
DDSL: Deep Differentiable Simplex Layer for Learning Geometric Signals

Chiyu “Max” Jiang∗ 1 Dana Lansigan∗ 1 Philip Marcus1 Matthias Nießner2

1UC Berkeley 2Technical University of Munich

Abstract

We present a Deep Differentiable Simplex Layer (DDSL)

for neural networks for geometric deep learning. The DDSL

is a differentiable layer compatible with deep neural net-

works for bridging simplex mesh-based geometry represen-

tations (point clouds, line mesh, triangular mesh, tetrahe-

dral mesh) with raster images (e.g., 2D/3D grids). The

DDSL uses Non-Uniform Fourier Transform (NUFT) to

perform differentiable, efficient, anti-aliased rasterization

of simplex-based signals. We present a complete theoretical

framework for the process as well as an efficient backpropa-

gation algorithm. Compared to previous differentiable ren-

derers and rasterizers, the DDSL generalizes to arbitrary

simplex degrees and dimensions. In particular, we explore

its applications to 2D shapes and illustrate two applications

of this method: (1) mesh editing and optimization guided by

neural network outputs, and (2) using DDSL for a differen-

tiable rasterization loss to facilitate end-to-end training of

polygon generators. We are able to validate the effective-

ness of gradient-based shape optimization with the example

of airfoil optimization, and using the differentiable rasteri-

zation loss to facilitate end-to-end training, we surpass state

of the art for polygonal image segmentation given ground-

truth bounding boxes.

1. Introduction

The simplicial complex (i.e., simplex mesh) is a flex-

ible and general representation for non-uniform geomet-

ric signals. Various commonly-used geometric representa-

tions, including point clouds, wire-frames, polygons, trian-

gular mesh, tetrahedral mesh etc., are examples of simpli-

cial complexes. Leveraging deep learning architectures for

such non-uniform geometric signals has been of increasing

interest, and varied methodologies and architectures have

been presented to deal with varied representations [3].

In this study, we propose a Deep Differentiable Simplex

Layer (DDSL), which performs differentiable rasterization

of arbitrary simplex mesh-based geometric signals. The

* Equal contributions

DDSL

forward
j = 1

line

mesh

j = 0

point

cloud

j = 2

polygon

gradient backward
∂pixel

∂vertex

DDSL(V, E, D)

Simplex

NUFT
Filter iFFT

Figure 1: A schematic of the DDSL layer with 2D sim-

plex meshes. The DDSL algorithm is general for handling

simplex meshes of arbitrary dimensions and simplex de-

grees. The input to DDSL is a simplex mesh described by

three matrices: float matrix V for vertex coordinates, uint

matrix E for simplex connectivity, and float matrix D for

per-simplex density (constant density of 1 in the example

above). A raster image of arbitrary resolution can be pro-

duced. The gradient of per-pixel intensity with respect to

each spatial coordinate in V can be computed analytically

within the DDSL layer.

DDSL is based upon simplex Non-Uniform Fourier Trans-

form (NUFT) [18] for the forward-pass, which is highly

generalizable across arbitrary topologies. Furthermore, we

find the general differential form of the simplex NUFT, al-

lowing for an efficient backward pass. Our work differs

from previous work in the literature on differentiable ren-

dering in two major ways. First, our network is generaliz-

able across arbitrary simplex degrees and dimensions, mak-

ing it a unified framework for a range of geometric repre-

sentations. Second, while other differentiable renderers are

specifically posed for projective-rendering by projecting 3D

meshes to 2D grids, the DDSL is capable of in-situ rasteri-

zation in the original dimension. Building on the differen-

tiable nature of the rasterizer, we explore two unique use

cases. First, using the differentiablity of the DDSL, we can

8769

utilize Convolutional Neural Network (CNN) based deep

learning models as surrogate models of physical properties

for shape optimization, which is useful in a range of engi-

neering disciplines. Secondly, using the DDSL as a neural

network layer, we can formulate a differentiable rasteriza-

tion loss that allows for end-to-end generation of shapes us-

ing a direct supervised approach, which can be useful in a

range of computer vision problems.

