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Abstract

The Zombie Vortex Instability (ZVI) occurs in the dead zones of protoplanetary disks (PPDs), where perturbations
excite baroclinic critical layers, generating “zombie” vortices and turbulence. In this work, we investigate ZVI with
nonuniform vertical stratification; while ZVI is triggered in the stratified regions away from the midplane, the
subsequent turbulence propagates into and fills the midplane. ZVI turbulence alters the background Keplerian shear
flow, creating a steady-state zonal flow. Intermittency is observed, where the flow cycles through near-laminar
phases of zonal flow punctuated by chaotic bursts of new vortices. ZVI persists in the presence of radiative
damping, as long as the thermal relaxation timescale is more than a few orbital periods. We refute the premature
claim by Lesur & Latter that radiative damping inhibits ZVI for disk radii r 0.3 au . Their conclusions were
based on unrealistically short cooling times using opacities with virtually no grain growth. We explore different
grain growth and vertical settling scenarios, and find that the gas and dust in off-midplane regions are not
necessarily in local thermodynamic equilibrium (LTE) with each other. In such cases, thermal relaxation timescales
can be orders of magnitude longer than the LTE optically thin cooling times because of the finite time for energy to
be exchanged between gas and dust grains via collisions. With minimal amounts of grain growth and dust settling,
the off-midplane regions of disks are susceptible to ZVI, and much of the planet-forming regions can be filled with
zombie vortices and turbulence.
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1. Introduction

1.1. Background

How turbulent are the gas motions in protoplanetary disks
(PPDs)? From both observational and theoretical perspectives,
we still are not sure. The extent of turbulence matters for
understanding the late stages of star formation (i.e., how gas
slowly spirals inward and onto the growing protostar) and the
early stages of planet formation (i.e., how submillimeter dust
grains grow into kilometer-size planetesimals via collisional
agglomeration or gravitational clumping). Until fairly recently,
the only way to estimate the magnitude of turbulent velocities
in circumstellar disks came from radio observations of line
emission from molecular tracers (e.g., CO, CN, CS) and fitting
parametric models to linewidths to tease out the turbulent
contribution apart from broadening from thermal motions, line
opacity, and beam smear (Najita et al. 1996). This is all the
more challenging when the spectra are often underresolved
both spatially and spectrally, and because thermal and turbulent
broadening are very degenerate in the fitting, which can only be
overcome with precise measurements of the kinetic temperature
at the same location as the molecular tracers. Despite these
limitations, the consensus has been that transonic turbulence is
indeed necessary to explain measured linewidths in circum-
stellar disks (Carr et al. 2004; Hartmann et al. 2004; Najita
et al. 2009; Hughes et al. 2011; Guilloteau et al. 2012).

In the age of ALMA, direct measurement of turbulent line
broadening in PPDs is now possible; however, recent
observations seem to indicate that the magnitude of turbulence
is much lower than what would be needed to account for

accretion, with turbulent velocities only a few percent of the
local sound speed (Flaherty et al. 2015, 2017; Teague et al.
2016). Yet, even these direct measurements are still sensitive to
other assumptions (e.g., assuming a spatially and temporally
uniform CO/H2 ratio). A common diagnostic for turbulence is
the peak-to-trough ratio in rotationally broadened CO emission
lines; turbulence fills in the trough and decreases this ratio
(Simon et al. 2015). However, the depletion of CO into organic
molecules can increase the peak-to-trough ratio, which may
mask the true level of turbulence (Yu et al. 2016, 2017). Hence,
it is not clear whether the ALMA results indicate lower levels
of turbulence or depletion of CO due to organic chemistry.
Historically, theorists have asserted that the effects of

turbulence could be approximated with an enhanced “eddy”
viscosity: c Hseddyn a~ , where cs is the sound speed and H is
the pressure scale height—the idea being that turbulent “blobs”
would move at subsonic speeds over distances of order the
scale height, and the parameter α would subsume all our
ignorance of the details of the transport efficiency (Shakura &
Sunyaev 1973). Over time, theoretical research has progressed
on two parallel tracks to elucidate the mechanisms that generate
and maintain turbulence: purely hydrodynamic processes
versus magnetohydrodynamic (MHD) processes. See Armitage
(2011) and Turner et al. (2014) for comprehensive reviews.
Balbus and Hawley (1991) applied the magnetorotational
instability (MRI) of Velikhov (1959) and Chandrasekhar
(1960), & demonstrated that magnetic fields can destabilize
the differential shear in Keplerian rotation, leading to
turbulence and the outward transport of angular momentum.
However, there exist relatively dense, cool, and nearly neutral
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“dead zones” in PPDs that likely lack sufficient coupling
between matter and magnetic fields (Blaes & Balbus 1994;
Turner & Drake 2009), except perhaps in thin surface layers
that have been ionized by cosmic rays or protostellar X-rays
(Gammie 1996). While a review of the substantial MRI in PPD
literature is beyond the scope of this work, we do note that
recent work has moved far beyond ideal MHD to include
effects such as the Hall term and ambipolar diffusion, both of
which seem to make MRI-driven turbulence less effective in
dead zones (Bai & Stone 2011; Kunz & Lesur 2013; Simon
et al. 2015). As MRI wanes as a viable mechanism in PPDs,
the older concept of magnetocentrifugal winds (MCW) has
resurged (Blandford & Payne 1982; Bai 2013, 2014, 2015; Bai
& Stone 2013; Lesur et al. 2014). In an attempt to explain the
surprisingly low magnitude of turbulence in PPDs observed by
ALMA, Simon et al. (2018) have proposed a model in which
only the inner disk is threaded by a strong magnetic field that
drives a robust MCW capable of blocking far-ultraviolet
radiation from reaching the outer disk, resulting in very low
levels of ionization and no MRI-driven turbulence.

As our work on ZVI is in the purely hydrodynamic realm,
we will contrast it with other non-MHD instabilities. In
convective overstability, radial entropy gradients that would be
stable according to the Solberg-Høiland criterion in the
adiabatic limit may yet be unstable in the limit of efficient
thermal relaxation (Klahr & Hubbard 2014; Lyra 2014). The
chief obstacles for convective overstability are that the cooling
time must be relatively tuned, 1cooltW ~ , and the radial
entropy gradient must be negative so that N1 0r

2- < W <( ) ,
where Ω is the Keplerian angular speed and Nr is the radial
Brunt-Väisälä frequency (frequency of buoyant oscillations in a
stratified background). The latter constraint requires a disk surface
density profile that is significantly flatter than most standard
models. In vertical shear instability (VSI), vertical shear induced
by radial gradients of temperature (e.g., a thermal wind, a
baroclinic effect) that would otherwise be stable to the Kelvin-
Helmholtz instability (KHI) in the adiabatic limit may yet be
unstable in the limit of rapid thermal relaxation (Urpin 2003;
Nelson et al. 2013; Stoll & Kley 2014; Barker & Latter 2015;
Umurhan et al. 2016a). However, the cooling times must be
especially short: H rcooltW ~ , where H r 0.03~ is the aspect
ratio of the disk (Lin & Youdin 2015).

1.2. Previous Work on the ZVI

In our earlier computational investigations into the stability
of 3D vortices in PPDs, we serendipitously discovered
“naturally” forming vortices in the stratified layers above and
below the midplane (Barranco & Marcus 2005). In three recent
papers (Marcus et al. 2013, 2015, 2016), we demonstrated the
existence of a new, purely hydrodynamic instability that fills
rotating stratified shear flows with turbulence and robust
vortices. Initial perturbations (either an initial seed vortex or
noise with a power-law energy spectrum) excite baroclinic
critical layers, which then generate dipolar vortex layers (two
juxtaposed oppositely signed layers of vorticity); while
cyclonic vortex layers remain stable, anticyclonic vortex layers
roll up into anticyclonic vortices (i.e., anticyclones). We named
the instability the “ZVI” not only because it may occur in the
dead zones of PPDs, but also because of the way one zombie
vortex “infects” neighboring baroclinic critical layers, spawn-
ing new zombie vortices, which “infect” farther critical layers,
and so on, ad infinitum.

Critical layers are special locations in a shear flow where a
low-amplitude wave (i.e., a neutral eigenmode) has a wave speed
that matches the actual fluid flow. Mathematically, in a linear
stability analysis, one finds that the coefficients of the highest
derivatives of the linearized equations vanish at the critical layer,
indicating that the neutrally stable eigenmodes are singular
(Maslowe 1986; Drazin & Reid 2004). They are already well-
studied in incompressible flow; in a frame of reference moving
at the wave speed, the streamlines of the flow in the vicinity of
the critical layer form the familiar Kelvin’s cat’s eye pattern
(Kelvin 1880; Kundu 1990). Marcus et al. (2013) discovered a
new kind of critical layer in stratified, rotating shear flow called a
“baroclinic critical layer,” in which the wave speed matches the
shear velocity plus (or minus) the Brunt-Väisälä frequency
divided by the eigenmode’s wavenumber. A critical layer (either
the traditional one or the new baroclinic one) is a very narrow
structure; at its onset, the thickness is of order CLd ~

k H ℓ H HRe1 3 1 3
mfp

1 3n W ~ ~-( ) ( ) , where ν is the kine-
matic viscosity, k is the wavenumber of a perturbation, Re is the
Reynolds number,4 and ℓmfp is the mean free path for collisions
of gas molecules (Maslowe 1986; Wang 2016). For conditions
within PPDs, critical layers are many orders of magnitude
smaller than the gas scale height: H10CL

4d ~ - . As the critical
layer evolves, nonlinear effects cause it to expand and its
thickness becomes independent of the Reynolds number
(Maslowe 1986). In simulations, numerical diffusion (e.g., finite
grid effects, hyperviscosity or hyperdiffusivity) also cause
critical layers to smear out. Numerical experiments confirm that
critical layers still develop even in somewhat underresolved
calculations; the effective thickness is 3–5 collocation points in a
spectral simulation (Wang 2016). What is so special about
baroclinic critical layers that make them an effective trigger for
turbulence? Within critical layers are highly localized regions
where the gradients of the density, pressure, and velocity can be
extremely large. In particular, it is the coupling of the large
vertical velocity of the neutral eigenmode with the rotation of the
system that generates vorticity (i.e., stretching “planetary”
vorticity; Pedlosky 1987; Kundu 1990).
ZVI is not an artifact of the numerical method as we have

observed it with spectral codes and finite-volume codes (e.g.,
Athena), with Boussinesq, anelastic, and fully compressible
treatments of the continuity condition, with and without the
shearing box, and with hyperviscosity and real molecular
viscosity. One may ask, if it is so robust, how was it missed in
previous numerical calculations? Prior work often lacked one
or more of the crucial ingredients: ZVI requires vertical
stratification, high resolution to resolve the narrow critical
layers, a broad spectrum of perturbations (i.e., Kolmogorov,
but not Gaussian-peaked, so that the vorticity peaks on the
small scales), and enough simulation time to allow the critical
layers to amplify perturbations. Two recent papers (Lesur &
Latter 2016; Umurhan et al. 2016b) have now independently
confirmed the existence of ZVI and its nonlinear development
into zombie vortices and turbulence.

