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Abstract

Optimizing multiple, non-preferential objectives
for mixed-variable, expensive black-box prob-
lems is important in many areas of engineering
and science. The expensive, noisy black-box
nature of these problems makes them ideal can-
didates for Bayesian optimization (BO). Mixed-
variable and multi-objective problems, however,
are a challenge due to the BO’s underlying smooth
Gaussian process surrogate model. Current multi-
objective BO algorithms cannot deal with mixed-
variable problems. We present MixMOBO, the
first mixed variable multi-objective Bayesian op-
timization framework for such problems. Using a
genetic algorithm to sample the surrogate surface,
optimal Pareto-fronts for multi-objective, mixed-
variable design spaces can be found efficiently
while ensuring diverse solutions. The method is
sufficiently flexible to incorporate many different
kernels and acquisition functions, including those
that were developed for mixed-variable or multi-
objective problems by other authors. We also
present HedgeMO, a modified Hedge strategy that
uses a portfolio of acquisition functions in multi-
objective problems. We present a new acquisi-
tion function SMC. We show that MixMOBO
performs well against other mixed-variable algo-
rithms on synthetic problems. We apply Mix-
MOBO to the real-world design of an architected
material and show that our optimal design, which
was experimentally fabricated and validated, has
a normalized strain energy density 10* times
greater than existing structures.

1. Introduction

Optimization is an inherent part of design for complex phys-
ical systems. Often optimization problems are posed as
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noisy black-box problems subject to constraints, where each
function call requires an extremely expensive computation
or a physical experiment. A large range of these problems
requires optimizing a mixed variables design space (combi-
natorial, discrete, and continuous) for multiple objectives.
Architected material design (Frazier & Wang, 2015; Chen
et al., 2018a; 2019; Shaw et al., 2019; Song et al., 2019a;
Vangelatos et al., 2021), hyper-parameter tuning for ma-
chine learning algorithms (Snoek et al., 2012; Chen et al.,
2018b; Oh et al., 2018), drug design (Pyzer-Knapp, 2018;
Korovina et al., 2020), controller sensor placement (Krause
et al., 2008) pose such problems and Bayesian optimization
is a natural candidate for their optimization.

Much research has gone into Bayesian optimization for con-
tinuous design spaces using Gaussian processes (GP) as a
surrogate model and efficiently optimizing over this design
space with minimum number of expensive function calls
(Mockus, 1994; Rasmussen & Williams, 2006; Brochu et al.,
2010). Despite the success of continuous Bayesian optimiza-
tion strategies, multi-objective, mixed-variable problems
remain an area of open research. The inherent continuous
nature of GP makes dealing with mixed-variable problems
challenging. Finding a Pareto-front for multi-objective prob-
lems, and parallelizing function calls for batch updates also
remain as challenges in the sequential setting of the BO
algorithm. ‘Hedge’ strategies for acquisition functions have
proven to be very efficient for BO for continuous design
spaces, however, Hedge strategies have not been formulated
for multi-objective and mixed-variable problems.

In this paper, we present a Mixed-variable, Multi-Objective
Bayesian Optimization (MixMOBO) algorithm that is a
generalized framework that can deal with these types of
problems in the small data setting and that can optimize a
noisy black-box function with a small number of function
calls. Using a GA on a mixed variable surrogate model
in a multi-objective setting allows us to work with most
of the published modified kernels that were developed for
mixed-variable problems. We present a modified Hedge
strategy for acquisition functions, Hedge Multi-Objective
(HedgeMO). The strategy has batch updates that work in
a multi-objective setting for which the regret bounds pre-
sented by Brochu et al. (2011) hold. We also propose a new
acquisition function (AF), Stochastic Monte-Carlo (SMC),
which performs well for categorical variables (Vangelatos
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et al., 2021). In summary, the main contributions of our
work are as follows:

* We present Mixed-variable, Multi-Objective Bayesian
Optimization (MixMOBO), the first algorithm that can
deal with mixed-variable, multi-objective problems.
The framework using GA is flexible, so it can use the
modified kernels or surrogate surfaces developed to
deal with mixed-variable problems in previous studies.
This extends their capabilities to handle mixed-variable
and multi-objective problems as well since our con-
strained GA optimization method is agnostic to the
underlying GP kernel over mixed-variables.

* GA is used to optimize surrogate models, which al-
lows the optimization of multi-objective problems. ‘Q-
batch’ samples can be extracted in parallel from within
the GA generation without sacrificing diversification.

* We present a Hedge Multi-Objective (HedgeMO) strat-
egy for mixed variables and multiple objectives for
which regret bounds hold. We also present a new acqui-
sition function, Stochastic Monte-Carlo (SMC), which
performs well for combinatorial spaces and use it as
part of our HedgeMO portfolio.

* We benchmark our algorithm against other mixed-
variable algorithms and prove that MixMOBO per-
forms well on test functions. We applied MixMOBO
to a practical engineering problem: the design of a new
architected meta-material that was optimized to have
the maximum possible strain-energy density within
the constraints of a design space. The fabrication and
testing of this new material showed that is has a nor-
malized strain energy density that is 10 times greater
than existing unblemished microlattice structures in
literature.

2. Related Work
2.1. Mixed-Variable BO Algorithms:

We provide a brief description of the current approaches in
recent studies for dealing with mixed variables.

One Hot Encoding Approach: Most BO schemes use
Gaussian processes as surrogate models. When dealing
with categorical variables, a common method is ‘one-hot
encoding’ (Golovin et al., 2017). Popular BO packages,
such as GPyOpt and Spearmint (Snoek et al., 2012), use
this strategy. However, this can result in inefficiency when
searching the parameter space because the surrogate model
is continuous. For categorical variables, this approach also
leads to a quick explosion in dimensional space (Ru et al.,
2020).