As an example of the two use cases, we perform three

experiments. First, to validate the effectiveness of gradi-

ent propagation through the layer, we illustrate with the toy

problem of MNIST shape optimization, where we can use

gradients propagated through the neural network and DDSL

to manipulate and transform the input polygon mesh into a

target digit (Sec. 4.2). Next, to further illustrate potential

applications of neural shape optimization enabled by the

DDSL, we investigate the classic engineering problem of

airfoil optimization and show that the shape optimization

pipeline effectively manipulates the input shape into a de-

sired lift-drag ratio (Sec. 4.2). Finally, to illustrate the ef-

fectiveness of the differentiable rasterization loss, we train

a polygon generating neural network end-to-end with di-

rect supervision to generate polygonal segmentation masks

for image segmentation (Sec. 4.3). With the novel rasteri-

zation loss, we surpass state-of-the-art in the polygon seg-

mentation task, with a much simpler network architecture

and training scheme.

In summary, we contribute the following:

• We propose the DDSL, which is a differentiable raster-

izer for arbitrary simplex-mesh based geometries. Its

differentiable nature allows for its effective integration

in deep neural networks.

• We show that the DDSL effectively facilitates shape

optimization for engineering applications such as aero-

dynamic optimzation of airfoils, using neural networks

as surrogate models.

• We show that the DDSL can be used to produce a

differentiable rasterization loss, which can be used to

create direct supervision to facilitate end-to-end train-

ing of shape generators, with applications in polygonal

segmentation mask generation.

• We develop and release code for effectively integrating

the DDSL into deep neural networks1, with compelling

computational performance benchmarks.

2. Related Work

We present a brief overview of geometric representations

for deep learning, various related differentiable renderers,

and related work in the space of our two exemplary appli-

cations.

1Code available: https://github.com/maxjiang93/DDSL

Geometric Representations for Deep Learning In gen-

eral, there are two classes of geometric representations, ei-

ther in its native form of simplex meshes, or in a raster form

which can be efficiently processed with grid-based network

architectures such as CNNs. As simplex meshes come

in various forms and dimensions (point clouds, meshes

etc.), there is a vast body of literature for different geo-

metric signals of different simplex degrees and dimensions.

For example, PointNets have been specially designed for

point clouds [36, 37], various algorithms perform convolu-

tions natively on the mesh manifold, [17, 15, 2], the graph

[10, 24, 46] etc.

Grid-based algorithms on the other hand require the ras-

terization of a simplex-mesh based geometric signal for fur-

ther processing by CNNs. Examples of such include binary-

voxel based algorithms [32, 45], Truncated Signed-Distance

Function (TSDF) based algorithms [7, 48, 40, 8], multi-

view image based algorithms [41, 21], and hybrids [19, 6].

Compared to deep learning methods that directly perform

convolutions on the simplex mesh, grid-based methods are

more generalizable across shape topologies and computa-

tionally easier to implement, since it leverages highly ef-

ficient tensor operators such as 2D/3D convolution ker-

nels for rasterized data. However, conventional voxeliza-

tion methods are not differentiable with respect to the input

mesh, and differentiable rasterizers have been proposed to

close the gap between simplex and grid representations.

Differentiable Rasterization in Deep Learning Re-

cently, a series differentiable projective renderers have been

proposed. [30] proposed an approximate differentiable ras-

terizer for inverse graphics. [22] proposed a deep neural

renderer that uses linear approximations for the gradients of

the pixel intensity with respect to the vertex positions. [26]

introduced a differentiable ray-tracer for differentiability of

additional rendering effects. Very recently, [28] proposed a

differentiable rasterizer that approximates rendering deriva-

tives with soft boundaries. Various studies in face mesh re-

construction applications [11, 42, 43, 38] and general mesh

reconstruction tasks [20, 25] utilize some form of differ-

entiable rasterization to facilitate gradient flows in neural

networks.