4 The Reynolds number is the ratio of the rate of change of momentum via
advection to the magnitude of the viscous force: v v vRe 2nº  »∣( · ) ∣ ∣ ∣
UL H ℓmfpn ~ , where L is a characteristic length which we take to be equal to
the gas pressure scale height H; U is a characteristic velocity which we take to
be equal to H times the orbital frequency Ω; and where ν is the molecular
viscosity and c ℓs mfpn ~ , where cs is the sound speed and ℓmfp is the mean free
path between collisions of gas molecules.
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1.3. Goals and Outline

In our previous work, we investigated ZVI with uniform
stratification (uniform gravity with uniform background
temperature; Marcus et al. 2013, 2015, 2016). We also worked
in the limit that the timescale associated with radiative damping
was infinite. In this work, we relax both of these assumptions.
We note that Lesur & Latter (2016) raised concerns that rapid
cooling or radiative diffusion may suppress the development of
ZVI. However, they prematurely ruled out ZVI (except in very
optically thick regions close to the protostar where the
timescale for cooling is set by radiative diffusion) because
they assumed unrealistically short cooling times based on dust
opacities that included virtually no grain growth (maximum
size of grains of only a few microns; Semenov et al. 2003).
They also completely neglected vertical settling and assumed
the dust-to-gas ratio was uniform in height. In Section 4, we
carefully analyze the rate at which the gas can thermally relax
via collisional exchange of energy with dust grains. We explore
various realistic grain growth and vertical settling scenarios,
and find that the gas and dust are not necessarily in local
thermodynamic equilibrium (LTE) with each other and the time
for the gas and dust to “communicate” is a significant
bottleneck in radiative cooling from thermal dust emission. In
fact, the effective cooling time in off-midplane regions of PPDs
can be orders of magnitude longer than when LTE is assumed,
and thus ZVI is still a robust mechanism to generate turbulence
throughout much of the planet-forming regions of PPD.

The outline of this paper is as follows. In Section 2, we
describe the anelastic equations and our computational
algorithm. In Section 3, we present the results of simulations
with nonuniform vertical temperature profiles which yield
nonuniform stratification. In Section 4, we discuss the
dependence of radiative damping on the tightness of the gas
and dust thermal coupling, and show that the relevant thermal
relaxation time is orders of magnitude longer than the
conventional optically thin cooling time for perfectly thermally
coupled gas and dust. Furthermore, we demonstrate with
simulations that ZVI is operative with realistic levels of
radiative damping. Finally, in Section 5, we assess the
relevance of ZVI and highlight avenues for future work.

2. Equations of Gas Dynamics with Nonuniform
Stratification

Consider a three-dimensional box of ideal gas that orbits the
protostar at cylindrical radius r0 with Keplerian angular speed

rK0 0W º W ( ). The box is sufficiently small that we ignore
curvature and choose Cartesian coordinates x y z, ,( ) and
corresponding unit vectors x y z, ,( ˆ ˆ ˆ) for the local radial,
azimuthal, and vertical directions (Hill 1878; Goldreich &
Lynden-Bell 1965b). We ignore radial gradients in the
background profiles for gas density, pressure, and temperature.
The equilibrium state in this rotating reference frame is a
linearized Keplerian shear flow and vertical hydrostatic balance
(in what follows, we will denote vectors with boldface and
steady-state variables with overbars),

v y yx v x x , 1ay
3

2 0= = - W¯ ( ) ¯ ( ) ˆ ˆ ( )

d p dz g z z p z z T zln , 1bz 0
2 r= - = - W( ¯ ) ( ) ¯ ( ) ¯ ( ) ( ) [ ¯ ( )] ( )

where v̄ is the Keplerian shear flow in the rotating frame; p̄ , r̄,
and T̄ are the steady-state gas pressure, density, and temperature;

 is the gas constant in the ideal gas law, p Tr=¯ ¯ ¯ ; and
g z zz 0

2= W( ) is the vertical component of the protostellar gravity
(neglecting the gravity of the gas itself). For vertically isothermal
profiles T T0=¯ , hydrostatic balance yields a Gaussian density
profile z z Hexp 20

2 2r r= -¯ ( ) ( ), where the gas scale height is

H T cs0 0 0 0º W = W and where cs0 is an isothermal sound
speed. We will not necessarily assume that the temperature
profiles are uniform, but it will be convenient to use this
isothermal scale height H as a reference unit of length.
Vertical stratification is measured by vertical profiles of

potential temperature zq̄ ( ) and the Brunt-Väisälä frequency
N z¯ ( ) (the frequency associated with buoyancy oscillations;
Pedlosky 1987),

z T z p p z , 2a0
1q = g g-¯ ( ) ¯ ( )[ ¯ ( )] ( )( )

N z g z d dzln , 2bz
2 q=[ ¯ ( )] ( ) ( ¯) ( )

where q̄ is the steady-state potential temperature, which is the
temperature a parcel of gas would have if adiabatically brought
to reference pressure p0, and 5 3g = is the adiabatic
exponent.5 Potential temperature is just another measure of
entropy s; to wit, s c slnp 0q= + . One needs to specify only
one of T̄ , q̄, or N̄ ; and the others, along with p̄ and r̄, are
determined from Equations 1(b), 2(a), 2(b). Of course, the
vertical thermal structure is not arbitrary, but is set by the
overall energy balance and radiative transfer (Chiang &
Goldreich 1997; D’Alessio et al. 1998; Dullemond et al.
2002; Aikawa & Nomura 2006; D’Alessio et al. 2006), which
is beyond the scope of this work.
We model the temporal evolution of the flow with the Euler

equations, with the continuity equation replaced by the
anelastic approximation,

v v v z v x

z

t x

g

2 3

, 3az

0 0
2

q q




¶ ¶ =- - W ´ + W

- P +

( · ) ˆ ˆ
( ˜ ¯) ˆ ( )

vt v N g , 3bz z
2

radq q q q¶ ¶ = - - -˜ ( · ) ˜ ( ¯ ¯ ) ˜ ( )

vz0 , 3cr= · [ ¯ ( ) ] ( )

where v is the gas velocity in the rotating frame, q q qº -˜ ¯ is
the potential temperature anomaly, and p p rP º -( ¯) ¯ is the
kinematic pressure. Equation 3(a) determines the evolution of
momentum; the five terms on the right-hand side represent
advection, the Coriolis force, the tidal term (the difference
between the inward force of protostellar gravity and the
outward centrifugal force), the pressure force, and the buoy-
ancy force. The viscous force is entirely neglected because the
Reynolds number is very large: Re 1014~ . Equation 3(b)
describes the evolution of entropy or potential temperature; the
linear operator rad represents the effects of radiative damping,
and can correspond to simple Newton cooling or a wavenum-
ber-dependent diffusion operator. This will be discussed in
greater detail in Section 4.

5 The adiabatic index γ=7/5 for a diatomic gas with translational and
rotational degrees of freedom, but only at temperatures sufficient to excite
rotational transitions. For molecular hydrogen, rotational transitions are excited
around 100K. The bulk of a PPD beyond a few astronomical units is below
this temperature, so we assume that the molecular hydrogen only has
translational degrees of freedom, which yields γ=5/3.
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In subsonic flow, short-wavelength acoustic waves have
periods that are much shorter than the characteristic timescale
of the large-scale advective motions. In numerical simulations,
the time step for an explicit algorithm must be short enough to
temporally resolve these fast waves (i.e., the CFL condition),
which may be inefficient for calculating the evolution of the
large-scale flow for long integration times. One strategy is to
filter sound waves from the fluid equations so that the time step
will be limited by the longer advective timescale. The anelastic
approximation does this by replacing the full continuity
equation with the kinematic constraint that the mass flux be
divergence-free; this is Equation 3(c). This approximation still
allows for the effects of density stratification (e.g., buoyancy in
the vertical momentum equation, pressure-volume work in the
energy/entropy equation) and has been employed extensively
in the study of deep, subsonic convection in planetary
atmospheres (Ogura & Phillips 1962; Gough 1969; Bannon
1996) and stars (Gilman & Glatzmaier 1981; Glatzmaier &
Gilman 1981a, 1981b). We have previously used the anelastic
approximation to study three-dimensional vortices in PPDs
(Barranco et al. 2000; Barranco & Marcus 2005, 2006), the
KHI of settled dust layers in PPDs (Barranco 2009; Lee et al.
2010a, 2010b), and turbulent dissipation in tidally perturbed
stellar convective zones (Penev et al. 2009, 2011). The basic
idea is that there may be large variations in the background
pressure and density in hydrostatic equilibrium, but that at any
height in the atmosphere, the fluctuations of the pressure and
density are small compared to the background values at that
height. There are many versions of the anelastic approximation
with slight differences in gravity wave propagation or energy
conservation, comparisons of which can be found in Brown
et al. (2012) and Vasil et al. (2013).

We numerically solve these equations with our well-
developed and benchmarked 3D spectral code that employs
specially tailored algorithms to handle the computational
challenges due to rapid rotation, intense shear, and strong
stratification (Barranco & Marcus 2006). The basic philosophy
of spectral methods is to approximate any function of interest
with a finite sum of basis functions multiplied by spectral
coefficients (Gottlieb & Orszag 1977; Marcus 1986; Canuto
et al. 1988; Boyd 2000). A partial differential equation (PDE)
in space and time is reduced to a coupled set of ordinary
differential equations (ODE) for the time evolution of the
spectral coefficients. The chief advantage of spectral methods
over finite-difference methods is accuracy per degrees of
freedom (e.g., number of spectral modes or number of grid
points). In one-dimension, the global error (e.g., L2 norm) for a
finite-difference method with N grid points scales as N1 p( ) ,
where p is the (fixed) order of the method, whereas for a
spectral method with N spectral modes, the error scales as

N1 N( ) . Thus, to get the same level of accuracy, spectral
methods generally require far fewer degrees of freedom. This
advantage is even more pronounced in 3D problems requiring
high resolution.

Because of the linear background shear, the equations
depend explicitly on the cross-stream coordinate, making it
problematic to apply periodic boundary conditions in this
direction. The equations can be made autonomous in the
horizontal directions by transforming to a set of Lagrangian
shearing coordinates (Goldreich & Lynden-Bell 1965a; Marcus
& Press 1977; Rogallo 1981). Features in the flow that are
advected by the shear appear quasi-stationary in the shearing

coordinates, allowing for larger time steps to be taken in the
numerical integration. Because the background stratification
generally depends on the vertical coordinate, we do not impose
periodicity in the vertical direction; instead, we use a finite
Chebyshev polynomial series to resolve the vertical depend-
ence of flow variables (Boyd 2000). We force the vertical
velocity and the vertical component of the pressure gradient to
zero at impenetrable lids at z=±4H. Consistent with these
constraints, the vertical gradients of the horizontal velocity and
potential temperature also vanish at the lids (though these are
not imposed, but follow naturally from the equations of
motion). In previous works, we have explored other vertical
boundary conditions (e.g., forced periodicity, mapping the
vertical boundary to infinity) and shown that the simulations
qualitatively converge to the same results (Barranco &
Marcus 2005, 2006; Marcus et al. 2015, 2016).
Spectral methods are inherently energy-conserving. How-

ever, nonlinear interactions cause a cascade of energy from low
spatial wavenumbers to high spatial wavenumbers, where it
will cause aliasing and subsequent destabilization of the
numerical algorithms. Hence, spectral codes often must resort
to including “hyperviscosity” to damp energy at high spatial
wavenumbers. In practice, the spectral coefficients of the
velocity and potential temperature are exponentially damped
every time step: t k nexp z

hyp 8 hyp 8n n-D +^ ^[ ( )], where
k k kx y

2 2 2º +^ is the square of the horizontal Fourier wave-
numbers and n is the order of the Chebyshev polynomial. The
hyperviscosity coefficients hypn^ and z

hypn are initially set to
values such that the highest resolved Fourier or Chebyshev
number has an e-folding time equal to one time step. They can
be dynamically adjusted every few hundred time steps so
that the energy spectrum does not curl up at the highest
wavenumbers.

