
1. Introduction
The Great Red Spot is an enduring large anticyclone in Jupiter's atmosphere, situated in the South Tropical 
Zone (Figure 1). Anticyclonic flow in this zone is perturbed over the northern edge of the GRS so that it 
locally protrudes into the typically dark and reddish South Equatorial Belt (SEB) to the north. The SEB 
features dramatic global-scale changes in coloration, cloud properties, and convective activity (e.g., Fletcher 
et al., 2011, 2017; Rogers, 1995; Sánchez-Lavega & Gómez, 1996), but the most notable change in the GRS 
itself is more monotonic in nature: a continuous decrease in size over more than 100 years of accurate ob-
servations (Simon et al., 2018).

The size and longevity of the GRS make it unique among outer solar system vortices, yet it also serves 
as an archetype of a class of “pancake vortices”—anticyclones embedded in stably stratified fluids—also 
including vortices like the dark spots on Neptune and salt lens eddies in the Earth's oceans (e.g., Dowl-
ing, 1995; Hassanzadeh et al., 2012; Yim et al., 2016). Pancake vortices have a thickness much smaller than 
their horizontal dimensions, like the GRS whose horizontal scale is some 50 times greater than vertical 
scale, according to theoretical arguments based on laboratory experiments and Jovian vortex velocity fields 
(Lemasquerier et al., 2020). Terrestrial ocean eddies transport heat meridionally by both stirring (turbulent) 
and trapping (bulk transport) mechanisms (Sun et al., 2018). Trapping is limited on Jupiter because major 
vortices are bounded by jets that limit meridional migration, although trapping could be significant on 
Saturn, where poleward migration of the anticyclone created by the 2010 Great White Storm was observed 
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(Hueso et al., 2020; Sayanagi et al., 2013). Marcus (2004) suggested that the stirring mechanism—driven 
by the chaotic behavior of Jupiter's three white ovals near 34°S—would change after the ovals merged in 
1997–2000, possibly leading to a temperature change at that latitude. The color change of merged Oval BA 
in 2006 might have resulted from a temperature change (e.g., de Pater et al., 2010; Wong et al., 2011), but 
the evidence is inconclusive in light of later changes in Oval BA back to white coloration (Simon, 2015), 
plus the general lack of high-resolution photometric time-series color information covering the white ovals 
in the decades prior to their mergers. Studying vortex evolution over time may allow comparison between 
planetary fluid environments from the atmospheres of the giant planets to the terrestrial oceans.

2. Data and Methodology
Data were acquired by HST/WFC3 (Dressel, 2021) over the 2009–2020 time period by programs listed in 
Table S2. Additional 2014 data were not included because satellite-shadowing of the GRS region prevented 
high-precision velocity fields from being derived (Simon et al., 2014). Red wavelength (631–763 nm) filters 
optimize both spatial resolution and cloud tracer contrast. These “continuum” filters are sensitive to cloud 
opacity throughout the P < 10 bar region, but most of the clouds trace velocities at P < 1 bar in the GRS 
(Banfield et al., 1998). Image processing consisted of correction for cosmic rays and detector distortion, 
and transformation from sky coordinates to Jovian latitude/longitude coordinates. We use planetographic 
latitudes and System III longitudes (Wong et al., 2020).

We retrieve the velocity field using the Advection Corrected Correlation Image Velocimetry (ACCIV) tech-
nique, which was specifically developed to measure velocities along curved paths in Jupiter's anticyclones 
(Asay-Davis et al., 2009; Asay-Davis, 2015). In a two-pass approach, we use data with a typical time separa-
tion of 1.6 h for the initial pass, and 10.8 h for the final pass. At each iterative step, the velocity field from the 
previous iteration is used to advect the images to a common time point, and correlations are found between 
these advected images to refine the velocity field and to characterize the final uncertainties. We estimate an 
average “correlation velocity uncertainty” (Asay-Davis et al., 2009) of 3.6 ± 1.2 m s−1 among all the velocity 
fields (Table S4). The final output of ACCIV consists of one velocity field data set with the full set of scat-
tered velocity vectors, and one sampled on a regular grid. Velocity fields and related data files are available 
in a public archive (Wong, 2021). The Supporting Information S1 discusses the error budget for uncertainty 
estimation, the archived data, and the ACCIV control parameters.