Shape Optimization Shape optimization is essential in a

broad range of engineering fields, including aerodynamic,

mechanical, structural, and architectural designs. Tradition-

ally, shape optimization algorithms couple gradient-based

or gradient-free optimizers (e.g., genetic algorithms, sim-

ulated annealing) with physics simulators, e.g., Computa-

tional Fluid Dynamics (CFD) and multiphysics software for

evaluation. For aerodynamic shape optimization, the ad-

joint method has been used for gradient-based optimiza-

tions with sensitivities acquired from physics simulators

8770

Notation Description

d Dimension of Euclidean space R
d

j Degree of simplex. Point j = 0,

Line j = 1, Tri. j = 2, Tet. j = 3
n,N Index of the n-th element among a

total of N elements

Ωj
n Domain of n-th element of order j
x Cartesian space coordinate vector.

x = (x, y, z)
k Spectral domain coordinate vector.

k = (u, v, w)
p Index of a point in a simplex ele-

ment. p ∈ N, p ≤ j + 1
i Imaginary number unit

Table 1: List of math symbols in our method.

[35, 16]. Recently, machine learning algorithms such as

multilayer perceptrons have been used as surrogate models

for the response surface to speed up evaluation and opti-

mization [23, 31]. More recently, CNNs have been used for

the evaluation of aerodynamic properties [49], and gradient-

based optimization methods coupled with CNNs have been

explored [14]. However, direct manipulation of input mesh

has not been achieved due to the lack of in-situ differen-

tiable rasterization of polygons and 3D meshes.

Image Segmentation with Polygon Masks Image seg-

mentation is a central task in computer vision, and has been

thoroughly studied. Much of the work in the image segmen-

tation literature creates pixel-level masks [29, 39, 44, 12, 9,

27]. However, more recently, to address the need of assist-

ing human annotators to create ground-truth segmentation

labels, new network architectures such as PolygonRNN [4]

and PolygonRNN++ [1] have been proposed for creating

polygonal segmentation masks given ground-truth bound-

ing boxes. Our work targets this application to explore a

more effective and efficient polygon generating network us-

ing our DDSL-enabled rasterization loss.

3. Method

3.1. DDSL Overview

A schematic of the DDSL layer is presented in Fig. 1.

The DDSL layer consists of three consecutive mathemati-

cal operations, first computing the Fourier transform of the

simplicial complex by uniformly sampling it in the spectral

domain, followed by a spectral filtering step by multiplying

the spectral signal with a Gaussian filter to eliminate ring-

ing effects. Lastly, we use the inverse Fourier Transform

(iFFT) to acquire the physical raster image corresponding

to the input. Since the forward and backward methods of

the filtering step (an element-wise product) and iFFT are

well known, we focus our analysis on the simplex NUFT,

which we derive and detail below.

3.2. Mathematical Description

We represent discrete geometric signals as weighted sim-

plicial complexes. We provide the following definitions for

a j-simplex and a j-simplex mesh:

Definition 3.1 (j-simplex). A simplex is the generalization

of the two-dimensional triangle in other dimensions. The

j-simplex determined by j + 1 affinely independent points

v0, . . . , vj ∈ R
n is

C = conv{v0, . . . , vj}

= {θ0v0 + · · ·+ θjvj | θ � 0, 1T
θ = 1} (1)

where 1 is the vector with all entries one.

Definition 3.2 (j-simplex mesh). A simplicial complex

consisting only of j-simplices is a homogeneous simplicial

j-complex, or a j-simplex mesh.

Example 3.1 (Examples of simplices and simplex meshes).

A 0-simplex is a point, a 1-simplex is a line, a 2-simplex is

a triangle, and a 3-simplex is a tetrahedron. The 0-, 1-, 2-,

and 3-simplicial complexes are the point cloud and linear,

triangular, and tetrahedral meshes, respectively.

Definition 3.3 (Functions over a j-simplex element and a

j-simplex mesh). The Piecewise-Constant Function (PCF)

over a j-simplex mesh consisting of N simplices is the

superposition of the density functions f j
n(x) for each j-

simplex with domain Ωj
n and signal density ρn:

f j
n(x) =

{

ρn,x ∈ Ωj
n

0,x /∈ Ωj
n

, f j(x) =

N
∑

n=1

f j
n(x) (2)

For the forward pass, we use the NUFT of a PCF over a

j-simplex mesh.