3. Simulations of ZVI with Nonuniform Stratification

For numerical simulations, we choose a convenient set of
reference units: length is measured in units of the gas scale
height H, time is measured in units of the reciprocal of the
Keplerian frequency Ω, and velocity is measured in units of
H csW = . We will often report velocities in terms of Mach
numbers v cMa sº ∣ ∣ , but our simulations are not fully
compressible and do not admit acoustic waves. The unit for
vorticity is the Keplerian frequency, though we will often
report vorticities in terms of the Rossby number Ro 2wº W∣ ∣ .
All simulations in this section have a domain size of H8 3( )
resolved with 2563 spectral modes. The size of the time steps
was adjusted every ∼0.1 orbits to keep the target CFL number

v t x 0.0625max º D D . The vertical component of gravity
was taken to be g z zz

2= W( ) , and the initial background
profiles for temperature, potential temperature, density, and
pressure were assumed to be functions of the vertical
coordinate z alone. Other hydrodynamic instabilities such as
convective overstability and VSI were excluded from these
simulations because there were no radial derivatives of the
background profiles for the thermodynamic variables. In the
simulations described in this section, radiative damping was
neglected ( 0rad = ). The effects of radiative damping will be
explored in Section 4.
In order to explore how nonuniform stratification affects

the development of ZVI and late-time zombie turbulence, we
simulated ZVI with three different vertical profiles (see
Figure 1):
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Figure 1. Initial and final background profiles for potential temperature, temperature, and Brunt-Väisälä frequency, as functions of distance from midplane.
(a) “Run_Isothermal” was initialized with a uniform background temperature and a Brunt-Väisälä frequency that was linear with height. (b) “Run_Temp_Step” was
initialized with a temperature step profile (i.e., a uniform temperature T0 around the midplane), which steps up to a higher uniform temperature 2T0 in the disk
atmosphere. This yields a Brunt-Väisälä frequency with a local maximum. (c) “Run_Brunt_Step” consisted of a step profile for the Brunt-Väisälä frequency (i.e., with
the midplane being unstratified), and then the Brunt-Väisälä frequency jumps up to a constant value of 1.2649W in the atmosphere of the disk.
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(i) “Run_Isothermal” was initialized with a uniform temp-
erature background T z T ;0=¯ ( ) the corresponding Brunt-
Väisälä frequency increased linearly away from the midplane:
N z z H1 1 g= - W¯ ( ) ( ) ∣ ∣ . While the temperature is unli-
kely to be vertically uniform in realistic disks, this is the
standard and simplest model for theoretical investigations.

(ii) “Run_Temp_Step” initially consisted of a uniform
temperature of T0 around the midplane, with a steep rise at
z H2»∣ ∣ to a different uniform temperature T2 ;0 this resulted in
a Brunt-Väisälä frequency profile that has local maxima near
z=2H. This is a simple model for a two-temperature layered
model (Chiang & Goldreich 1997; D’Alessio et al. 1998,
2006).

(iii) “Run_Brunt_Step” had an initial Brunt-Väisälä fre-
quency of zero for z H∣ ∣ with a steep rise at z H»∣ ∣ to a
different constant value N 2 1 1 g= W -¯ ( ) . The motivation
for this model is the observation of step-like or staircase
patterns in the stratification in atmospheric and oceanic flows,
believed to be created by breaking internal gravity waves
(Orlanski & Bryan 1969; Phillips 1972; Pelegrí & Sangrã
1998). As we will see, this model is further validated by the
observation that the late-time evolution of ZVI-induced
turbulence in Run_Isothermal created a region of uniform
Brunt-Väisälä frequency.

The velocity fields in all runs were initialized with 3D
homogeneous, isotropic Kolmogorov turbulence with rms
velocity v H0.05rms = W, and the initial potential temperature
anomalies were set to zero. ZVI has a finite-amplitude trigger,
and we previously investigated the magnitude of perturbations
that are necessary to excite the baroclinic critical layers. In
Marcus et al. (2016), we demonstrated that ZVI requires
perturbations with Mach numbers as small as Ma 10 6 - . All
three profiles were susceptible to ZVI and eventually evolved
into fully developed “zombie turbulence” characterized by
intense, undulating cyclonic vortex sheets parallel to the y z-
plane, interspersed with coherent anticyclonic zombie vortices.
Figure 2 shows the late-time evolution for Run_Isothermal
after 1792.7 orbits, and Figure 3 shows the late-time evolution
for Run_Temp_Step after 2580.4 orbits. Figures 4 and 5 show
the late-time evolution for Run_Brunt_Step at two different
times, after 2770.6 orbits and 2797.7 orbits. In the first column
of plots for Figures 2–5, the displayed variables are, from the
top down, (a) perturbation azimuthal velocity v vy y- ¯ , (b)
vertical velocity vz, and (c) fractional potential temperature
anomaly q q˜ ¯ . In the second column of these same plots, from
the top down, (d) through (f) are the x, y, and z components of
the vorticity vw º ´ (the vorticity of the Keplerian shear is
subtracted from the vertical component of vorticity). In the
remainder of this section, we will highlight the main features of
fully developed zombie turbulence.

Vertical extent of zombie turbulence and modification of
background stratification. As expected, zombie turbulence is
strongest in the stratified regions away from the ZVI-inactive
midplane, yet it is clear that some turbulence penetrates into
the unstratified midplane. Figure 6 shows the vertical extent of
the domain that is filled with turbulence: the solid lines indicate
the root mean square (rms) of the relative vorticity (averaged
over horizontal planes) as functions of height, while dashed
lines are for the rms fractional potential temperature anomalies
(averaged over horizontal planes) as functions of height. One
can see that there is a variation in the vertical extent of zombie
turbulence, depending on the vertical stratification profiles: the

turbulence in Run_Isothermal is found mostly away from the
midplane z H2∣ ∣ , whereas the turbulence in Run_Brunt_Step
has the greatest penetration into the midplane. Looking more
closely at Run_Brunt_Step, Figure 7(e) compares the rms
Mach number for each component of the velocity in a region
around the midplane z H0.25<∣ ∣ (lighter lines) and for regions
away from the midplane H z H2 3< <∣ ∣ (darker lines);
similarly, Figure 7(f) compares the rms Rossby number for
each component of the vorticity in a region around the
midplane z H0.25<∣ ∣ (lighter lines) and for regions away from
the midplane H z H2 3< <∣ ∣ (darker lines). While the region
around the midplane is inactive to ZVI, it is nonetheless
turbulent, though with Mach numbers around a few percent,
which is a factor of roughly four down from the more vigorous
turbulence in the stratified ZVI-active regions.
At late times, we observe that zombie turbulence has altered

the underlying background stratification. Returning to Figure 1,
we compare the initial and final background profiles for
potential temperature, temperature, and Brunt-Väisälä fre-
quency, as functions of distance from the midplane. For
Run_Isothermal, the Brunt-Väisälä frequency initially is a
linear function of height, yet at late times, it appears that the
Brunt-Väisälä frequency has become roughly constant within
the ZVI-active region. In Run_Temp_Step, it appears that the
vertical mixing from zombie turbulence has somewhat flattened
the initial local maximum of the Brunt-Väisälä frequency.
These results suggest that perhaps mixing in zombie turbulence
homogenizes the stratification.
Creation of quasi-steady-state zonal flow: At late times, the

computational domain is segmented in the radial (x) direction
into alternating y− z slabs of vertical vorticity; there are five or
six pairs of opposite-signed vortex layers over a radial extent of
8H, for a radial separation Δx=1.33H (for Run_Brunt_Step)
or H1.60 (for Run_Isothermal and Run_Temp_Step). The
radial thickness of the cyclonic layers is approximately one-
third the thickness of the anticyclonic layers, but this is
compensated by the fact that the cyclonic layers are roughly
three times more intense as the anticyclonic layers, so that the
average vertical vorticity over any x-y plane vanishes. What is
the physics that sets the scale of the radial separation? Most
likely it is imprinted from the initial critical layer separation. In
Marcus et al. (2013) and Marcus et al. (2015), we show that the
fundamental critical layer separation in Keplerian shear is

NL 3y pD º W( ). For Run_Brunt_Step, this is H1.07D » ,
which is a bit smaller than the observed separation of the
cyclonic sheets. However, we noted in Marcus et al. (2015) that
zombie vortices spawned in neighboring critical layers may
merge to increase the separation of zones in late-time zombie
turbulence.
At late times, we see that there is very stable zonal azimuthal

flow superposed on the Keplerian shear. In Figures 8(a) and
9(a), we show the vertical component of the relative vorticity in
a horizontal plane at z=2H for the final times for
Run_Temp_Step and Run_Brunt_Step. Here, we can more
clearly see the radial spacing of the five or six pairs of
alternating cyclonic and anticyclonic vortex layers. We average
the relative vorticity azimuthally (over the y coordinate) and
add the Keplerian vorticity to yield the total vorticity in the
rotating frame, graphed in panel (b) of both figures. We have
not done so here, but one could add a constant 2+ W to the
vorticity in the rotating frame to yield the total vorticity in an
inertial reference frame. In panel (c) of Figures 8and 9, we
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Figure 2. Late-time evolution (after 1792.7 orbits) for profile Run_Isothermal. The left column (subfigures (a)–(c)) shows the azimuthal velocity (Keplerian shear
subtracted), vertical velocity, and fractional potential temperature anomaly. The right column (subfigures (d)–(f)) shows the three components of the relative vorticity
(Keplerian vorticity subtracted from vertical vorticity). An animation of Run_Isothermal is available, showing the temporal evolution of the vertical vorticity, vertical
velocity, and potential temperature anomaly, starting from the initial condition (Kolmogorov noise) to the final state.

(An animation of this figure is available.)
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Figure 3. Late-time evolution (after 2580.4 orbits) for profile Run_Temp_Step. The left column (subfigures (a)–(c)) shows the azimuthal velocity (Keplerian shear
subtracted), vertical velocity, and fractional potential temperature anomaly. The right column (subfigures (d)–(f)) shows the three components of the relative vorticity
(Keplerian vorticity subtracted from vertical vorticity). An animation of Run_Temp_Step is available, showing the temporal evolution of the vertical vorticity, vertical
velocity, and potential temperature anomaly, starting from the initial condition (Kolmogorov noise) to the final state.