The overall dynamical structure of the GRS is defined by a ring of high-speed winds, which we use as a 
definition of the vortex dynamical boundary (even though the area just outside the high-speed ring is also 
part of the vortex; see Figure S3). Two alternate methods characterize the velocities in this ring:

Figure 1. Jupiter data spanning one Jupiter year of HST/WFC3 observations, with zonal (blue) and Great Red Spot east-west (red) wind profiles overlaid. 
Arrows at right mark the latitude ranges of the South Equatorial Belt (SEB), South Tropical Zone (STrZ), and South Temperate Belt (STB). Color contrast has 
been maximized. Some subtle remaining color differences are due to different filter sets available at each epoch.
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1.  We used an automated process to fit a symmetric ellipse to the data (see Supporting Information S1), 
thereby defining the vortex center location. Within the symmetric ellipse, we measured azimuthal ve-
locities vellipse.

2.  We defined a series of 100 “spokes” radiating from the center of the GRS with equal angular spacing, 
measuring the maximum azimuthal velocity vspokes along each spoke. The path connecting maxima along 
each spoke defines a lumpy ring, deviating from a perfect ellipse (Figure S2).

Figure 2 shows the 2020.72 velocity field, including the symmetric ellipse fit to the high-speed ring, gridded 
and scattered-vector velocity fields, the relative vorticity map, and cuts through the principal axes of the vor-
tex. The global-average zonal wind field was subtracted to emphasize features of the velocity field specific 
to the vortex (except in Figure 2f).

3. Results
The relative vorticity map of the GRS, and the size and shape of the high-speed ring, are shown for each 
epoch in Figure 3. An outer region with a hollow core (Figure S3) can be seen at every epoch. The mean 
absolute value of the relative vorticity in the outer region remained in the 4 × 10−5 to 5 × 10−5 s−1 range 
throughout the timeline. Both the morphology and the unchanging constant relative vorticity are consistent 
with the study of Shetty and Marcus (2010), which found constant potential vorticity (a different quantity) 
within uncertainties, using a model of GRS velocity fields spanning 1979–2006. Constant relative vorticity 
implies constant potential vorticity only if static stability does not change over time, which we demonstrate 
below in the discussion of Figure 4c. Static stability can be expressed in terms of the Brunt-Väisälä frequen-
cy, the deformation radius, or the lapse rate (e.g., Equation 1 of Wong et al., 2011).

Changes in the size of the vortex (Figure  4a and Table  1) extend the trends described in Simon 
et al. (2014, 2018). Extrapolating the linear decrease in size leads to an estimate that the GRS will reach 
a circular shape in 2035 based on HST/WFC3 data alone, or in 2039 if data extending back to Voyager are 
included.

Figure 4b shows that the mean wind speeds in the high-speed ring have increased over time. Weighted least 
squares fits give a rate of increase of 0.69 ± 0.25 m s−1 yr−1 using vellipse or 0.38 ± 0.25 m s−1 yr−1 using vspokes. 
Two separate statistical tests show that the increase is significant:

1.  The Pearson's r values (Press et al., 1992, p.636), which are independent of measurement uncertainty, 
are r = 0.674 (with a false-alarm probability for linear correlation of 3.5%) for vellipse, and r = 0.579 (with 
a false-alarm probability for linear correlation of 8.2%) for vspokes.

2.  Reduced χν
2 values (which depend on measurement uncertainties) are 0.79 (for vellipse) or 0.77 (for 

vspokes), with χν
2 > 0.5 indicating that a linear slope is a good model for the variation (Bevington & Rob-

inson, 1992, p.197).

The spatial variability in values of vellipse or vspokes measured around the GRS circumference for a typical 
velocity field is shown by the shaded bars on the left side of Figure 4b, with magnitudes on the order of 
±15 m s−1. The variability in velocities (also visible as lumps in the red ring in Figure 2b) is probably a 
real characteristic of the velocity field, rather than a result of errors in the retrieval process. We calculate 
χν

2 for the linear trend in Figure 4b, using the variability around the ring at each epoch (shaded bars) 
as an estimate of the mean speed uncertainty, rather than the error bars shown at each point based on 
the “correlation velocity uncertainty” described in Asay-Davis et al. (2009). The resulting χν

2 of 0.04 is 
unreasonably small, meaning that if the variability around the ring were truly due to measurement un-
certainty (noise), then it is highly improbable that the data points would adhere so closely to the fitted 
lines shown.