Multi-Armed Bandit (MAB) Approach: Some studies
use the MAB approach when dealing with categorical vari-
ables where a surrogate surface for continuous variables is
defined for each bandit arm. These strategies can be expen-
sive in terms of the number of samples required (Gopakumar
et al., 2018; Nguyen et al., 2019), and they do not share in-
formation across categories. An interesting approach, where
coupling is introduced between continuous and categorical
variables, is presented in the CoCaBO algorithm (Ru et al.,
2020), and it is one of the baselines that we test MixMOBO
against.

Latent Space Approach: A latent variable approach has
also been proposed to model categorical variables (Qian
et al., 2008; Zhou et al., 2011; Zhang et al., 2020; Deshwal
& Doppa, 2021). This approach embeds each categorical
variable in a Z latent variable space. However, the embed-
ding is dependent on the kernel chosen, and for small-data
settings can be inefficient.

Modified Kernel Approach: There is a rich collection of
studies in which the underlying kernel is modified to work
with ordinal or categorical variables. For example, Ru et al.
(2020) considers the sum + product kernel; Deshwal et al.
(2021) propose hybrid diffusion kernels, HyBO; and Oh
et al. (2021) propose frequency modulated kernels. The
BOCS algorithm (Baptista & Poloczek, 2018) for categor-
ical variables uses a scalable modified acquisition func-
tion. Pelamatti et al. (2018); Oh et al. (2019); Nguyen et al.
(2019); Garrido-Merchan & Hernandez-Lobato (2020) all
use modified kernels to adapt the underlying surrogate sur-
face. Our approach is unique that any modified kernel can
be incorporated into our framework for the solution of multi-
objective mixed-variable problems. Currently we use the
modified RBF kernel for modelling the surrogate surface,
with our future research focused on different kernels in our
framework.

Other Surrogate Models: Other surrogate models can be
used in place of the GP to model mixed-variable problems
such as random forests, an approach used by SMAC3 (Lin-
dauer et al., 2021) or tree based estimators, used in the Tree-
Parzen Estimator (TPE) (Bergstra et al., 2013). Daxberger
et al. (2020) considers a linear model with cross-product
features. BORE (Tiao et al., 2021) leverages the connection
to density ratio estimation.

2.2. Multi-Objective BO Algorithms:

Multi-objective Bayesian optimization (MOBO) has been
the subject of some recent studies. BoTorch (Balandat
et al., 2020), the popular BO framework, uses the EHVI and
ParEGO based on the works of Fonseca et al. (2006) and
Daulton et al. (2020; 2021). Hyper-volume improvement is
the main mechanism used to ensure diversity in generations.
‘Q-batch’ parallel settings of the above two acquisition func-
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tions use hyper-volume improvement and the previously
selected point in the same batch to choose the next set of
points. For most single-objective BO algorithms with paral-
lel batch selection, the next batch of test points is selected
by adding the ‘pretend’ cost-function evaluation to the pre-
viously selected test point within that batch. However, this
commonly used method often leads to overly confident test
point selection, and the surrogate surface then needs to be
optimized, and often refitted Q times. Using GA, we can
select a ‘Q-batch’ of points with a single optimization of
the surrogate surface from the GA generation.

Suzuki et al. (2020) provide an interesting Pareto-frontier
entropy method as an acquisition function, and Shu et al.
(2020) use Pareto-frontier heuristics to formulate new ac-
quisition functions. Their approaches were not extended to
mixed-variable problems because hyper-volume is difficult
to define for combinatorial spaces. Hedge algorithms have
proven to be efficient in dealing with a diverse set of prob-
lems. They use a portfolio of acquisition functions (Brochu
et al., 2011). However, these algorithms have not been con-
sidered for MOBO, and, to the authors’ knowledge, there is
no existing BO implementation that solves mixed-variable
multi-objective problems.

Genetic algorithms (GA), such as NSGA-II (Deb et al.,
2002), are well known for dealing with mixed-variable
spaces and finding an optimal Pareto-frontier. However,
these algorithms require a large number of black-box func-
tion calls and are not well-suited to expensive small-data
problems. Our approach is to use a GA to optimize the surro-
gate model itself and find a Pareto-optimal. Diversification
is ensured by the distance metrics used while optimizing
the surrogate model. This method allows cheap ‘Q-batch’
samples from within the GA generation, and also allows the
use of the commonly used acquisition functions such as Ex-
pected Improvement (EI), Probability of Improvement (PI)
and Upper Confidence Bound (UCB) (Brochu et al., 2011),
which work well for single objective problems. We note
here that hyper-volume improvement can easily be incor-
porated instead of a distance metric within the GA setting
in future work. We also present a new acquisition function,
‘Stochastic Monte-Carlo’ (SMC), which preforms well for
categorical variable problems (Vangelatos et al., 2021).

Hedge strategies for Bayesian optimization, where a port-
folio of acquisition functions is used instead of a single
acquisition function, are efficient for single objective algo-
rithms. We present here Hedge Multi-Objective (HedgeMO)
algorithm, which uses a portfolio of acquisition functions
for multi-objective problems. Hedge algorithms for single-
objective problems have regret bounds proven by Brochu
et al. (2011), and the same bounds hold for HedgeMO.

3. Problem Statement

We pose the multi-objective and mixed-variable problem as:

-

u—/)opt = argmaxﬁ/’eW(f(u_;)) (D

for maximizing the objective. Here ]? (W) =
[f1 (@), fo(W),..., fi(w)] are the K non-preferential ob-
jectives to be maximized, and w is a mixed-variable vector,
defined as {W e W} = {Xe X,y € V,Z€ Z}. Xis an m-
dimensional vector defined over a bounded set X € R™ rep-
resenting m continuous variables. Ordinal and categorical
variables are defined as ¥ = [y1,...,v,] and Z= [z1,...,2,],
respectively. Each variable y; € {Oy,...,O;} takes one
of O; ordinal ‘levels’ (discrete numbers on the real-
number line) and each categorical variable takes a value
zj €{Cy,...,C;} from C; unordered categories (that cannot,
by definition, be ordered on the real-number line). ) and Z
are the ordinal and combinatorial spaces respectively.

