PPDs (ALMA Partnership et al.
2015; Ruge et al. 2016)
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