(An animation of this figure is available.)
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Figure 4. Late-time evolution (after 2770.6 orbits) for profile Run_Brunt_Step. The left column (subfigures (a)–(c)) shows the azimuthal velocity (Keplerian shear
subtracted), vertical velocity, and fractional potential temperature anomaly. The right column (subfigures (d)–(f)) shows the three components of the relative vorticity
(Keplerian vorticity subtracted from vertical vorticity). An animation of Run_Brunt_Step is available, showing the temporal evolution of the vertical vorticity, vertical
velocity, and potential temperature anomaly, starting from the initial condition (Kolmogorov noise) to the final state.

(An animation of this figure is available.)
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Figure 5. Late-time evolution (after 2797.7 orbits) for profile Run_Brunt_Step. The left column (subfigures (a)–(c)) shows the azimuthal velocity (Keplerian shear
subtracted), vertical velocity, and fractional potential temperature anomaly. The right column (subfigures (d)–(f)) shows the three components of the relative vorticity
(Keplerian vorticity subtracted from vertical vorticity).
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show the azimuthally averaged relative azimuthal velocity
v vy Kep- . We add the Keplerian shear flow to this to yield the
total azimuthal velocity in the rotating frame, graphed in panel
(d). We note that the graph in panel (b) is the exact first
derivative of the graph in panel (d).

Turbulent burst cycles. In Figure 10, we zoom in to show the
vertical component of relative vorticity for Run_Brunt_Step in
horizontal slices at z=2H between orbits 2750.2–2787.6 at
intervals of 3.4 orbits. Over this period, we can see the zonal
flow make a transition from a laminar state to a more turbulent,
chaotic state. The vertical sheets of cyclonic vorticity appear to
wildly undulate and at times intersect neighboring cyclonic
sheets, pinching off anticyclonic vortices. The transition does
not start at the same time throughout the domain, but appears to
be initiated between a pair of cyclonic sheets and then progress
to neighboring zones. In Figure 7, turbulent bursts are easily
identified with spikes of kinetic energy. For Run_Brunt_Step,
the average period between bursts is roughly 125 orbits, but
varies between 100 and 150 orbits. In Run_Temp_Step, the
bursts are not as prominent, with much more of a spread in the
interval between bursts. Turbulent bursts and intermittency are
common features of rotating flows in the laboratory (Coughlin
& Marcus 1996; Colovas & Andereck 1997). We hypothesize
that one of the drivers for this turbulent bursting is the
discrepancy between the fundamental separation of critical
layers Δ and the actual observed separation after mergers of
neighboring critical layer regions. We highlight this as an area
for future investigations.

4. Simulations of ZVI with Radiative Damping

We now address how radiative damping of the thermal
fluctuations inside baroclinic critical layers affects the onset of
ZVI. Lesur & Latter (2016) performed a series of simulations
with optically thin cooling (with a Newton cooling prescrip-
tion) and with optically thick radiative diffusion (with a
Laplacian operator). They found that ZVI required an optically
thin cooling time t 10 Kthin

1 W- or a radiative Péclet number
Pe 10rad

4 (definition in Appendix A). In Appendix A, we
show that results of our own simulations are consistent with
these critical values. Where we disagree with Lesur & Latter’s
(2016) approach is how they mapped these results onto
different locations within a PPD. Using opacities from
Semenov et al. (2003; largest dust grains of only a few
microns with no significant grain growth), they concluded that

the cooling time in the optically thin parts of the disk are too
short to allow ZVI, and so they claimed ZVI can only operate
in the denser regions close to the protostar where the gas is
optically thick and the cooling is set by radiative diffusion.
In this section, we show that the time for thermal relaxation

can be orders of magnitude longer than asserted by Lesur &
Latter (2016). In their choice of opacity, they assumed
complete mixing of gas and dust, and neglected settling into
the midplane, which would deplete grains not far from the
midplane where ZVI is triggered. They also chose a grain
distribution with very little grain growth, with maximum grain
sizes of only a few microns. We explore various grain growth
and settling scenarios, and find that the gas and dust in the off-
midplane regions of PPDs are not necessarily in LTE. The
hydrodynamics that lead to the creation of the baroclinic
critical layers generate thermal anomalies in the gas (via
pressure–volume work, buoyancy). The temperature of the dust
does not instantaneously match that of the gas, and the gas and
dust arise out of LTE. In the case of non-LTE, the thermal
relaxation time is dominated by the finite time for the exchange
of energy between gas and dust via collisions (Malygin et al.
2017).

4.1. Protoplanetary Disk Model and Dust Grain Parameters

For convenience, we introduce a PPD model (Cuzzi et al.
1993) and express the radius from the star in units of
astronomical units: r r 1 auau º ( ). In what follows, the
subscript “1” indicates values at 1au. Disk properties include
midplane gas temperature T r T r1 au

0.50= -( ) , T 2561 = K, gas
surface density r rg g1 au

1.50S = S -( ) , 16, 384 kgg1S = m−2, gas
isothermal sound speed c r c rs s1 au

0.25= -( ) , c 960s1 = m s−1, and
Toomre parameter Q r Q r1 au

0.25= -( ) , Q 561 = . These values set
the protostellar mass M M1.01star = ☉ and the disk gas mean
molecular weight m 2.31=¯ amu. Other properties include disk
aspect ratio r r1 au

0.25d d= +( ) , 0.03201d = , isothermal gas
scale height H r H r1 au

1.25= +( ) , H1=4.79 million km, midplane
gas density r rg g1 au

2.75r r= -( ) , 1.36 10g1
6r = ´ - kg m−3, and

molecular mean free path in the midplane ℓ r ℓ rg g1 au
2.75= +( ) ,

ℓ 7.79 mmg1 = .
Grains are not monodisperse but are found in a broad

distribution of sizes, initially imprinted from the interstellar
medium out of which the protostellar nebula collapsed (Mathis
et al. 1977). Within the early PPD, grain growth is mediated by

Figure 6. Vertical extent of zombie turbulence. Root mean square (rms) of relative vorticity and fractional potential temperature anomaly (averaged over x y-
planes) as a function of height z: (a) Run_Isothermal after 1792.7 orbits, (b) Run_Temp_Step after 2444.6 orbits (turbulent burst phase, shown in red) and 2580.4
orbits (zonal flow phase, shown in black), (c) Run_Brunt_Step after 2757.2 orbits (turbulent burst phase, shown in red) and 2797.7 orbits (zonal flow phase, shown in
black).

11

The Astrophysical Journal, 869:127 (26pp), 2018 December 20 Barranco, Pei, & Marcus



Figure 7. Diagnostics for profiles Run_Temp_Step (a)–(c) and Run_Brunt_Step (d)–(f). (a), (d) Kinetic energy is v v dV1

2 Kep
2ò r -¯∣ ∣ in units of H0

5 2r W . (b), (e)Mach
number is v cMaj j s,rms ,rmsº for the rms of each velocity component vj. Darker lines are for averages within regions away from the midplane H z H2 3< <∣ ∣ , whereas
lighter lines are for averages for regions close to the midplane z H0.25<∣ ∣ . (c), (f) Rossby number is Ro 2j j,rms ,rmswº W( ) for the rms of each component of the
relative vorticity jw . Lighter and darker lines are for averages over the same regions, as in (b), (e).
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Brownian motion, vertical settling, radial drift, and turbulence
(Weidenschilling 1977, 1980, 1984). Dullemond & Dominik
(2005) showed that small grains should grow so rapidly that in
less than 104 years, there should be no grains smaller than
100μm in PPDs, which is inconsistent with infrared observa-
tions (van Boekel et al. 2005). More rigorous modeling that
includes the fragmentation of grains in high speed collisions
leads to power-law size distributions that achieve a quasi-
steady state for millions of years (Dullemond & Dominik 2005;
Birnstiel et al. 2010; Garaud et al. 2013; Estrada et al. 2016).
From a theoretical point of view, power-law size distributions
are a natural outcome of self-similar collisional cascades
(Dohnanyi 1969).

Henceforth, we will assume a power-law size distribution:
the number density of dust grains with radii between a and
a+da is given by n(a)da=Ka−sda within the size range amin

to amax; the normalization factor K is set by the dust mass

density. A canonical value for the power-law exponent is
s=3.5, but can be made shallower (e.g., s=3.0) for models
in which the colliding particles have very little material strength
(i.e., “rubble piles” or “dust bunnies”; Pan & Sari 2005).
Millimeter observations of debris disks with the VLA, SMA,
and ALMA show evidence of intermediate values of s 3.25»
(MacGregor et al. 2016; Wilner et al. 2018). Integrating over
all sizes, one obtains the total number density of dust grains,

n n a da
K

s
a a

K

s
a

1

1
, 4

d a

a s s

s

min
1

max
1

min
1

min

max

òº =
-

-

»
-

- -

-

( )
( )

( )

( )
( )

where the last approximation is valid for a amax min . Note
that the total number density of dust grains is set by the size of
the smallest grains and is relatively insensitive to the size of the

Figure 8. Zonal flow in profile Run_Temp_Step. (a) Vertical component of relative vorticity in a horizontal plane at height z=2H after 2600» orbits. Colormap is
the same as in Figure 3. (b) Azimuthally averaged vertical component of total vorticity in rotating frame. The total vorticity here is the relative vorticity plus the
vorticity of the Keplerian shear, 3 2Kepw = - W( ) , indicated by the vertical dashed line. (c) Corresponding azimuthally averaged relative azimuthal velocity v vy Kep- .
(d) Corresponding azimuthally averaged azimuthal velocity, including background Keplerian shear flow. Note that the graph in panel (b) is exactly the first derivative
of the graph in panel (d).
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larger grains. Various moments of the size distribution (i.e.,
averages of powers of a) often have useful physical interpreta-
tions. The second moment is related to the total geometric
cross-section of grains per unit volume:

5

a n n a a da
K

s
a a

K

s
a

3

3
.

d a

a s s

s

2 2
min
3

max
3

min
3
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-
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- ( )
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( )
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( )

The third moment is related to the total mass density of dust,
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where ρs is the solid density of a dust grain. For the relevant
range of the dust power-law exponent, 3.0<s<3.5, the total
geometric area is sensitive to the size of the small grains,
whereas the mass is in the larger grains. As we will see in the
following sections, the ratio of the third moment and second
moment of the size distribution is a key parameter in collisional
and radiative timescales:

a
a
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s
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a a
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In fluid dynamics, this ratio (which has units of length) is
sometimes called the Sauter mean radius (Sauter 1926). A
helpful interpretation for this quantity is that for a polydisperse
distribution of grain sizes with a given total surface area and
total volume, there is a monodisperse population of grains with
the Sauter mean radius that has the same total surface area

Figure 9. Zonal flow in profile Run_Brunt_Step. (a) Vertical component of relative vorticity in a horizontal plane at height z=2H after 2800» orbits. Colormap is the
same as in Figure 4. (b) Azimuthally averaged vertical component of total vorticity in rotating frame. The total vorticity here is the relative vorticity plus the vorticity
of the Keplerian shear, 3 2Kepw = - W( ) , indicated by the vertical dashed line. (c) Corresponding azimuthally averaged relative azimuthal velocity v vy Kep- .
(d) Corresponding azimuthally averaged azimuthal velocity, including background Keplerian shear flow. Note that the graph in panel (b) is exactly the first derivative
of the graph in panel (d).
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and total volume. Chin & Lefebvre (1986) have argued
that this is the best single number to characterize the size
distribution, since it captures both surface area and volume
effects. An interesting special case is for the power-law
exponent s=3.5, in which the Sauter mean radius turns out
to simply be the geometric mean of the smallest and largest
radii: a a a a aS

3 2
min maxº á ñ á ñ = . For the case of s=3.25,

a a aS
1

3 max
3

min
1 4» ( ) / , and the Sauter mean radius shifts in

weight toward larger particles.
In this work, we fix the minimum grain size, amin=0.1 μm.