Generally, {L_V’apt} is a set of Pareto-optimal solution vectors
i.e., vectors that are not Pareto-dominated by any other
vector. A vector w is Pareto-dominated by w’, iff fi (W) <
@)V k=1,.K.

4. Methodology

Preliminaries

Single-objective Bayesian optimization is a sequential opti-
mization technique, aimed at finding the global optimum of
a single objective noisy black-box function f with min-
imum number of evaluations of f. For every ith itera-
tion, a surrogate model, g, is fit over the existing data set
D ={(wy, f(w1)),...,(w;, f(w;))}. An acquisition function
then determines the next point @, for evaluation with f,
balancing exploration and exploitation. Data is appended for
the next iteration, D = DU (wj,1, f (w;11)), and the process
is repeated until the evaluation budget for f or the global
optimum is reached.

Gaussian processes are often used as surrogate models for
BO (Rasmussen & Williams, 2006; Murphy, 2012). A GP
is defined as a stochastic process such that a linear combina-
tion of a finite set of the random variables is a multivariate
Gaussian distribution. A GP is uniquely specified by its
mean y(w) and covariance function ker(w, w’). The GP is
a distribution over functions, and g(w) is a function sampled
from this GP:

(@) ~ GP(p(@), ker(, ")) )

Here, ker(w, w’) is the covariance between input variables w
and w’. Once a GP has been defined, at any W the GP returns
the mean p(w) and variance o (w). The acquisition function
A(u(w), o(w)), balances exploration and exploitation, and
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is optimized to find the next optimal point w;_ ;. The success
of BO comes from the fact that evaluating g is much cheaper

S
than evaluating f.

4.1. MixMOBO Proposed Approach

Algorithm 1 Mixed-variable Multi-Objective Bayesian Op-
timization (MixMOBO) Algorithm

1: Input: Black-box function f(ﬁ) : W €W, initial data

set size N _i, batch points per epoch Q, total epochs N,
mutation rate 8 € [0,1]

2: Initialize: Sample f for D = {(ﬁj,f(u_/’j))

3: forn=1to N do

4:  Fit a noisy Gaussian process surrogate function
(@) ~ GP(ji(@), ker(, "))

5. For L total acquisition functions, from each Al
acquisition function, propose Q-batch test-points,
{(ﬁ’)ln}l.Q = {argmaxgeWAl (§)}1.Q within the con-
strained search space YV using multi-objective GA

6:  Mutate point {(LT)L}q within the search space WV with

}jzlzN,i

probability rate 8 if L,-norm of its difference with
any other member in set {(LT)L}rQ is below tolerance
7:  Select batch of Q points using HedgeMO (Algo-

rithm 2)’ {u_}n}le :HedgeMO(g_),{(u 1:L}1-Q}D)

1:n
8:  Evaluate the selected points from the black-box func-
tion, /(@)1
9:  Update dataset D=DU {(ﬁn,f(ﬁn))
10: end for
11: return Pareto-optimal solution set {(u_z’opt, f) (ﬁopt))}

ho

Our Mixed-variable Multi-Objective Bayesian Optimization
(MixMOBO) algorithm extends the single-objective, con-
tinuous variable BO approach presented in the preceding
section, to more generalized optimization problems and is
detailed in Algorithm 1.

A single noisy GP surrogate surface is fit for multiple ob-
jectives, (W) ~ GP(ﬁ(u_))),ker(ﬁ/’, u_}’)). This is equivalent
to fitting K GP surfaces with the same kernel for all of the
surfaces, where K is the total number of objectives. Only
one set of hyper-parameters needs to be fit over this single
surface, rather than fitting K sets of hyper-parameters for K
different surfaces; thus, when K is large, the overall compu-
tational cost for the algorithm is reduced. Note that we could
fit K different GP surfaces with different hyper-parameters
to the data to add further flexibility to the fitted surfaces,
and this idea will be investigated in future work. We use
LOOCV (Murphy, 2012) for estimating hyper-parameters
since we are dealing with small-data problems.

Gaussian processes are defined for continuous variables.

For mixed variables, we need to adapt the kernel so that a
GP can be fit over these variables. Cited works in § 2 dealt
with modified kernels that were designed to model mixed
variables. Those kernels can be used in the MixMOBO
algorithm. For the current study, we use a simple modified
squared exponential kernel:

1 — —»T
)ze}% exp[—z(w,w c

—>)

ker(w,w

M (&, w’

@

where M is the covariance hyper-parameter matrix, and

(M ) = 6pgh,? with p total number of variables. The
pa

distance metric, |u7, u7’| c is an concatenated vector, with
the distance between categorical variables defined to be the
Hamming distance, and the distance between continuous
variables and the distance between ordinal variables defined
to be their Euclidean distances. We emphasize that any
modified kernel discussed in the citations of § 2 can be used
within our framework.