Characteristics of the GRS flow field that are sensitive to the static stability (i.e., the vertical temperature 
profile) inside and outside of the vortex did not show strong trends (Figure 4c). To quantitatively con-
strain changes in the static stability (although we do not directly measure the static stability itself), we 
follow the work of Shetty et al. (2007), which found that the shape of east-west and north-south velocity 
profiles through the vortex center were sensitive to the potential vorticity. Potential vorticity is a non-
linear function of both the relative vorticity (velocity field gradient) and the static stability (expressed 
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as the deformation radius LR in Shetty et al., 2007). Thus, if we could show that the relative vorticity 
in the GRS was unchanged, and the shape of the velocity profile across the vortex was unchanged, we 
could conclude that the static stability in the vortex was unchanged. Figure 4c shows fluctuations of 
about ±25% in the GRS relative vorticity (gold points) and the decay factors characterizing the flow 
inside (blue points) and outside (pink points) of the high-speed ring, which are respectively sensitive to 
the potential vorticity inside and outside the ring. The overall trend in the mean speed is not reflected 
in these data.

Figure 2. Great Red Spot velocity field data for the 2020.72 epoch, which is based on data from the OPAL program (Simon et al., 2015). The mean zonal wind 
field has been subtracted from the 2D velocity fields. (a) Color composite map, with a blue ring indicating the best-fit symmetric ellipse of high-speed winds. (b) 
Wind speed, after subtraction of the mean zonal wind profile. (c) Velocity vectors (104 vectors drawn from the full set of 5.9 × 106 vectors). (d) Relative vorticity, 
showing the “hollow” core. (e) Northward velocities along an east-west profile through the center of the ellipse. Individual north-south vector components 
within ±0.25° of the east-west line are shown in light red, with the mean profile shown in blue. A parameterized fit to the profile is shown in light grey. (f) As 
panel E, for eastward velocities along a north-south profile through the center.
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To rule out the possibility that changes in the GRS velocity field were due to changes in the vortex 
surroundings, we measured the mean wind shear (applying a linear fit to the zonal wind profile) over 
the 20–25°S range (Figure  4d). Methodology for the zonal wind retrievals is described in Asay-Davis 
et al. (2011) and Tollefson et al. (2017). There is no monotonic change in the wind shear (with the 2009 
data point included) that parallels the long-term trends in vortex size, shape, and average wind velocity 
in the high-speed ring. We also found that the Rossby number of the GRS did not follow the long-term 
trends. The non-dimensional Rossby number Ro = U/fL characterizes the relative strength of inertial and 
Coriolis forces, where U is the horizontal velocity scale, f is the Coriolis parameter, and L is the horizontal 
length scale.

Figure 3. Relative vorticity maps (as in Figure 2d) for all epochs. At lower right, the evolution of the high-speed ring over the 2009–2020 period (shown at the 
same horizontal scale as the map panels) includes changes in shape and size on both short and long timescales.
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The GRS Ro and the SEB wind shear did feature sudden changes in the 2016–2017 time period. The Rossby 
number increased from 0.105 ± 0.002 prior to 2016 to 0.127 ± 0.002 in 2016 and later, while there was a 
transient intensification of the SEB wind shear in 2017. The increase in the GRS Ro means that the flow of 

Figure 4. Evolution of the great red spot (GRS) velocity field. (a) There is a long-term decrease in size and aspect ratio of the high-speed ring, along with 
short-timescale variability. Data include previously published velocity fields from Voyager, Galileo, Cassini, and other HST instruments (Asay-Davis et al., 2009; 
Dowling & Ingersoll, 1988; Mitchell et al., 1981; Vasavada et al., 1998). (b) Two different methods measure a small but statistically significant increase in the 
mean wind speed in the high-speed ring of the GRS (see text). (c) Neither relative vorticity in the GRS outer region nor traits of the velocity field sensitive to 
atmospheric static stability showed long-term trends. Velocity field traits quantify the decay of wind speed inside (blue) and outside (pink) the high-speed ring 
as simple linear/exponential functions (thick gray line in Figure 2e). Data shown are averages of parameters for the east and west vertices of the GRS. (d) The 
STrZ windshear and the Rossby number characterizing the flow of the GRS high-speed ring both intensified around the time of the SEB Outbreak convective 
event in 2016/2017.