Proposition 3.1 (Forward pass). The NUFT of a PCF over

a simplex in a mesh is

F j
n(k) = ρni

jγj
nS (3)

S :=

j+1
∑

t=1

e−iσt

∏j+1
l=1,l 6=t(σt − σi)

, σt := k · xt (4)

where γj
n is the content distortion factor, which is the ratio

between the simplex content and the unit orthogonal sim-

plex content. The simplex content Cj
n is computed using

8771

the Cayley-Menger determinant:

Cj
n =

√

(−1)j+1

2j(j!)2
det(B̂j

n) (5)

B̂j
n :=

0 1 1 1 . . .
1 0 d212 d213 . . .
1 d221 0 d223 . . .
1 d231 d232 0 . . .
...

...
...

...

(6)

where each element d2st of B̂j
n is the squared distance be-

tween points s and t. The content of the unit orthogonal

simplex Cj
I is 1/j!, so the content distortion factor is

γj
n =

Cj
n

Cj
I

= j!Cj
n (7)

From the linearity of the Fourier transform, the NUFT of

a PCF over an entire j-simplex mesh is

F j(k) =

N
∑

n=1

F j
n(k) =

N
∑

n

ρni
jγj

nS (8)

For efficient computing, we use the auxiliary node

method (AuxNode), which utilizes signed content.

Corollary 3.1 (AuxNode). To compute the Fourier trans-

form of uniform signals in j-polytopes represented by its

watertight (j − 1)-simplex mesh using AuxNode, Eqn. (3)

is modified as follows:

F j
n(k) =ij

N ′

n
∑

n′=1

sn′γj
n′

(

(−1)j
∏j

l=1 σl

+

j
∑

t=1

e−iσt

σt

∏j
l=1,l 6=t(σt − σl)

)

(9)

where sn′γj
n′ is the signed content distortion factor for the

n′th auxiliary j-simplex where sn′ ∈ {−1, 1}. For practi-

cal purposes, assume that the auxiliary j-simplex is in R
d

where d = j. The signed content distortion factor is com-

puted using the determinant of the Jacobian matrix for pa-

rameterizing the auxiliary simplex to a unit orthogonal sim-

plex:

sn′γj
n′ = j! det(J) = j! det([x1,x2, · · · ,xj]) (10)

Proof. Refer to [18].

For the backward pass, we derive the analytic derivative

of the NUFT with respect to the vertex coordinates of a j-

simplex mesh. Following from the product rule, we require

the derivatives of the content distortion factor γj
n and the

summation term S to obtain the entire derivative of F j
n(k).

Lemma 3.1 (Derivative of the content distortion factor).

The derivative of γj
n with respect to vertex coordinate xp

is

∂γj
n

∂xp

=
(−1)j+1/2j

γj
n

j+1
∑

m=1
m 6=p

ApmDpm (11)

where Dpm = 2(xp − xm) and Apm is the element in the

(p+ 1)th row and (m+ 1)th column of adj(
ˆ
Bj

n).

Lemma 3.2 (Derivative of the summation term). Let St be

one term in the summation term S:

St :=
e−iσt

∏j+1
l=1,l 6=t(σt − σl)

(12)

The derivative of the summation term with respect to xp is

∂S

∂xp

=

−iSp +

j+1
∑

t=1,t 6=p

St + Sp

σt − σp

k (13)

where k is the spectral domain coordinate vector.

Proposition 3.2 (Backward pass). Following from Lemmas

3.1 and 3.2, the derivative of F j
n(k) with respect to a point

xp in the simplex element n is

∂F j
n(k)

∂xp

= ρni
j

Λk + Γ

j+1
∑

m=1
m 6=p

ApmDpm

(14)

where Apm is the element in the pth row and mth column

of adj(
ˆ
Bj

n) starting at p = 0 and m = 0,

Λ :=γj
n

−iSp +

j+1
∑

t=1,t 6=p

St + Sp

σt − σp

 (15)

Γ :=
(−1)j+1/2j

γj
n

S (16)

We provide a detailed derivation of Eqn. 14 as well as

proofs of Lemmas 3.1 and 3.2 in Sec. A1 of the Appendix.

3.3. Deep Learning Architectures and Pipelines

We present the a schematic of the deep learning model-

driven shape optimization (Sec. 4.2) in Fig. 2, and

a schematic of the polygon segmentation network (Poly-

gonNet) in Figs. 3 and 4. A detailed description of the

architectures is presented in Appendix B.