Once the GP is fit over multi-objective data, we use a multi-
objective genetic algorithm (GA) to optimize the acquisition
functions, Al. Acquisition functions explore the surrogate
model to maximize reward by balancing exploration and
exploitation. Using a standard acquisition function is prob-
lematic when dealing with multi-objective mixed-variable
problems due to non-smooth surrogate surface and con-
flicting objectives. We propose using a constrained, multi-
objective GA to optimize the acquisition functions, which,
although expensive to use on an actual black-box function,
is an ideal candidate for optimizing the acquistion function
working on the surrogate surface:

» For multi-objective problems, multi-objective GA al-
gorithms, such as (Deb et al., 2002), are ideal can-
didates for obtaining a Pareto-front of optimal solu-
tions. Within a GA generation, the members of a
non-dominated Pareto-front are ranked by a ‘distance
crowding function’. This can be computed in decision-
variable space, in function space or a hybrid of the two.
The ranking takes place when choosing the test points
from an acquisition function for a multi-objective prob-
lem because the choice must take into account the di-
versity of the solution and propagate the Pareto-front.

* Because the members of the population are ranked by
the GA, we can easily extract a ‘Q-batch’ of points
from each of the acquisition functions without need-
ing to add any ‘pretend’ cost function evaluations or
optimizing the acquisition functions again.

* Genetic algorithms (GA) can be constrained to work
in mixed variable spaces. These variables can be dealt
with by using probabilistic mutation rates. The genes
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are allowed to mutate within their prescribed cate-
gories, thereby constraining the proposed test points to
the W space.

We use constrained, multi-objective GAs to optimize the
acquisition functions A’ for mixed-variable, multi-objective
problems. Common acquisition functions, such as EI, PI,
and UCB, can be used within this framework and can be
used to nominate a ‘Q-batch’ of points. If a candidate in
a ‘Q-batch’ is within the tolerance limit of another candi-
date in the same batch or a previous data point (for convex
functions), we mutate the proposed point within WV to avoid
sampling the same data point again.

Test points are selected from VWV to evaluate their ]? using
HedgeMO algorithm which is detailed in the next section.
HedgeMO selects a ‘Q-batch’ of test-points from the candi-
dates proposed by each of the acquisition functions. These

points are then, along with their function evaluations f's, are
appended to the data set.

4.2. HedgeMO Algorithm

Hedge strategies use a portfolio of acquisition functions,
rather than a single acquisition function (Brochu et al.,
2011). HedgeMO is part of our MixMOBO algorithm that
not only extends the Hedge strategy to multi-objective prob-
lems, but also allows ‘Q-batches’. Our algorithm is shown
in Algorithm 2.

Using a methodology similar to the one developed by
Brochu et al. (2011), HedgeMO chooses the next ‘Q-batch’
of test points from the history of the candidates nominated
by all of the acquisition functions. Rewards are calculated
for each acquisition function from the surrogate surface
for the entire history of the nominated points by the L ac-
quisition functions. The rewards are then normalized to
scale them to the same range for each objective. This step
is fundamentally important because it prevents biasing the
probability of any objective. This type of bias, of course,
cannot occur in single objective problems. The rewards for
different objectives k are then summed and the probabil-
ity, pl, of choosing a nominee from a specific acquisition
function is calculated using step 6 in Algorithm 2. For a
‘Q-batch’ of tests points, the test points are chosen Q times.

Regret Bounds: The regret bounds derived by Brochu et al.
(2011) hold for HedgeMO if and only if the Upper Confi-
dence Bound (UCB) acquisition function is a part of the
portfolio of acquisition functions. The regret bounds follow
from the work of Srinivas et al. (2012) who derived cumu-
lative regret bounds for UCB. In essence, the cumulative
regret in our case is bounded by two sublinear terms as for
UCB and an additional term which depends on proximity
of the chosen point with the test point proposed by UCB.
The interested reader is directed to Srinivas et al. (2012) and

Algorithm 2 HedgeMO Algorithm
1: Input: Surrogate function g(w) : w € W, proposed test

points by AFs ({(ﬁ')%ﬁ}lQ), batch points per epoch Q,

current epoch 7, total objective K, parameter 7 € R*
2: for [ =1to L do
3:  Forlt acquisition function, find rewards for Q-batch
points nominated by that AF from epochs 1:n-1,
by sampling from g, {6_71:"—1}1@ = ﬁ({(ff)ll:n_l} ),
where 0 = {6} for each objective k
4: end for
5: Normalize rewards for each I'" AF and k' objective,
{9’.}k—min(®)
PF = 7;11 222:1 —ma;(q@)fmin@), where © is defined as
k
— 1:L
0= {len—l}le
6: Calculate probability for selecting nominees from

K 4k
acquisition function, p! = el o)
q P = T exptn Tl ¢5)

7: forg=1to Q do

8:  Select g'" nominee as test-point Wy from [*" AF with
probability pl

9: end for
10: return Batch of test points {&, }.o

1:Q

lth

Brochu et al. (2011) for a description of the exact regret
bounds and their derivation.

4.3. SMC Acquisition Function

We introduce a new acquisition function, Stochastic Monte-
Carlo (SMC), which for the maximization of an objective,
is defined as:

SMC = argmaxgeyy | (W) + r(W)], 4)

where r(w) is sampled from U(0,20(w)), and y#(w) and
o (W) are the mean and standard deviation returned by the
GP at W, respectively. This is equivalent to taking Monte-
Carlo samples from a truncated distribution. For categorical
and ordinal variable problems, this acqusition function per-
forms well across a range of benchmark tests (Vangelatos
et al., 2021). We use this acquisition function as part of our
portfolio of HedgeMO in the MixMOBO algorithm.