UT Date (series midpoint)
Fractional 

year
Major width 

(deg)
Major width 

(103 km)
Minor width 

(deg)
Minor width 

(103 km) Aspect ratio
Mean speed 
vellipse (m s−1)

Mean speed 
vspokes (m s−1)

2009-09-22 16:37 2009.72 13.27 ± 0.48 15.59 ± 0.56 9.05 ± 0.48 11.21 ± 0.60 1.39 ± 0.09 92 ± 14 103 ± 12

2012-09-20 15:42 2012.72 13.17 ± 0.66 15.44 ± 0.77 9.20 ± 0.74 11.40 ± 0.91 1.35 ± 0.13 89 ± 24 102 ± 17

2015-01-19 13:53 2015.05 12.99 ± 0.92 15.23 ± 1.08 8.80 ± 0.86 10.90 ± 1.07 1.40 ± 0.17 84 ± 19 97 ± 17

2016-02-09 16:03 2016.11 12.05 ± 0.76 14.17 ± 0.89 8.30 ± 0.72 10.28 ± 0.89 1.38 ± 0.15 92 ± 13 102 ± 11

2016-12-11 19:42 2016.94 11.11 ± 0.82 13.11 ± 0.97 7.20 ± 0.49 8.93 ± 0.61 1.47 ± 0.15 95 ± 18 100 ± 14

2017-02-01 22:50 2017.09 11.12 ± 0.84 13.02 ± 0.99 9.05 ± 0.76 11.21 ± 0.94 1.16 ± 0.13 97 ± 17 107 ± 16

2017-04-03 08:08 2017.25 11.77 ± 0.70 13.88 ± 0.83 8.25 ± 0.50 10.23 ± 0.62 1.36 ± 0.12 97 ± 13 105 ± 8

2018-04-17 07:49 2018.29 11.74 ± 0.51 13.82 ± 0.59 8.20 ± 0.43 10.16 ± 0.54 1.36 ± 0.09 95 ± 17 105 ± 15

2019-04-09 18:44 2019.27 10.43 ± 0.66 12.21 ± 0.78 8.50 ± 0.71 10.52 ± 0.88 1.16 ± 0.12 100 ± 12 108 ± 11

2019-06-26 12:46 2019.48 11.93 ± 1.02 13.96 ± 1.19 8.20 ± 0.81 10.15 ± 1.01 1.37 ± 0.18 96 ± 17 107 ± 11

2020-09-20 08:15 2020.72 10.59 ± 0.49 12.41 ± 0.57 9.10 ± 0.67 11.27 ± 0.83 1.10 ± 0.10 99 ± 12 106 ± 9

Table 1 
Retrieved Velocity Field Parameters Pertaining to the High-Speed Ring Around the Great Red Spot
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the vortex became slightly less “large scale” (i.e., less sensitive to planetary rotation, Pedlosky, 1987), but the 
vortex remains very much in the geostrophic regime.

4. Discussion
Long-term change in the aspect ratio could be explained if there were a decrease in the magnitude of the 
anticyclonic shear in the surrounding flow, because shear in the environment of vortices causes departures 
from circular shape (e.g., Marcus, 1990; Moore & Saffman, 1971). The environmental wind shear over the 
2009–2020 timeframe did not weaken. It is unclear whether the wind shear is intensifying over time (which 
would elongate rather than circularize the GRS in the absence of any other influences), or whether it is 
varying in a more complex way.

The velocity fields also rule out a long-term variation in static stability, through comparison of relative 
vorticity in the GRS outer region with the shape of the velocity profile across the ring (represented by 
“decay factors”). Shetty et al. (2007) showed that the east-west cut through the vortex center had a simpler 
shape compared to the north-south cut, where interactions with the zonal jet also affect the velocity pro-
files. Although Galileo Probe measurements and theoretical analyses suggest static stability varies with 
height (Magalhães et al., 2002; Sugiyama et al., 2006; Wong, 2009), quasi-geostrophic models such as Shetty 
et al. (2007) treat it as vertically uniform. Likewise, retrieved horizontal wind fields only apply to a limited 
altitude range compared to the full vertical extent of the vortex. Subject to these types of limitations, vortex 
models constrained by imaging and wind field data have been extensively used to estimate atmospheric 
static stability on Jupiter, with many finding a deformation radius of about 2,000 km (e.g., Brueshaber & 
Sayanagi, 2021; Brueshaber et al., 2019; Cho et al., 2001; Shetty & Marcus, 2010).