We have confirmed that our results are insensitive to choosing
smaller values; this makes sense because grains on the size
scale of a few nanometers contribute insignificant mass and are
very inefficient absorbers or radiators. For the maximum size of
grains, we consider amax in the range of 1cm to 1m, reflecting
different levels of grain coagulation (Natta et al. 2007; Pérez
et al. 2012, 2015; Testi et al. 2014; Carrasco-González et al.
2016; Tazzari et al. 2016). For spherical grains, the surface
area to volume ratio decreases with increasing grain size; the
chief effect of grain growth is to decrease the opacity by
locking up more mass into large particles that do not contribute
significantly to the overall cross-section. For amin=0.1 μm
and s=3.5, the Sauter mean radius is 30μm, 100 μm, and
300μm for a 1max = cm, 10cm, and 100cm, respectively.

4.2. Optically Thin Cooling Time and Photon Mean Free Path
—Baroclinic Critical Layers Are Optically Thin

In this subsection, we review the case of radiative cooling
times when the temperatures of the dust and gas are tightly
coupled and in LTE. This subsection serves as a reference so
that we can compare and contrast LTE results to the more
general case when the gas and dust temperatures are not in
LTE. Spiegel (1957) derived the timescale trad

LTE for the radiative
damping of temperature fluctuations within a uniform gray
atmosphere,

t
c

T16

1

1 cot
, 8

p
rad
LTE

3 1ks t t
=

- -( )
( )

where cp is the specific heat of the medium at constant pressure,
κ is the opacity of the medium, σ is the Stefan–Boltzmann

constant, T is the temperature, ρ is the mass density, and
τ=ρκℓ is the optical depth through a perturbation of physical
size ℓ. We note that Spiegel (1957) ignored compressibility
effects and so had cv instead of cp in his original expressions.
A very good approximation valid for all optical depth is
1 cot 1 31 1 2t t t- » +- -[ ] (see Figure 11). Optically thin
and thick limits for the radiative timescale are

t c T16 1 for 1, 9apthin
LTE 3ks k t= µ ( ) ( )

t c ℓ T ℓ3 16 for 1. 9bpthick
LTE 2 2 3 2r k s k t= µ ( ) ( )

In the optically thick limit, photons diffuse through the region
of interest, and so the radiative timescale scales with the
number density of absorbers (opacity) and the square of the
physical size, as expected for a random walk process. One can
relate the optically thick cooling time to a radiative diffusivity:

ℓ t T c16 3 prad
2

thick
LTE 3 2 s r k= = ( ). As the size of the region

Figure 10. Turbulent burst cycle in Run_Brunt_Step. Shown are x−y slices (in each panel, x increases upward and y increases leftward) at z=2H of the vertical
component of relative vorticity, with the same color scale as Figure 4. The first frame is at orbit 2750.2 and the last frame is at orbit 2787.5, with other frames at equal
intervals of 3.4 orbits.

Figure 11. Radiative damping as a function of optical depth when the dust and
gas temperatures are in local thermodynamic equilibrium. The solid line
represents the dependence of the radiative cooling time trad

LTE as a function of τ.
The dashed line is the optically thin limit, and the dashed-dotted line is the
optically thick limit. Note that using the optically thin cooling time for large
optical depth will overdamp optically thick features, while using the optically
thick cooling time for small optical depth will overdamp optically thin features.
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of interest decreases, so does the cooling time, but only to the
point at which photons freely stream out of the perturbation. In
this optically thin limit, the radiative timescale is independent
of the physical size and inversely proportional to the number
density of emitters. Figure 11 shows the dependence of the
radiative damping time as a function of optical depth. Note that
using the optically thin cooling time for large optical depth will
overdamp optically thick features, while using the optically thick
cooling time for small optical depth will overdamp optically thin
features. With respect to numerical simulations, if one uses a
diffusion term (a Laplacian operator), it is crucial that all
relevant features in the flow are really optically thick; otherwise,
optically thin small scale features may be overdamped.

Whether or not the dust and gas have the same temperature
and are in LTE, cool molecular hydrogen is very inefficient at
absorbing or emitting electromagnetic radiation. Heat transfer
in PPDs is primarily mediated via dust grains: gas molecules
exchange energy with dust grains via collisions, and the dust
grains absorb UV radiation from the protostar and emit IR
(almost) blackbody radiation. To first order, the dust opacity dk
is the total effective geometric cross-section of the grains per
unit mass of gas and dust: n a Q a T,d d

2rk p» á ñ( ) , where angle
brackets indicate averaging over the grain size distribution,
Q a T ak T hc aT, min 24 , 1 min 600 m K , 1B m» »( ) [ ] [ ( ) ] is
a Planck-averaged emissivity for small grains to absorb infrared
radiation, h is Planck’s constant, c is the speed of light in
vacuum, and kB is the Boltzmann constant (Chiang &
Goldreich 1997; Natta et al. 2007).6 Of special note is that
for small grains (aT 600 m Km< ), the linear dependence of
the emissivity on grain size combines with the area of grains to
yield an opacity that depends only on the total mass of dust
irrespective of the size of the grains. For simplicity, we neglect
other sources of opacity (e.g., line cooling from vibro-rotational
transitions of other molecules), but these can be included in a
more sophisticated analysis (Semenov et al. 2003; Cuzzi et al.
2014; Malygin et al. 2017). The mean free path of an IR photon
to small (aT 600 m Km< ) grains is thus
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where ρs≈2000 kg m−3 is the solid density of the dust grains.
In Figure 12, we graph the photon mean free path as a

function of location within a PPD, assuming a uniform dust-to-
gas ratio of 0.01 (no vertical settling or radial migration of
grains). Values on contours denote ℓ Hlog10 IR( ). The dust size

distribution is assumed to be a power law with index s, with a
lower limit on grain size of amin=0.1 μm, and an upper limit
of amax. Across the rows, we vary the index s from 3.50 on the
left, 3.25 in the middle, and 3.00 on the right; down the
columns, we vary the maximum grain size amax from 1 cm at
the top, 10 cm in the middle, and 1 m at the bottom. Of special
note is that even without any dust settling or migration, the
photon mean free path can vary by one or two orders of
magnitude, depending on the extent of grain growth (deter-
mined by amax) or the slope of the grain size distribution. Also
note, though, that irrespective of amax or s, the photon mean
free path is many orders of magnitude larger than the width of
the baroclinic critical layers H10CL

4d ~ - . Thus, baroclinic
critical layers are optically thin. Including dust settling into the
midplane will deplete grains in the regions above/below the
midplane, making the photon mean free path even longer there.
Therefore, due to the facts that (1) it is the damping of the
baroclinic critical layers that can potentially inhibit the
triggering of ZVI, and (2) ℓIR is always much greater than
the thickness of the baroclinic critical layers, throughout that
the remainder of this paper we will consider radiative cooling
in the optically thin limit.

4.3. Thermal Relaxation with Finite Gas-dust Coupling Time

An implicit assumption for the validity of Equation (8) is that
the gas molecules and dust grains are thermally coupled on a
sufficiently short timescale so that they are in LTE (i.e., the
kinetic temperature of the gas molecules is the same as the
thermal temperature of the grains). This may not be the case in
diffuse atmospheres where the energy exchange rate between
gas and dust may be too slow (Fiocco et al. 1975; Goldenson
et al. 2008). In such cases, the gas and dust temperatures will
not necessarily be the same, and we must explicitly follow the
exchange of energy between gas and dust via collisions, and
the absorption and emission of electromagnetic radiation from
the the dust. Consider a parcel of gas at temperature Tg
containing dust grains at temperature Td; let colL be the
volumetric energy transfer rate from gas to dust via collisions,
and let rad

netL be the net volumetric power radiated (emitted IR
minus absorbed UV) by dust grains. The evolution of the gas
and dust temperatures within the parcel is governed by

c dT dt , 11ag p g colr = -L ( )

c dT dt , 11bd d d col rad
netr = +L - L ( )

where cp and cd are the specific heats for gas at constant pressure
and for dust grains, respectively. The dust-gas collisional energy
transfer rate is proportional to the difference between the gas
and dust temperatures (Hollenbach & McKee 1979; Burke &
Hollenbach 1983; Glassgold et al. 2004),
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6 The wavelength-dependent effective cross-section of a grain of radius a can be
expressed as a Q a2p l ( ), where λ is the wavelength of light and the emissivity is
Q a amin 2 , 1p l»l ( ) [ ]. What we really need is the emissivity averaged
over the Planck spectrum, Q a T T, 4

0òp sº
¥

( ) ( )/ Q a B T d 15 4l p»l l( ) ( ) ( )/

w dw w w dw wexp 1 1 exp 1 1
b

b0
5 6ò ò- + -- ¥ -{ [ ( ) ] [ ( ) ]}/ / / / , where B Tl ( ) is

the Planck intensity, h is Planck’s constant, c is the speed of light in vacuum, σ is
the Stefan-Boltzmann constant, kB is the Boltzmann constant, w k T hcBlº , and
b ak T hc2 Bpº . For very large b, this yields Q a T, 1»( ) , whereas for very
small b, Q a T b ak T hc ak T hc, 360 5 720 5 244 3

B Bz p z p» = »( ) ( ( ) ) ( ( ) )( ) ,
where 5z ( ) is the Riemann zeta function evaluated at 5. It should not be surprising
that this is very close to a2 peakp l , where hc k T4peak Bl » is the wavelength of
the peak of the spectral radiance per fractional bandwidth (i.e., peak of B Tl l ( )
versus lnl). See the classic papers by Draine & Lee (1984) and Draine (2003).
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where ng is the number density of gas molecules, vḡ is the mean
thermal speed of gas molecules, kB is the Boltzmann constant,
and  is the accommodation coefficient, which measures the
efficiency of heat transfer between a gas and a surface. We
have assumed the accommodation coefficient for molecular
hydrogen impinging on amorphous carbon is 0.5 ~ . We can
define response times for how the gas and dust temperatures
respond to the exchange of energy via collisions; these are of
the form of a thermal inertia (i.e., heat capacity) divided by the

rate of energy transport,
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Figure 12. Photon mean free path assuming no vertical settling or radial drift of dust grains. In all instances, the photon mean free path ℓIR is much greater than the
critical layer thickness 10−4H. Values on contours denote ℓ Hlog10 IR( ), so values greater than −4 indicate locations where the critical layer is optically thin. Dust size
distribution is assumed to be a power law where the number density of dust grains with radii between a and a+da is given by n(a)da=Ka− sda, with a lower limit
on grain size of amin=0.1 μm and an upper limit of amax. Across the rows, we vary the index s from 3.50 on the left, 3.25 in the middle, and 3.00 on the right; down
the columns, we vary the maximum grain size amax from 1 cm at the top, 10 cm in the middle, and 1 m at the bottom. Dust-to-gas ratio is assumed to be uniform 0.01
throughout the entire protoplanetary disk. If there is any settling of dust, then ℓIR is larger than the values shown here, so ℓIR is greater than the thickness of the critical
layer in all settling scenarios. Physical properties of the protoplanetary disk are described in the text.
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where we assume the specific heats for gas (at constant
pressure) and dust are cp=9000 J K−1 kg−1 and cd=
800 J K−1 kg−1.