5. Experiments

We benchmarked MixMOBO against a range of existing
state-of-the-art optimization strategies that are commonly
used for optimizing expensive black-box functions with
mixed-variable design spaces. We chose the following sin-
gle objective optimization algorithms for comparison: Co-
CaBO (Ru et al., 2020), which combines the multi-armed
bandit (MAB) and Bayesian optimization approaches by
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using a mixing kernel. CoCaBO has been shown to be
more efficient than GPyOpt (one-hot encoding approach
(GPyOptAuthors, 2016)) and EXP3BO (multi-armed ban-
dit (MAB approach (Gopakumar et al., 2018)). We used
CoCaBO with a mixing parameter of 0.5. We also tested
MixMOBO against GBRT, a sequential optimization tech-
nique using gradient boosted regression trees (Scikit-learn,
2021). TPE _Hyperopt (Tree-structured Parzen Estimator)
is a sequential method for optimizing expensive black-box
functions, introduced by Bergstra et al. (2011). SMAC3 is
a popular Bayesian optimization algorithm in combination
with an aggressive racing mechanism (Hutter et al., 2011).
Both of these algorithms, in addition to Random Sampling,
were used as baselines. Publicly available libraries for these
algorithms were used.

Six different test functions for mixed variables were chosen
as benchmarks. A brief description of these test functions
and their properties is given below with further details in
Appendix A:

Contamination Problem: This problem, introduced by Hu
et al. (2011), considers a food supply chain with various
stages in the chain where food may be contaminated with
pathogens. The objective is to maximize the reward of
prevention efforts while making sure the chain does not get
contaminated. It is widely used as a benchmark for binary
categorical variables. We use the problem as a benchmark
with 21 binary categorical variables.

Encrypted Amalgamated: An anisotropic, mixed-variable
function created using a combination of other commonly
used test functions (Tusar et al., 2019). We modify the com-

Contamination Problem

Encrypted Amalgamated

bined function so that it can be used with mixed variables. In
particular, it is adapted for categorical variables by encrypt-
ing the input space with a random vector, which produces
a random landscape mimicking categorical variables (Van-
gelatos et al., 2021). Our Encrypted Amalgamated function
has 13 inputs: 8 categorical, 3 ordinal variables (with 5
categories or states each) and 2 continuous.

NK Landscapes: This is a popular benchmark for simulat-
ing categorical variable problems using randomly rugged,
interconnected landscapes (Kauffman & Levin, 1987; Li
et al., 2006). The fitness landscape can be produced with
random connectivity and number of optima. The problem is
widely used in evolutionary biology and control optimiza-
tion and is N P-complete. The probability of connectivity
between NK is controlled by a ‘ruggedness’ parameter,
which we set at 20%. We test the Li et al. (2006) variant
with 8 categorical variables with 4 categories each.

Rastringin: This is an isotropic test function, commonly
used for continuous design spaces (Tusar et al., 2019). We
use a 9-D Rastringin function for testing a design space of
3 continuous and 6 ordinal variables with 5 discrete states.

Encrypted Syblinski-Tang: This function is isotropic
(Tusar et al., 2019), and we have modified it as we did
with the Encrypted Amalgamated test function so that it can
work with categorical variables and was used as a repre-
sentative benchmark for N-categorical variable problems.
The 10-D variant tested here consists only of categorical
variables with 5 categories each.

Encrypted ZDT6: This is a multi-objective test function
introduced by Zitzler et al. (2000) that we modified with

NK Landscapes

N q,_,_/E ]

Rastringin

150 175 200 225 250 50 75 100 125 150 175 200 225 250

Encrypted Syblinski-Tang

75 100 125 150 175 200 225 250 50 75 100 125

Normalized Reward
g

—— Random Search TPE
—— CoCaBO —— SMAC3
—— GBRT —— MixMOBO (Ours)

H

50 75 100 125 150 175 200 225 250 50 75 100 125

150 175 200 225 250

Function Evaluations

Figure 1. Performance comparison of MixMOBO against other mixed-variable algorithms
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encryption so that it can deal with mixed variables. The test
function is non-convex and non-uniform in the parameter
space. We test ZDT6 with 10 categorical variables with 5
states each. ZDT6 was only used for testing HedgeMO.

To the extent of our knowledge, no other optimization algo-
rithm is capable of handling mixed-variable, multi-objective
problems in small-data settings. Thus, we have no direct
comparisons between MixMOBO and other published algo-
rithms. Therefore, we tested MixMOBO against a variant
of NSGA-II (Deb et al., 2002) with the ZDT4 and ZDT6
test functions with mixed variables. However, we found that
using a GA required more than 102 more function calls to
find the Pareto front to a similar tolerance. For visualization
purposes, we do not plot the GA results.

All of the optimization algorithms were run as maximizers,
with a 0.005 noise variance built into all the benchmarks.
The budget for each benchmark test was fixed at 250 func-
tion calls including the evaluations of 50 initial randomly
sampled data points for all algorithms, except for SMAC3
which determines its own initial sample size. The algorithms
were run in single output setting (GBRT, CoCaBO and Mix-
MOBO’s batch mode was not used for fair comparison).
Each algorithm was run 10 times for every benchmark. Our
metric for optimization is the ‘Normalized Reward’, defined
as (current optimum - random sampling optimum)/(global
optimum - random sampling optimum). Figure 1 shows the
Normalized Rewards versus the number of black-box func-
tion evaluations for MixMOBO and five other algorithms.
The mean and standard deviation of the Normalized Re-
wards of the 10 runs for each algorithm, along with their
standard deviations, are plotted. The width of each of the
translucent colored bands around the mean line depicts equal
to 1/5 of the standard deviation for visualization purposes.

MixMOBO outperforms all of the other baselines and is
significantly better in dealing with mixed-variable problems.
GBRT is the next best algorithm and performs better than
MixMOBO on the Rastringin function; however, note that
the Rastringin function does not include any categorical vari-

Encrypted Amalgamated

Encrypted Syblinski-Tang

ables. For problems involving categorical variables, Mix-
MOBO clearly outperforms the others. TPE and CoCaBO
have similar performances, and SMAC3 has the poorest
performance. All three are outdistanced by MixMOBO.