4. Experiments

4.1. Performance Benchmarking

We compare the runtime of our implementation of the

backward pass over the DDSL with that of the numeric

derivatives calculated using the finite difference method.

8772

input shape DDSL
Pretrained

CNN

cross

entropyclass label: “1”

target: “3”

L2-losslift-drag ratio: 0.0

target: 95.9

autograd

autograd

DDSL-backward

DDSL-backward

Figure 2: Schematic of deep learning model driven shape optimization pipeline.

δ
(0)
1

δ
(0)
2

δ
(0)
3

Figure 3: Schematic for the hier-

archical polygon generation pro-

cess in PolygonNet. New nodes

in the next hierarchy are gener-

ated by offsetting edge center in

normal direction by δ.

2048× 7× 7 16× 7× 7

128× 3

Input Crop

ResNet50

2nd-last Layer

Conv1x1

Dropout

FC

Reshape

64 × 6
PUConv

32× 12
PUConv

16× 24
PUConv

2× 3

Base

Triangle

Conv1x1

Sigmoid

1× 3

Conv1x1

Tanh

δ(0)

1× 6

Conv1x1

Tanh

δ(1)

1× 12

Conv1x1

Tanh

δ(2)

1× 24

Conv1x1

Tanh

δ(3)

PUConv

x1 x2 x3

0 x1 0 x2 0 x3 0 x1

f1 f2 f3

y1 y2 y3 y4 y5 y6

size-3 filter

pad 0’s

*

copy

Figure 4: Schematic of the deep learning architecture for polygon segmentation (PolygonNet). All intermediate layers are

followed by BatchNorm and ReLU. A Periodic Upsampling Convolution (PUConv) is used to generate vertex offsets (δ) at

the consecutive level. For each level, we learn a learnable scale factor for all offsets.

Experiment Setup We perform tests for the 0-, 1-, 2-,

and 3-simplex meshes in 3-dimensional space and exam-

ine the effects of mesh size (number of points in the mesh)

and image resolution. We test mesh sizes ranging from 5

to 50 points and resolutions ranging from 4 to 32, and we

run each test 100 times to acquire a distribution of data. For

each run, we randomly generate a 3-dimensional simplex

mesh of varied simplex degrees, varied densities, with ran-

dom gradient values on each raster pixel. We then calculate

the analytic and numeric derivatives for the DDSL using our

implementation of Eqn. 14 and the finite difference method,

respectively, and time each calculation.

Analysis of complexity Since the analytic finite differ-

ence backward pass for computing the gradients using Eqn.

14 requires computing each pair of spectral coefficient and

each vertex in a j-simplex, the computational complexity

for the finite difference backward pass is the same as the

forward pass, O((j + 1)nem), for a mesh of ne simplices

and a raster of m degrees of freedom. Finite difference, on

the other hand, requires nv forward computations, each of

complexity O((j +1)nem). Assuming nv ∝ ne, the Finite

Difference evaluation is of complexity O((j + 1)n2
em).

Results The results of our mesh size and resolution run-

time tests are shown in Fig. 5. In both tests and for all

j-simplices, our implementation of the analytic derivative

consistently outperforms the numerical method for calcu-

lating the derivative by 10 ∼ 100× in the range we tested.

8773

10 20 30 40 5010
0

10
1

10
2

10
3

Number of Points

R
u
n
ti

m
e

(m
s)

j = 0

10 20 30 40 50
Number of Points

j = 1

10 20 30 40 50
Number of Points

j = 2

10 20 30 40 50
Number of Points

j = 3

(a)

4 8 16 3210
0

10
1

10
2

10
3

Resolution

R
u
n
ti

m
e

(m
s)

j = 0

4 8 16 32
Resolution

j = 1

4 8 16 32
Resolution

j = 2

4 8 16 32
Resolution

j = 3

(b)

Figure 5: Comparison of the analytic (pink) and numeric (blue) derivative runtimes for the (a) mesh size and (b) resolution

tests. All rasters are computed for a square cube, and resolution is per dimension.