Apart from energy exchange with gas molecules via
collisions, grains absorb UV radiation from the protostar and
emit IR thermal radiation, which is not quite blackbody
because grains are inefficient at emitting electromagnetic
radiation with wavelengths longer than the sizes of the grains.
When radiative absorption and emission are balanced, the
grains achieve an equilibrium temperature Teq. The net
volumetric radiated power from the grains (IR emission minus
UV absorption) is
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where we have defined an emissivity-weighted Sauter mean
radius,
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and where we define the smallest radius for a grain to have unity
emissivity for a given temperature, a T600 m KQ 1 mº= ( ) . The
details of this calculation are left to Appendix B. Unlike the
previously introduced Sauter mean radius which is independent
of temperature, the emissivity-weighted Sauter mean radius does
indeed depend on temperature. Note that the emissivity-weighted
Sauter radius is insensitive to the size of the smallest grains
(those with sizes much less than aQ=1) because they are poor
radiators and their effective surface area is much smaller than
their geometric surface area. Also note that for cool temperatures
(T<100 K) in the outer disk, the emissivity-weighted Sauter
mean radius can be 5–40 times larger than the Sauter mean
radius with unity emissivity. Because it will be useful in the
following analysis, we want to exploit the fact that the net
radiated power is approximately linear in the temperature
difference; so, we approximated T T T T T4d g d

4
eq
4 3

eq- » -( )
and used the gas temperature instead of the dust temperature
in the emissivity. We also neglect the fact that different size
grains have different equilibrium temperatures. These approx-
imations are valid as long as Teq, Td, and Tg do not deviate too
much from each other. Of course, one could relax these

restrictions in a more sophisticated analysis. As before, we can
define a response time for how the dust temperature responds to
the emission and absorption of radiation:
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What is the relationship among td
rad, tg

col, td
col and the optically

thin cooling time tthin
LTE when the dust and gas are in LTE? In

Equation 9(a), one should use the total heat capacity for the gas
and dust mixture ( c c cp g p d d,mixr r r= + ); for the opacity, simply
use the dust opacity n a Q a T,d d
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There is another way to get this result. Consider the case that
the gas and dust are perfectly coupled and always have the
same temperature. Then one can add the two Equations in
11(b) and form a timescale by dividing a heat capacity by an
energy exchange rate. In doing so, we obtain the exact same
result as previously. This is consistent with the idea that the
optically thin cooling time is valid in the limit that the gas-dust
coupling happens nearly instantaneously.
We will now show that the optically thin cooling time tthin

NLTE

when the gas and dust are not in LTE with each other can be
significantly longer than tthin

LTE. Let’s now rewrite the temper-
ature evolution Equation 11(b) in terms of deviations from the
equilibrium temperature,

dT dt T T t , 18ag g d g
col¢ = - ¢ - ¢( ) ( )

dT dt T T t T t , 18bd g d d d d
col rad¢ = + ¢ - ¢ - ¢( ) ( )

where we have defined the temperature deviations T T Tg g eq¢ º -
and T T Td d eq¢ º - . This is a system of two coupled linear
equations; we can look for eigenfunction solutions of the
form T T t texpg g thin

NLTE¢ = -ˆ ( ) and T T t texpd d thin
NLTE¢ = -ˆ ( ),

which yields a quadratic equation for the thermal relaxation time
tthin
NLTE. One of the roots is

t t t t t2 1 1 4 , 19g dthin
NLTE 2 col rad

1
= - -

-⎡⎣ ⎤⎦ ( )∣∣ ∣∣

where we have defined t t t t1 1 1 1g d d
col col radº + +∣∣ . There

are actually two eigenvalues: a slow timescale (as shown
previously) and a fast timescale (switch the sign in front of the
radical). Associated with these two eigenvalues are two
eigenvectors. An arbitrary thermal perturbation will be a linear
combination of the two eigenvectors; the component of the
perturbation that corresponds to the fast eigenvalue will decay
on a short timescale, while the component that corresponds to
the slow eigenvalue will decay on a long timescale. What
ultimately matters for the lifetime of the thermal perturbation is
the slow timescale. Note that when the temperatures of the gas
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and dust are well-coupled and are in LTE, the timescale tthin
NLTE

given in Equation (19) reduces to tthin
LTE, so that our formula for

tthin
NLTE can be used under all conditions. Furthermore, locations
in the PPD where tthin

LTE and tthin
NLTE differ significantly (see

Figures 13 and 14) indicate the locations where the dust and
gas temperatures are not in LTE. We admit that an intuitive
interpretation of the form of the relaxation time in (19) is not
that obvious. However, note that throughout the entire PPD, tg

col

is always orders of magnitude longer than either td
col or td

rad. One
can expand (19) in a Laurent series for large tg

col and obtain the
approximation

t t t t1 20ag d dthin
NLTE col rad col» +( ) ( )

t t . 20bg
col

thin
LTE» + ( )

We emphasize that this is valid as long as t t t,g d d
col col rad , but

is true whether tg
col is smaller or larger than tthin

LTE. As a rough
analogy, one can say the cooling is a sequential two-stage
process: energy must be transferred from the gas to the dust (on
timescale tg

col), and then radiated away via dust (on timescale
tthin
LTE), and the actual cooling time tthin

NLTE is the sum of these two
individual times.

We now present a series of graphs of the relaxation time
tthin
NLTE for a particular PPD model, for a variety of grain power-
law distributions, and for the case of well-mixed gas and dust
(no vertical settling or radial drift) and for various simple
settling models. These graphs are not meant to be exhaustive,
but rather to represent the wide range of possibilities for
cooling times in disks. First, in Figure 13, we graph the
radiative relaxation times tthin

NLTE (normalized by the Keplerian
frequency) for models with no radial drift or vertical settling of
grains—that is, the dust and gas are well mixed with a uniform
ratio throughout the disk. We fix the global dust-to-gas ratio

0.01d gS S = and the minimum grain size amin=0.1 μm.
Across the rows, we vary the power-law index s from 3.50 on
the left, 3.25 in the middle, and 3.00 on the right; down the
columns, we vary the maximum grain size amax from 1 cm at
the top, 10 cm in the middle, and 1 m at the bottom. The dust
grain size distribution is logarithmically binned, and collisional
and radiative energy exchange rates colL and rad

netL are computed
for each bin from Equations (12) and (14). The rates
themselves are summed over all bins, and the relevant
timescales are computed. For comparison, dotted magenta
contours show the optically thin cooling time tthin

LTE in (17). In
the case of uniform dust-to-gas ratio, tthin

LTE is independent of
height off the midplane and only a function of distance from
the protostar. Note that tthin

LTE is everywhere smaller than tg
col, and

so the relaxation time is t tgthin
NLTE col» . We have shaded gray the

region of the disk that is susceptible to ZVI—that is, the gas is
sufficiently stratified (N 1W ) and the relaxation time is
sufficiently long that t 10thin

NLTE 1.5W > . Even without any dust
settling, ZVI can be triggered off the midplane throughout
much of the outer disk.

Next, in Figure 14, we graph the radiative relaxation times
(normalized by the Keplerian frequency) for three different
vertical dust settling scenarios. We fix s=3.25 and
amax=10 cm. In the top row of plots, we assume that all
grains settle to the same dust scale, irrespective of grain size.
Across the columns, we choose Hd/Hg=1.0, 0.50, and 0.25.
In the middle row of plots, we assume a zero turbulence disk
and allow dust grains to settle into the midplane according to

H a H t t aexpd g age sedi= -( ) [ ( )]. Grains of different sizes settle
with different sedimentation rates, t tsedi

2
stop

1= W -( ) , where the
stopping time (the time for a particle to come to rest with
respect to the gas due to aerodynamic drag) in the Epstein
regime (particle size less than gas molecular mean free path) is
t a vs g gstop r r= ( )( ¯ ). For a 1mm particle at 1au and z H2» ,
the stopping and sedimentation times (normalized by the
Keplerian frequency) are t 0.0014stopW » and t 700sediW » . In
the middle row of graphs, we vary the disk age across the
columns: tage=0.01, 0.1, and 1Myr. In the last row of plots,
we assume a turbulent disk in which the dust scale heights have
reached a steady state between downward settling and upward
turbulent diffusion, H a H t1d g stop a= + W( ) , where α is
the nondimensional turbulence viscosity c Hsturba n= ( )
(Dubrulle et al. 1995; Garaud 2007). In the third row, we vary
the turbulent viscosity across the columns 10 , 10 ,2 3a = - -

10 4- . Note that we assume that there is enough time to settle to
these steady states, but that may not be the case for sub-micron
grains. The dotted magenta contours and the gray shaded
region have the same meanings as in Figure 13. With even
marginal dust settling, now large swathes of PPDs are
susceptible to ZVI.