We also tested the the efficacy of our HedgeMO algorithm
by comparing it to different acquisition functions, namely,
EI, UCB, and SMC, on three different test functions: the En-
crypted Amalgamated, Encrypted Syblinski-Tang, and En-
crypted ZDT6. The latter is used as the multi-objective test
function. The Normalized Reward for the multi-objective
Encrypted ZDT6 is defined as (current P-optimum - ran-
dom sampling P-optimum)/(global P-optimum - random
sampling P-optimum). Here, P-optimum= % Zf\il exp(-
min. distance in parameter space between i th global Pareto-
optimal point and any point in the current Pareto-optimal
set), where N is the number of global Pareto-optimal points.

The results of our acquisition function comparisons are
shown in Figure 2, which shows that HedgeMO performs
well across all three test functions. For single-objective test
functions, EI performs on par with HedgeMO. However,
for the multi-objective Encrypted ZDT6 test function, EI
performs significantly worse and is outperformed by both
SMC and UCB. HedgeMO, on the other hand, consistently
performs well in all scenarios. For unknown black-box
functions, HedgeMO should be the acquisition function of
choice for mixed-variable and multi-objective problems.

6. Real-World Applications

We applied our MixMOBO framework to the optimization
of the design of architected, microlattice structures. Ad-
vances in modeling, fabrication, and testing of architected
materials have promulgated their utility in engineering ap-
plications, such as ultralight (Zheng et al., 2014; Pham et al.,
2019; Zhang et al., 2019), reconfigurable (Xia et al., 2019),
and high-energy-absorption materials (Song et al., 2019b),
and in bio-implants (Song et al., 2020). The optimization of
architected materials (Bauer et al., 2016; Pham et al., 2019;

Encrypted ZDT6

Normalized Reward

0 5 100 125 150 s 20 25 50 0 3 100 125

150

i 20 25 50 0 5 100 125 150 s 200 as =0

Function Evaluations

— H — UucB

— SMC

—— HedgeMO (Ours)

Figure 2. Performance comparison of HedgeMO against other acquisition functions
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Table 1. Experimental determined values of micro-lattice structures. critical buckling P, which was minimized for MixMOBO, strain
energy density at buckling and fracture, 1 and u s respectively, elastic stiffness S, and ratio of normalized strain energy density of each

structure compared to the Unblemished structure.

Structure P[uN] uy[MJm=3] uf[M]m_3] S[MPa]  (ugi/up;)/(up1/upy)
Unblemished 3814.5 1.08 0.071 388.21 1
Random Sampling Optimal ~ 996.2 0.08 2.85 347.19 526
MixMOBO Optimal 545.1 0.02 14.71 460.35 12030

Xia et al., 2019; Zhang et al., 2019) often requires search-
ing huge combinatorial design spaces, where the evaluation
of each design is expensive. (Meza et al., 2014; Berger
et al., 2017; Tancogne-Dejean et al., 2018). The design

I
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¥ Unblemished Structure
® Random Sampling Optimum

Ix10°
* @ MixMOBO Optimum

2x10°

Ve
.'/
6% 107 /|

Critical Buckling Load, P.(uN)

50 k) 100 125 150 175 200 25 25{]‘ N
Function Evaluations

Figure 3. Top Left: The 4 unit cells, labelled A — D. Top Right:
The 2 orientations in which they can be joined. Bottom Left: Opti-
mization results using MixMOBO. Bottom Right: SEM images of
Unblemished and Optimum structures.

space for the architected material we optimize here has ~
8.5 billion possible combinations of its 17 categorical inputs
(one with 2 possible states, and the other 16 with 4 possible
states). Our goal is to maximize the strain energy density
of a microlattice structure. We maximize the strain energy
density (which is extremely expensive to compute, even
for one design) by minimizing the buckling load P., while
maintaining the lattice’s structural integrity and stiffness
before fracturing. Minimizing P, (a proxy for maximizing
the strain energy density by instigating bucking which leads
to the densification of the deformed lattice members) is a
more computationally tractable cost function to evaluate
(but, it is still expensive and involves solving a numerical
finite element code for each evaluation of the cost function.)

The design space consists of choosing one of four possible
unit cells (shown in the upper left of Fig. 3, each with one

or more defects (shown in color) in them, at each of the
16 independent lattice sites) creating 16 of the categorical
inputs with 4 possible values; and the choice of whether the
cells are connected along their faces or along their edges
on 45°-diagonals (shown in the upper right panel of Fig. 3)
creating the 17t categorical input with 2 possible values.

The minimization of P, using MixMOBO was initialized
with 50 random structures and the evaluation budget, includ-
ing initial samples, was set at 250. The algorithm achieved
a 42% improvement in the P, of the lattice structure over
the best structure obtained with the first 50 random sam-
ples (Figure 3). The optimal microlattice obtained using
P, as a proxy with MixXMOBO has an experimentally mea-
sured normalized strain energy density that is 12,030 times
greater than that of the unblemished microlattice structure
with no defects that is cited in the literature to have the best
strain energy density (Vangelatos et al., 2020), a 4 orders
of magnitude increase. Table 1 shows the properties of the
fabricated and experimentally measured design created with
MixMOBO. The choices of the units cells in the optimally
designed lattice that were determined by MixMOBO are not
intuitive and have no obvious pattern or structure (Vange-
latos et al., 2021). The manufacturing and testing details of
our methodology are included in Appendix B.