Wind speeds vary azimuthally by about ±15 m s−1 around the circumference of the high-speed ring. This 
variability includes a time-dependent component, as suggested by Choi et al. (2007) to explain trajectory 
curves that did not converge in their velocity field analysis of Galileo imager data. Velocity fields from space-
craft and HST observations of Jovian vortices also varied as a function of azimuthal position angle, with 
effects seen in the derived relative vorticity maps and profiles (e.g., Choi et al., 2010; Mitchell et al., 1981; 
Sánchez-Lavega et al., 2021). These variations could result from perturbations within the high-speed ring 
such as Rossby waves (Choi et al., 2007).

Evolutionary processes in terrestrial ocean eddies may help explain the changes in the GRS, despite key 
differences between Jovian and terrestrial vortices such as compressibility. Measurements of the evolution 
of a “meddy” in the Atlantic Ocean between 1984 and 1985 showed a decrease in size accompanied by a 
slight increase in rotation rate (Schultz Tokos & Rossby, 1991), which may be explained by a redistribu-
tion of angular momentum after erosion of the vortex core (Sutyrin, 2020). “Flaking” events in mid-2019 
(Sánchez-Lavega et al., 2021), in which regions of red material were seen to detach from the GRS and persist 
outside the oval itself for some time, were not associated with significant deviation from the long term evo-
lutionary trends. So even if long term trends (in vortex size, shape, and peak windspeeds) are attributed to 
vortex erosion, we agree with the findings of Sánchez-Lavega et al. (2021) that the flakes did not represent 
an increase in erosive activity.

Although we lack theoretical insight into the cause of significant velocity field changes seen in 2016, it is no-
table that a major convective event at nearby latitudes—the South Equatorial Belt Outbreak (SEBO)— be-
gan in December 2016 and persisted into 2017 (Rogers, 2018; de Pater et al., 2019). The GRS Rossby number 
had already begun to increase in February 2016, indicating a several-month development timescale prior 
to the outbreak of convective activity on 29 December 2016. A previous SEBO event occurred in November 
2010 (Fletcher et al., 2017), but there were no velocity field data to determine if that event also affected the 
global wind shear over 20–25°S or the GRS Ro.

On the other hand, the GRS velocity field seems to be insensitive to an interaction with a large triangular 
South Tropical Disturbance (STrD) phenomenon in 2017–2018. The STrD originated near a large cyclonic 
vortex (Rogers et al., 2018), supporting ideas that STrDs are visible manifestations of stagnation points in 
the interacting flow field of jets and vortices (Marcus et al., 2008). Features like the 2019 GRS flakes also 
were produced near stagnation points (Marcus et al., 2019). Perhaps stagnation point interactions are able 
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to produce conspicuous changes in cloud appearance, but do not perturb a large span of pressure levels (i.e., 
by changing the stratification) and thus do not affect properties like the GRS Ro and the zonal wind shear.

Vortex oscillations—in both shape and location—were seen in Voyager Neptune imaging (Smith et al., 1989; 
Sromovsky et al., 1993, 2002), and oscillations provide a major constraint for dynamical models (LeBeau 
& Dowling, 1998; Hadland et al., 2020; Polvani et al., 1990). A triple-vortex system on Saturn oscillated in 
longitude (del Río-Gaztelurrutia et al., 2018), although long-lived single Saturnian vortices did not oscillate 
in Voyager observations (Sánchez-Lavega et  al.,  2000). The GRS has a well-known 90-day oscillation in 
longitudinal position (Trigo-Rodriguez et al., 2000), which was perturbed during the flaking events of 2019 
(Sánchez-Lavega et al., 2021). Short timescale variations in the GRS size/shape (Figure 3, Table 1) could be 
due to periodic oscillations or transient changes, but future high-cadence datasets are needed to compare 
this dynamical aspect of anticyclones in outer planet atmospheres.

Data Availability Statement
All data from this project are available from a science-product repository at the MAST archive (Wong 2021).
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