4.4. Simulations of ZVI with Radiative Damping

If the photon mean free path is longer than the largest scale
of interest within a flow, then all scales are optically thin and
radiative transfer can be modeled with a size-scale independent
Newton cooling (i.e., radiated power proportional to temper-
ature difference with respect to some equilibrium value). On
the other hand, if the photon mean free path is shorter than the
smallest scale of interest within a flow, then all scales
are optically thick and radiative transfer can be treated as
simple diffusion. A significant challenge is the case where, at
the same location in space and time in the flow, small
fluctuations are optically thin and large fluctuations are
optically thick; using Newton cooling will overdamp large
fluctuations, while using a diffusion operator will overdamp
small fluctuations. Monte Carlo techniques for radiative transfer
are ideal for cases that do not fit safely within the optically thin
or optically thick regimes, but these methods involve a
substantial investment in additional coding and computational
resources. Our goal here is more modest: we want to determine
how much radiative damping baroclinic critical layers can
withstand and still support the development of ZVI. In
Appendix A, we report on simulations with uniform stratification
that confirm that ZVI requires Newton cooling times longer than
a few orbital periods.
In real PPDs, gravity and stratification are not uniform. Not

only that, the radiative relaxation time can vary in position
within the disk and is especially sensitive to how much the
dust has settled. The baroclinic critical layers are most
sensitive to radiative cooling; their radial extent is much less
than a gas scale height and is expected to be optically thin.
Thus we will focus only on Newton cooling.7 This will likely
overdamp the flow on the largest scales, but this should not be
a concern for the onset of ZVI. In this subsection, all

7 We apply Newton cooling to the potential temperature: trad thin
NLTE q q- = -˜ ˜ .

Implicit in this approach is that the fractional change in potential temperature
equals the fractional change in thermal temperature due to radiative cooling. This
can be shown to be exactly true in the limit of the anelastic approximation with
uniform temperature backgrounds (Barranco & Marcus 2006), and is still a good
approximation for the stratification profiles used here.
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simulations have a domain size of (6H)3 resolved with 1923

spectral modes. The size of the time steps was adjusted every
∼0.1 orbits to keep the target CFL number 0.125 . We fix the
background stratification to be the Run_Brunt_Step profile.
We do not assume the radiative relaxation time is spatially
uniform; rather, we explore relaxation times that are functions
of height and that correspond to different simple models of
dust settling, as in Figure 14. We chose 21 cooling profiles to
sample the parameter space, not to necessarily be exhaustive,
but to show that the onset of ZVI in real PPDs is consistent

with our understanding of where there is sufficient stratifica-
tion and long enough cooling times. Because of additional
damping near the vertical boundaries (for stability), the
effective domain is z H2.75∣ ∣ . On Figure 14, we plot
thick, blue vertical dashed lines to indicate simulations that
did not develop ZVI after 2000 orbits, whereas thick, red
vertical solid lines indicate that ZVI was triggered and
developed into full zombie turbulence. The vertical extent of
these lines indicates the effective size of the computational
domain. Note that when no part of the computational domain

Figure 13. Relaxation time tthin
NLTE, assuming no vertical settling or radial drift of dust grains. Values on solid black contours denote tlog10 thin

NLTEW( ). Values on dotted
magenta contours are for tlog10 thin

LTEW( ). The difference between these timescales is an indication of the magnitude of how far out of local thermodynamic equilibrium
the gas and dust are with respect to each other. Note that throughout much of the disk, tthin

NLTE is many orders of magnitude longer than tthin
LTE. Dust size distribution is

assumed to be a power law where the number density of dust grains with radii between a and a+da is given by n(a)da=Ka− sda, with a lower limit on grain size of
amin=0.1 μm and an upper limit of amax. Across the rows, we vary the index s from 3.50 on the left, 3.25 in the middle, and 3.00 on the right; down the columns, we
vary the maximum grain size amax from 1 cm at the top, 10 cm in the middle, and 1 m at the bottom. Dust-to-gas ratio is assumed to be a uniform 0.01 throughout the
entire protoplanetary disk. The regions shaded gray indicate where ZVI can be triggered—that is, where the gas is sufficiently stratified and the relaxation time is
sufficiently long t 10thin

NLTE 1.5W > . Note that the boundaries of this region are only approximate; here we chose the stratification boundary for an isothermal background,
but it could be lower, depending on the exact stratification profile.
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or only a small part of the computational domain extends into
the gray region, ZVI is not triggered, while simulations in
which the stratified regions of the computational domain have
significant overlap with the gray regions do develop ZVI and
turbulence.

5. Discussion and Outstanding Issues

Summary of Results: In our previous work, we investigated,
via numerical simulation, ZVI with uniform stratification
(uniform gravity, uniform background temperature, and uniform

Figure 14. Relaxation time tthin
NLTE for three different settling scenarios. Values on solid black contours denote tlog10 thin

NLTEW( ). Values on dotted magenta contours are
for tlog10 thin

LTEW( ). The difference between these timescales is an indication of the magnitude of how far out of local thermodynamic equilibrium the gas and dust are
with respect to each other. We fix s=3.25 and amax=10 cm for all cases. Areas shaded in gray have sufficient stratification and long enough thermal relaxation
times so as to be susceptible to ZVI. Top row: all particles settle to the same dust scale height, irrespective of size. Across the columns, Hd/Hg=1.0, 0.50, and 0.25.
Middle row: particles are allowed to settle in a turbulent-free disk according to H a H t t aexpd g age sedi= -( ) [ ( )]. Particles of different sizes sediment at different rates:
t tsedi

2
stop

1= W -( ) , where the stopping time is t a vs g gstop r r= ( )( ¯ ). Across the columns, we vary the disk age: tage=0.01, 0.1, 1Myr. Bottom row: particles reach a

quasi-steady-state scale height in which downward settling is balanced by upward turbulent diffusion: H a H t1d g stop a= + W( ) . Across the columns, we vary the
nondimensional turbulent viscosity: 10 , 10 , 102 3 4a = - - - . Simulations with radiative damping: we have simulated ZVI with the initial Run_Brunt_Step profile with
vertical domains from z=−3H to z=+3H for 2000 orbits with nonuniform vertical cooling. The simulations were local at one radius—that is, the radial extent of
the computational domain was H r6  . Because of additional damping near the vertical boundaries (for stability), the effective domain is z H2.75∣ ∣ . Thick, blue
vertical dashed lines indicate simulations that did not develop ZVI, whereas thick, red vertical solid lines indicate that ZVI was triggered and developed into full
zombie turbulence. The vertical extent of these lines indicates the effective size of the computational domain. Note that when no part of the computational domain or
only a small part of the computational domain extends into the gray region, ZVI is not triggered, while simulations in which the stratified regions of the computational
domain have significant overlap with the gray regions do develop ZVI and turbulence.
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Brunt-Väisälä frequency), and in the limit that the timescale
associated with radiative damping was infinite (Marcus et al.
2013, 2015, 2016). In this work, we have relaxed both of these
assumptions. Here we investigate ZVI with realistic vertical
gravity and vertical stratification, with and without radiative
damping. Our key results are the following:

(1) ZVI can occur with a variety of nonuniform stratification
profiles. In this work, we investigated the onset of ZVI
and its nonlinear evolution for three profiles: (i) uniform
temperature with a Brunt-Väisälä frequency that
increased linearly away from the midplane, (ii) a step
profile in temperature which yielded a Brunt-Väisälä
frequency that had a local extremum near the step in
temperature, and (iii) a step profile in the Brunt-Väisälä
frequency itself. All showed robust development of ZVI.
The susceptibility to ZVI is local—that is, there needs to
be a locality for which the stratification is sufficiently
strong, the thermal relaxation time is sufficiently long,
and the initial perturbations exceed some critical thresh-
old. Once ZVI is ignited at one location, it rapidly spreads
and modifies the neighboring regions to push them
toward susceptibility.

(2) At late times, zombie turbulence resulted in vertical
mixing. In Run_Isothermal, the stratification was homo-
genized in the ZVI susceptible layer, resulting in a nearly
uniform Brunt-Väisälä frequency. Similar behavior is
seen in atmospheric and oceanic flows in which the
breaking of internal gravity waves creates step-like or
staircase patterns in stratification (Orlanski & Bryan 1969;
Phillips 1972; Pelegrí & Sangrã 1998). This also further
justifies the initial profile for Run_Brunt_Step.

(3) While the region in the immediate vicinity of the
midplane lacks the requisite stratification for the excita-
tion of baroclinic critical layers, we observe that zombie
turbulence from the ZVI susceptible regions can penetrate
into the midplane, albeit with a smaller magnitude. The
stratification profile Run_Brunt_Step showed the greatest
penetration of zombie turbulence into the disk midplane.

(4) At late times, zombie turbulence resulted in the creation
of azimuthal quasi-steady-state zonal flows. The zonal
flows consisted of five to six pairs of dipolar vortex layers
within a radial extent of 8H. The radial thickness of the
cyclonic layers is approximately one-third the thickness
of the anticyclonic layers, but this is compensated by the
fact that the cyclonic layers are roughly three times more
intense as the anticyclonic layers. We suspect that the
width of the zones is imprinted from the initial separation
of the baroclinic critical layers. However, the stratifica-
tion profiles are not uniform and the initial critical layer
separations are functions of height. Yet, the simulations
seem to show that the widths of the zones are uniform in
height. How can this be consistent with the idea that the
widths of the zones have memory of the initial critical
layer thickness? One possibility is that ZVI is first
triggered at one specific height (because it has the
combination of the most favorable stratification, cooling
time, and strength of initial perturbations), and as ZVI
rapidly develops at the initial location, it homogenizes the
stratification around it, making the critical layer separa-
tions more uniform.

(5) Fully developed zombie turbulence shows intermittency,
where the flow cycles through near-laminar phases of

zonal flow punctuated by chaotic bursts of new zombie
vortices. In some simulations, the bursting is quasi-
periodic in time (with periods between 100 and 150
orbits), whereas in other cases, it appeared more
stochastically. This phenomenon was not observed in
any of our previous simulations of ZVI.

(6) The photon mean free path is always significantly longer
than the width of baroclinic critical layers H10CL

4d ~ - .
Baroclinic critical layers are optically thin structures. In
our spectral simulations, the baroclinic critical layers are
resolved with only three to five collocation points.

(7) The hydrodynamics, which leads to the creation of the
baroclinic critical layers, generates thermal anomalies in
the gas (via pressure–volume work, buoyancy). The
temperature of the dust does not instantaneously match
that of the gas, and the gas and dust arise out of LTE. The
gas responds to differences in temperature with the dust
on the timescale tg

col, and the dust responds to differences
in temperature with the gas on the timescale td

col (see
Equations 13(a) and (b)). However, what ultimately
matters for the lifetime of the critical layer is the time it
takes for the gas to radiatively relax to the background
equilibrium temperature.

(8) The relevant radiative damping timescale in optically thin
regions where the gas and dust are not in LTE with each
other is t t tgrelax

col
thin» + . That is, cooling is a sequential

two-stage process: energy must be transferred from the
gas to dust (on timescale tg

col) and radiated away via dust
(on timescale tthin), and the total time is the sum of these
individual times. Throughout much of the off-midplane
regions in PPDs, trelax can be orders of magnitude longer
than tthin because the gas and dust are not in LTE (see
Figures 13 and 14).

(9) ZVI can still thrive in the presence of radiative damping.
As long as the thermal relaxation timescale is longer than
a few orbital periods in the strongly stratified regions,
ZVI can locally be triggered. Without any dust settling,
ZVI can be triggered in the outer regions of PPDs
because the relaxation timescale is set by the rate at which
the gas and dust exchange energy via collisions. With
minimal dust settling, ZVI can operate throughout much
of the planet-forming regions of PPDs.

(10) If the thermal relaxation time is sufficiently long, ZVI can be
triggered, and the resultant late-time evolution of turbulence
is virtually indistinguishable from the simulations without
thermal relaxation. That is, thermal relaxation can affect the
initial development of the baroclinic critical layers, but once
the critical layers give way to ZVI, the thermal relaxation has
little effect on the subsequent evolution into zombie vortices
and turbulence.