7. Conclusions

The existing optimization literature does not offer an algo-
rithm for optimizing multi-objective, mixed-variable prob-
lems with expensive black-box functions. We have intro-
duced Mixed-variable Multi-Objective Bayesian Optimiza-
tion (MixMOBO), the first BO based algorithm for opti-
mizing such problems. MixMOBO is agnostic to the un-
derlying kernel and extends the GP-based BO algorithms
to handle multi-objective, mixed-variable problems. Our
formulation is compatible with modified kernels and other
surrogate methods developed in previous studies for mixed-
variable problems and also allows for parallel batch up-
dates without repeated evaluations of the surrogate surface,
while maintaining diversification within the solution set.
We presented the Hedge Multi-Objective (HedgeMO) algo-
rithm, a novel Hedge strategy for which regret bounds hold
for multi-objective problems. A new acquisition function,
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Stochastic Monte-Carlo (SMC) was also proposed as part of
the HedgeMO portfolio. MixMOBO and HedgeMO were
benchmarked and shown to be significantly better on a va-
riety of test problems compared to existing mixed-variable
optimization algorithms. MixMOBO was then applied to
the real-world optimization of an architected micro-lattice,
and we increased the structure’s strain-energy density by
10* compared to existing Unblemished structures in the
literature reported to have highest strain energy density. Our
future work entails further testing multi-objective and ‘Q-
batch’ settings. Currently, we are applying MixMOBO to
real-world expensive engineering problems, including wind
turbine farms, hydrokinetic turbines, and aircraft wings.
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A. Benchmark Test Functions

In this section, we define the benchmark test functions, all of which are set to be maximized during our optimizations.

Contamination Problem

The contamination problem was introduced by Hu et al. (2011) and is used to test categorical variables with binary categories.
The problem aims to maximize the reward function for applying a preventative measure to stop contamination in a food
supply chain with D stages. At each i‘" stage, where i € [1, D], decontamination efforts can be applied. However, this effort
comes at a cost ¢ and will decrease the contamination by a random rate I;. If no prevention effort is taken, the contamination
spreads with a rate of ();. At each stage i, the fraction of contaminated food is given by the recursive relation:

Zi=Qi(1-w)(1-Z;1)+ (1 -Zw;)Z; 4 )

here w; € 0,1 and is the decision variable to determine if preventative measures are taken at ith stage or not. The goal is to
decide which stages i action should be taken to make sure Z; does not exceed an upper limit U;. (); and ¥; are determined
by a uniform distribution. We consider the problem setup with Langrangian relaxation (Baptista & Poloczek, 2018):

D

T
f@) = —Z[cwi +£ Zl{zk>U,-}]—/\||u7||1 (©)
k=1

i=1

Here violation of Z; < U, is penalized by p = 1 and summing the contaminated stages if the limit is violated and our total
stages or dimensions are D = 21. The cost c is set to be 0.2 and Z; = 0.01. As in the setup for (Baptista & Poloczek, 2018),
we use T =100 stages, U; = 0.1, A = 0.01 and € = 0.05.

Encrypted Amalgamated

Analytic test functions generally cannot mimic mixed variables. To map the continuous output of a function into N discrete
ordinal or categorical variables, the continuous range of the test function’s output is first discretized into N discrete subranges
by selecting (N — 1) break points, often equally spaced, within the bounds of the range. Then, the continuous output variable
is assigned the integer round-off value of the subrange defined by its surrounding pair of break points. If necessary, the
domain of the test function’s output is first mapped into a larger domain so that each subrange has a unique integer value. To
mimic ordinal variables, we are done, but for categorical variables, a random vector for each categorical variable is then
generated which scrambles or ‘encrypts’ the indices of these values, thus creating random landscapes as is the case for
categorical variables with a latent space. The optimization algorithm only sees the encrypted space and the random vector is
only used when evaluating the black-box function.

We also define a new test function that we call the Amalgamated function, a piece-wise function formed from commonly
used analytical test functions with different features (for more details on these functions we refer to TuSar et al. (2019)).
Amalgamated function is non-convex and anisotropic, unlike conventional test functions where isotropy can be exploited.

Fori=1..n,k=mod(i-1,7):
D
f@)=) gw) @)
i=1
where
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To create the Encrypted Amalgamated function, for categorical and ordinal variables, equally spaced points are taken within
the bounds defined above. For our current work, we use a D = 13 with 8 categorical and 3 ordinal variables with 5 states
each, and 2 continuous variables.

NK Landscapes

NK Landscapes were introduced by Kauffman & Levin (1987) as a way of creating optimization problems with categorical
variables. N describes the number of genes or number of dimensions D and K is the number of epistatic links of each
gene to other genes, which describes the ‘ruggedness’ of the landscape. A large number of random landscapes can be
created for given N and K values. The global optimum of a generated landscape for experimentation can only be computed
through complete enumeration. The landscape cost for any vector is calculated as an average of each component cost. Each
component cost is based on the random values generated for the categories, not only by its own alleles, but also by the alleles
in the other genes connected through the random epistasis matrix, with K probability or ruggedness. A K = 1 ruggedness
translates to a fully connected genome.

The NK Landscapes from Kauffman & Levin (1987) were formulated only for binary variables. They were extended by Li
et al. (2006) for multi-categorical problems, which is the formulation we use. Details of the N K Landscape test-functions
we use can be found in Li et al. (2006). For the current study, we use N = 8 with 4 categories each and ruggedness K = 0.2.

Rastringin

Rastringin function is a commonly used noon-convex optimization function (Tusar et al., 2019) with a large number of local
optima. It is defined as:
f(@) = ~[10 +w? - 10cos(2mw;)], w; € (=5,5) )

We use D =9 for testing with 6 ordinal with 5 discrete states and 3 continuous variables. The ordinal variables are equally
spaced within the bounds.

Encrypted Syblinski-Tang

We use the Syblinski-Tang function (TusSar et al., 2019), an isotropic non-convex function. The function is considered difficult
to optimize because many search algorithms get ‘stuck’ at a local optimum. For use with categorical variables, we encrypt it
as described previously. The Syblinski-Tang function, in terms of input vector w, is defined as:

D 4

2
o1 w; —loéw; +5w;

2

f(@)=- , w; € (=5,2.5) (10)

For the current study, this function was tested with D = 10 categorical variables and 5 categories for each variable.