4.2. Shape Optimization

We demonstrate the utility of the DDSL through the task

of shape optimization. Since many physical characteristics

depend on shape, shape optimization is an important and

challenging task across many fields of science and engi-

neering. We show that the DDSL allows us to accomplish

this shape optimization task due to the analytic nature of its

derivative.

General Experiment Setup We pre-process each shape

into a polygon of the shape’s boundary. The polygons are

rasterized using the DDSL. We train neural networks on the

raster images, and we use the gradients out of these neural

networks for the shape optimization task.

Using gradient descent, we optimize a shape to a pre-

scribed target value, which can be a shape classification or

a physical quantity. Since we implemented the DDSL as a

differentiable neural network layer, we can obtain the gra-

dient of the target value with respect to the original shape

directly from the neural network. Rather than directly ma-

nipulating vertices, we further propagate this gradient to

control points attached to the original shape for enhanced

robustness. Each control point has 3 degrees of freedom:

translation in the x and y directions, and rotation about the

point. More details about the control points are given in

Sec. A2. We iterate the shape optimization process until

the loss converges to zero.

MNIST We first demonstrate shape optimization using

the DDSL with the MNIST dataset of handwritten digits.

Rather than using the traditional pixel images, we use poly-

gons of the digits as inputs. The polygon form of MNIST

digits can be acquired by contouring the original images.

The objective of this experiment is to optimize a digit in the

MNIST dataset to a target digit.

Airfoils We further illustrate the functionality of the

DDSL with the more practical task of aerodynamic shape

optimization. For this experiment, we optimize an airfoil to

a prescribed lift-drag ratio, which is related to the efficiency

of an aerodynamic body. We use the airfoiltools.

com database of consisting of 1,636 airfoils of aircraft

wings and turbine blades, along with precomputed physi-

cal quantities such as drag and lift coefficients at different

angles of attack and Reynolds numbers, acquired from CFD

simulations. Airfoils are originally represented as polygons

and rasterized using the DDSL. We then train a neural net-

work to predict lift-drag ratios of airfoils at specific angles

of attack and Reynolds numbers and use this neural network

for the shape optimization task. When optimizing the airfoil

8774

(a)

0 50 100

0

5

10

15

20

Iterations
C

ro
ss

E
n

tr
o

p
y

L
o

ss

(b)

(c)

0 20 40

0

2

4

6

Iterations

M
S

E
L

o
ss

(d)

Figure 6: Optimization of (a), (b): a ‘1’ from the MNIST

dataset to a ‘3’ by minimizing the cross-entropy between the

input and the target class. (c), (d): the NACA 0012 airfoil

(with an original lift-drag ratio of 0) to a lift-drag ratio of

95.9. The airfoil is set at an angle of attack of zero, and the

Reynolds number is set to 1× 106.

shape, we specify the angle of attack of the airfoil and the

Reynolds number of the flow.

Results We show some iterations of the shape optimiza-

tion process for the MNIST and airfoil experiments as well

as graphs showing the loss over each iteration in Figs. 6,

respectively. The success of the DDSL in the shape opti-

mization task is most intuitively clear in the MNIST experi-

ment, where the original digit, ‘1,’ is transformed into a ‘3.’

In the airfoil experiment, the lift-drag ratio increased, as de-

sired. The optimized shape is an airfoil with its trailing edge

deflected downwards, resembling an aircraft deploying its

flaps at takeoff to increase lift. Both experiments exhibit a

monotonic decrease in loss, which converges to zero, con-

firming that optimization was achieved.

4.3. Segmentation Mask Generation

To further illustrate applications of the DDSL layer in

deep learning applications, we experiment on the task of im-

age segmentation by generating polygonal masks. In con-

trast to conventional segmentation frameworks that output

pixel masks, directly predicting polygons allows for a more

efficient and flexible output structure, and has been shown

to be effective in assisting human annotators in labeling new

datasets [4, 1].

Experiment Setup For direct comparison with state-of-

the-art, we follow the experiment setup of [4] and [1] for

predicting polygonal masks. In contrast to the conventional

setup of instance segmentation, we assume crops of input

images given ground-truth bounding boxes, and we output

the corresponding polygonal masks using our neural net-

work. Following the two studies, we train and test our

model on the Cityscapes dataset [5]. The Cityscapes dataset

is one of the most comprehensive benchmarks for instance

segmentation, containing 2975 training, 500 validation, and

1525 test images labeled with 8 semantic classes. We follow

the two studies for an alternative split of the original dataset,

since the original test images do not provide ground-truth

instances. The new partitions consists of 40174 / 3448 /

8440 image crops of train/validation/test sets, each of size

224× 224.