Where within Protoplanetary Disks Is ZVI Potentially
Relevant? Lesur & Latter (2016) showed that cooling times
shorter than a few orbital periods can quench the onset of ZVI.
They also investigated the effect of radiative diffusion in
optically thick regions, and showed that ZVI requires a large
Péclet number Pe 104~ . Our numerical results in Appendix A
are broadly consistent. However, we strongly disagree with their
conclusion with respect to where within PPDs that ZVI may be
operable. They assumed opacities from Semenov et al. (2003)
that included virtually no grain growth (maximum grain sizes of
only a few microns) nor any vertical dust settling, and thus
erroneously concluded that the optically thin cooling time is so
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short throughout the bulk of the disk that the only place that ZVI
can survive is in the very optically thick inner disk close to the
protostar (which is likely to be active to the MRI anyway).
However, the consensus of radio observations in cm, mm, and
sub-mm show that grain growth occurs early in the evolution of
PPDs, and that the largest grains are likely to be centimeters or
even larger (Natta et al. 2007; Pérez et al. 2012, 2015; Testi et al.
2014; Carrasco-González et al. 2016; Tazzari et al. 2016).
Locking up mass in larger grains or having grains settle into the
midplane reduces the opacity in off-midplane regions of PPDs
and significantly lengthens the rate of thermal relaxation.

In this work, we explored various realistic grain growth and
vertical settling scenarios, and found that in much of the off-
midplane regions of PPDs, the gas and dust are not necessarily
in LTE with each other. In such non-LTE cases, the relevant
thermal relaxation timescale is actually the sum of the optically
thin cooling timescale from dust infrared emission plus the
timescale for the gas to respond to the collisional exchange of
energy between the gas and dust: t t tgrelax thin

col» + . Through-

out much of the outer disk, t t tg
col

orb thin  , so ZVI is still an
important mechanism for the generation of turbulence
throughout large portions of PPDs.

More recently, Malygin et al. (2017) did a comprehensive
analysis of thermal relaxation in PPDs, including non-LTE
effects such as the finite coupling time of gas and dust. They
also found that off-midplane regions of PPDs are not
necessarily in LTE. However, they did not correctly apply
their results to ZVI, and they did not do any numerical
simulations of ZVI. They stated that ZVI would only be
operable in a small region very close to the protostar, but this
was based solely on the conclusion of Lesur & Latter (2016)
that ZVI required a large Péclet number (thus assuming that the
relevant timescale is optically thick diffusion).

Outstanding Issues and Future Work: Not only ZVI but also
other purely hydrodynamic instabilities are very sensitive to the
rate of thermal relaxation. VSI requires cooling times signifi-
cantly shorter than an orbital period, convective overstability
needs cooling times of the order of an orbital period, whereas
ZVI is operable when the cooling time is longer than a few
orbital periods. The cooling timescales are very sensitive to the
spatiotemporal density of dust as well as the size distribution of
grains. The size distribution, in turn, depends on the dynamic
balance of agglomeration and fracturing processes, which are
very sensitive to the properties of turbulent motions, which are
set by the relevant hydrodynamic instabilities. This is the classic
chicken-and-egg problem: the dust density and size distribution
depend on hydrodynamic turbulence, and the hydrodynamic
turbulence depends on the dust density and size distribution. In
future work, we plan to simulate ZVI explicitly with a dust
phase. We are interested in how ZVI mixes and/or concentrates
dust grains, and how mass-loading affects zombie vortices and
zonal flows. This will also give us the opportunity to directly see
how ZVI interacts with the streaming instability.

We did not include radial migration of dust grains in our
models for computing thermal relaxation times in Section 4.3.
Here, we’d like to take a moment to reiterate why we
approached the grain growth and settling the way we did. ZVI
requires stratification and long thermal relaxation times. The
first condition means that ZVI is triggered only off the
midplane, above approximately 1.5H. To achieve longer
cooling times, one needs only to have dust grains grow in
size (locking a lot of mass in a fewer number of larger particles

removes many small grains which contribute to the total
surface area) and for grains to settle into the midplane. We can
treat grain growth and settling into the midplane in a “local”
manner—that is, at one radius in the disk. Including radial
migration effectively couples all radii of the disk. One cannot
simply vary, for example, amax as a function of radius without
also varying the surface (2D, vertically integrated) dust to gas
ratio as a function of radius, and probably also the size
distribution power s as a function of radius. This will be time-
or age-dependent as well. These changes need to be done in a
way that conserves dust mass (modulo dust lost to the protostar,
dust vaporized at inner radii, new dust from residual infall). All
of these effects are very model-dependent (on turbulence or
“viscous evolution”) and cannot be boiled down to varying one
parameter. However, all of that is probably unnecessary for
ZVI. Radial migration affects larger grains (those with Stokes
numbers near unity or larger) that are already in the midplane.
Particles of these sizes have a negligible effect on cooling.
Including radial migration is absolutely crucial to follow solid
mass redistribution in the disk, collisional agglomeration, and
the formation of planetesimals, but is not relevant for the
cooling times away from the midplane because it is basically a
redistribution of larger particles near the disk midplane.
(Though, we admit that changing the number and size of
larger particles in the midplane could, as a second-order effect,
create more smaller grains in the midplane via collisional
fragmentation, that may then be lofted off the midplane via
turbulent diffusion.) Thus, vertical settling and grain growth is
easy to consider in a transparent way in a local simulation at
one radius, and directly gets at what is necessary to trigger ZVI.
Including radial migration in a self-consistent way is not trivial
or not well constrained, and probably not necessary for
understanding the cooling times above 1.5H. See Estrada
et al. (2016) and Desch et al. (2017) for more details on the
radial migration of solids and its impact on opacity.
Because of the complexity of radiative transfer, it is common

to work with simplified approaches that are appropriate for
either optically thin or optically thick extremes. However, it is a
computational challenge when at the same point in space and
time, there may coexist small features that are optically thin and
large features that are optically thick. Because the baroclinic
critical layers are the most sensitive to thermal relaxation, and
because they are optically thin, our approach in this paper was
to employ a simple Newton cooling prescription. Using a
second-order diffusion operator allows different size scales to
be damped at different rates, but with a constant radiative
diffusivity, this will grossly overdamp the smallest scales.
What is needed is a radiative diffusivity that is itself scale-
dependent (see Spiegel 1957). It may be fruitful to explore
Monte Carlo methods for radiative transfer for a more rigorous
investigation of the radiative damping of the very thin
baroclinic critical layers.
All of our previous studies of ZVI have used Cartesian

domains in which the radial extent was no more than a few H.
Future investigations will include annular domains in which the
radial extent will be much larger. The goal is not so much to
check the effects of curvature (which we expect to be small),
but to explore the extent to which turbulence from ZVI
susceptible radii can penetrate into ZVI-inactive regions (just
like the midplane, which is not ZVI active but still can still
harbor ZVI-generated turbulence).

23

The Astrophysical Journal, 869:127 (26pp), 2018 December 20 Barranco, Pei, & Marcus



J.A.B. is supported by NSF grants AST-1010052 and AST-
1510708. P.S.M. is supported by NSF grants AST-1009907 and
AST-1510703, and by NASA PATM grants NNX10AB93G and
NNX13AG56G. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-
1548562 (Towns et al. 2014). Simulations were performed on
Stampede at the Texas Advanced Computing Center (TACC)
and Comet at the San Diego Supercomputer Center (SDSC) via
allocation TG-AST020001S. Graphics used the “Balance”
colormap, which is a perceptually uniform diverging colormap
(Thyng et al. 2016). Finally, the authors thank the following for
useful discussions during the writing of this manuscript: Steven
Beckwith, Eugene Chiang, Jeffrey Cuzzi, Paul Estrada, Jeffrey

Fung, Alfred Glassgold, Daniel Lecoanet, Christopher McKee,
Michael Shull, and Orkan Umurhan.
Facility: XSEDE.

Appendix A
Critical Values of Newton Cooling Time and Péclet Number

In order to get the clearest sense for the critical magnitude of
radiative damping, we will first study the case of uniform
gravity, uniform thermal temperature background, and uniform
stratification, as we did in Marcus et al. (2015) and Marcus
et al. (2016). For the simulations in this subsection alone, we
solve Equations 2(a)–(c) in Marcus et al. (2016) with a triply
periodic, anelastic code, but with Newton cooling or a diffusion

Figure 15. Critical values for radiative damping time and Péclet number. Kinetic energy associated with the vertical component of the velocity z v dVz
2ò r̄ ( ) (in units

of H0
5 2r W ) is on the vertical axes, and time in units of orbital periods is on the horizontal axes. Simulations with different levels of optically thin cooling are shown in

the top panels. In panel (a), we see that for N/Ω=1.0, the critical damping time is approximately 5 orbits, whereas in panel (b) for N/Ω=0.8, the critical damping
time is 35 orbits. Simulations with different magnitudes of radiative diffusivity are shown in the bottom row of plots. In panel (c), for N/Ω=1.0, the critical Péclet
number is around 105, and in panel (d), for N/Ω=0.8, the critical Péclet number is around 106.
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operator added to the temperature equation,
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where T T T0º -˜ is the temperature deviation from the
uniform background and rad is the radiative diffusivity. For
the case of radiative diffusion, it is convenient to define the
radiative Péclet number, which is the ratio of rate of heat
transport via advection to the rate via diffusion:
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In this expression for the Péclet number, we had to make a
choice on the scales of interest; here, we chose to define it with
respect to a characteristic length scale of H and a characteristic
velocity HW .

Figure 15 shows the results of a series of simulations to
ascertain the critical magnitude of thermal damping that halts
the development of ZVI; kinetic energy associated with the
vertical component of the velocity z v dVz

2ò r̄ ( ) (in units of
H0

5 2r W ) is on the vertical axes, and time (in units of orbital
periods) is on the horizontal axes. Simulations with different
levels of optically thin cooling are shown in the top panels. ZVI
depends strongly on the magnitude of stratification. In panel
(a), we see that for N/Ω=1.0, the critical damping time is
approximately five orbits, whereas in panel (b) for N/Ω=0.8,
the critical damping time is 35 orbits. ZVI is more robust for
stronger stratification, and therefore can withstand shorter
damping times. Simulations with different magnitudes of
radiative diffusivity are shown in the bottom row of plots;
panel (c) is for N/Ω=1.0 and shows a critical Péclet number
is around 105, and panel (d) is for N/Ω=0.8 and shows a
critical Péclet number around 106. Again, we see that stronger
stratification can withstand more radiative diffusion.

Appendix B
Emissivity-weighted Sauter Mean Radius

In this appendix, we will derive an expression for the
emissivity-weighted Sauter mean radius. It will be convenient
to define the smallest radius for a grain to have unity emissivity
for a given temperature, a T600 m KQ 1 mº= ( ) . For all
realistic scenarios, we expect a a aQmin 1 max=  . Next, let
us compute the average square radius times emissivity:
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Now, taking the third moment of the distribution and dividing
by the average square radius weighted by the emissivity, we

obtain an expression for the emissivity-weighted Sauter radius:
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Note that the emissivity-weighted Sauter radius is insensitive to
the size of the smallest grains (those with sizes much less than
aQ=1) because they are poor radiators and their effective
surface area is much smaller than their geometric surface area.
For the special case s=3.5, then a a a0.5 QSQ max 1» = . For

the special case s=3.25, then a a a0.25 QSQ max
3

1
4» = .
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