Encrypted ZDT6

ZDT benchmarks are a suite of multi-objective problems, suggested by Zitzler et al. (2000), and most commonly used for
testing such problems. We use ZDT 6, which is non-convex and non-uniform in its parameter space. We again modify the
function by encrypting it to work with categorical problems. ZDT 6 is defined as:

fi(@) = exp(—4wy )sin®(6mw;) -1
(@) = —g(@)[1 - (f1(@)/g(@))]

b 1/4 an
g@) =1+ 9[[Zwi]/(n— 1)
i=2

Here wy €[0,1] and w; = 0 for i = 2,..., D. The function was tested for D = 10 with 5 categories each. We note that to
evaluate the performance of MixMOBO, we compared it against the NSGA-II variant (Deb et al., 2002) that can deal with
mixed variables (by running ZD T4 in a mixed variable setting and ZDT 6 with categorical variables). No encryption is
necessary for GAs. GAs required, on average, 10% more function calls compared to MixMOBO.




Bayesian Optimization For Multi-Objective Mixed-Variable Problems

B. Architected Materials - Manufacturing and Testing

The microlattice structures were fabricated with a hybrid organic-inorganic material Zr-DMAEMA (30 wt%). The
composition of this material is 70 wt% zirconium propoxide and 10 wt% (2-dimethylaminoethyl) methacrylate (DMAEMA)
(Sigma-Aldrich). Before the fabrication of the structures, the material was placed onto glass substrates and remained
in vacuum for 24 h. Further information about the material preparation can be found elsewhere (Terzaki et al., 2011;
Vasilantonakis et al., 2012).

Figure 4. HIM images of the loaded and unloaded unblemished and optimum structures. (a) Image of the unblemished structure consisting
only of units cells of type A as in Fig. 3. (b) Same as (a) but after loading, showing severe fracture and collapse of many beam members.
(c) High-depth-of-focus image of the region inside the square box shown in (b) revealing several fractured beams and the internal collapse
of the upper layer that subsequently instigated the accumulation of damage in the underlying layers. (d) Same as in (a) but for the unloaded
optimum structure. (e) Same as in (b) but after the structure was subjected to the same maximum compressive load as the structure shown
in (b). Unloading of the optimum structure showed only excessive plastic deformation without catastrophic collapse and the manifestation
of the buckling mode. (f) High-depth-of-focus image of the region inside the square box shown in (e) revealing the effect of buckling that
led to deformation but no fracture due to the occurrence of densification. (g) Side view of the unloaded optimum structure shown from an
isometric view. (h) Side view of the unloaded optimum structure shown from an isometric view revealing that fracture was inhibited
throughout the structure due to the densification precipitated by the low critical buckling load. Each scale bar is equal to 10 pm.

The test structures were fabricated by diffusion-assisted high-resolution direct femtosecond laser writing, which employs
MPL and the aforementioned photoresist for high-resolution fabrication. The system consists of a FemtoFiber pro NIR
laser with a wavelength of 780nm, pulse width of 100f's, and repetition rate of 80 MHz. Local photopolymerization of
the photosensitive material was accomplished by tight focusing the laser beam onto the material with a 100X microscope
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objective lense (Plan-ApoChromat 100x/1.40 Oil M27, Zeiss).

Our experimental laser setup utilizes precise piezoelectric stages (Physik Instrumente M-110.1DG), where their movements
are controlled by a program (3dpoli, Femtika). The IGES file of each unit cell was created in Solidworks 2019 and used
to create the coordinates needed to translate the 3D model into movements of the stages. The laser output energy for the
fabrication was measured right before the objective lens opening at 10 mW and the scanning speed used was 80 um/s.
The fabrication of each scaffold was conducted by scanning the top layer of unit cells and then moving downwards to the
interface on the glass substrate in a unit cell-by-unit cell manner. The stage movements were directed along the vectors of
each unit cell from top to bottom avoiding slicing the scaffolds and printing it in a layer-by-layer manner, thus ensuring the
best mechanical stability and reproducibility of the experiment. Only a single scan was made for each vector as it proved to
be sufficient for the rigidity of the structures. A detailed description of the setup can be found in (Flamourakis et al., 2020).

Uniaxial compression tests were performed in situ with a nanoindentation apparatus (PI 85 SEM Picolndenter, Hysitron)
mounted inside the chamber of a scanning electron microscope (FEI Quanta 3D FEG) to enable high-precision nanomechan-
ical testing and real-time recording of the deformation of the test structures. We show the results of the compression tests in
Figure 4. A flat molybdenum tip (model # 72SC-D3/035 (407A-M)) of 90um diameter was used in all the compression
tests. To prevent the displacement of the substrate during testing, the glass substrates on which the specimens were mounted
were fixed onto an SEM pin stub mount (TED PELLA) with PELCO® Pro C100 Cyanoacrylate Glue, TED PELLA). All
of the structures were aligned such that the front face to be visible during testing to facilitate the detection of the location
and instant of buckling and fracture. To capture the structure collapse and track the proliferation of damage, each structure
was deformed at a rate of 500n1m/s to a maximum compressive strain of 55%. To ensure repeatability, at least 5 tests were
performed with structures of a given design. To capture the instigation of the first buckling instability and, consequently,
compute the critical buckling load, the measured force-displacement curves were frame-by-frame juxtaposed with the
recordings of the deformation to identify whether excessive deformation produced a singularity in the force-displacement
response. HIM that provides high depth of focus and high resolution was used to track the evolution of damage in the
interior of the tested structures (Vangelatos et al., 2021).