Training We use two losses for training the model, a

multi-resolution rasterization loss, and a smoothness loss.

The losses are defined as:

Lmres =
∑

i,res

||Dres(G
(i)
θ (x))−Dres(y)||1 (17)

i ∈ {0, 1, 2, 3}, res ∈ {224, 112, 56, 28}

Lsmooth =
1

n

n
∑

j

(
Aj(G

(3)
θ (x))

π
− 1)2 (18)

L = Lmres + λLsmooth (19)

where Dres is DDSL rasterization at resolution res, G
(i)
θ is

the polygon output from the polygon generator network pa-

rameterized by θ, up to level i, x and y are the input images

and the ground-truth polygons, Aj is the j-th angel of the

polygon, and λ is the smoothness penalty term. We train the

model (see Fig. 4) end-to-end using the loss defined above.

We weight the loss of each class inversely proportional to

the label frequencies in the training set. See more details in

Appendix B3.

Results We evaluate our model against state-of-the-art

models and detail the results in Table 2, where we evalu-

ate runtime on a single Titan X (Pascal) GPU. We provide

a visual comparison in Fig. 7. Our model surpasses state

of the art for class-averaged IoU. In particular, the simplic-

ity of our network architecture is highlighted in Table 3.

While Polygon-RNN++ was unable to propagate gradients

through IoU scores, it uses IoU as a reward to an additional

reinforcement learning model, which adds additional com-

plexities to the overall architecture. It also uses additional

graph neural network to upsample and finetune the poly-

gons. Due to the differentiable rasterization loss, our model

8775

Polygon-RNN Polygon-RNN++ PolygonNet (Ours) Ground Truth

Figure 7: Visualization of image segmentation results. Ground-truth bounding boxes are given for all models to create image

crops as inputs to the networks.

Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

SquareBox [4] 35.41 53.44 26.36 39.34 54.75 39.47 46.04 26.09 40.11

Dilation10 [47] 46.80 48.35 49.37 44.18 35.71 26.97 61.49 38.21 43.89

DeepMask [33] 47.19 69.82 47.93 62.20 63.15 47.47 61.64 52.20 56.45

SharpMask [34] 52.08 73.02 53.63 64.06 65.49 51.92 65.17 56.32 60.21

Polygon-RNN [4] 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 61.40

Polygon-RNN++ [1] 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

PolygonNet (Ours) 62.26 84.38 68.62 82.42 76.57 63.57 78.08 64.10 72.50

Table 2: Comparison of Cityscape image segmentation IoU against baseline algorithms on test set.

uses a single CNN-based polygon generator. In comparison

to Polygon-RNN++, our model achieves a 100x speed-up

with a quarter of the total model parameters.

Model # Params Runtime (s)

Polygon-RNN 58M 2.0332± 0.0168
Polygon-RNN++ 100M 2.3241± 0.0181
PolygonNet (Ours) 24M 0.0287 ± 0.0022

Table 3: Comparison of network parameters and evaluation

time for a batch of 16 image crops.

5. Conclusion

We propose the DDSL as a differentiable simplex layer

for neural networks. We present a unifying framework for

differentiable rasterization of arbitrary geometrical signals

represented on a simplicial complex. We further show two

geometric applications of this method: we can effectively

propagate gradients across the DDSL for shape optimiza-

tion, and we can utilize the DDSL to construct a differen-

tiable rasterization loss that allows for a simple, yet effec-

tive, polygon generating network that surpasses state of the

art in segmentation IoU as well as runtime and parameter

efficiency.

6. Acknowledgements

We would like to thank Thomas Funkhouser and

Avneesh Sud for helpful discussions. We appreciate help

from Ling Huan for providing code and data for benchmark-

ing our results against PolygonRNN++. This work is sup-

ported by a TUM-IAS Rudolf Mößbauer Fellowship and the

ERC Starting Grant Scan2CAD (804724).

8776

