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Abstract We present a new, general design method, called
design-by-morphing for an object whose performance is
determined by its shape due to hydrodynamic, aerodynamic,
structural, or thermal requirements. To illustrate the method,
we design a new leading-and-trailing car of a train bymorph-
ing existing, baseline leading-and-trailing cars to minimize
the drag. In design-by-morphing, the morphing is done by
representing the shapeswith polygonalmeshes and spectrally
with a truncated series of spherical harmonics. The optimal
design is found by computing the optimal weights of each of
the baseline shapes so that the morphed shape has minimum
drag. As a result of optimization,we found thatwith only two
baseline trains that mimic current high-speed trains with low
drag that the drag of the optimal train is reduced by 8.04%
with respect to the baseline train with the smaller drag.When
we repeat the optimization by adding a third baseline train
that under-performs compared to the other baseline train, the
drag of the new optimal train is reduced by 13.46%. This
finding shows that bad examples of design are as useful as
good examples in determining an optimal design. We show
that design-by-morphing can be extended to many engineer-
ing problems in which the performance of an object depends
on its shape.
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1 Introduction and motivation

Finding the optimal shape of the leading and trailing cars of
a high-speed train has recently become an important topic
from both a theoretical and practical point of view [24,58].
As the speed of a train increases above ∼ 100 mph, there is
often a drag crisis in which the aerodynamic drag increases
precipitously as does the cost of energy in operating the train.
It is estimated that sixty percent of the traction energy of a
high-speed train is lost due to its aerodynamic drag and fric-
tion and that 8–15% of the traction energy can be saved by
reducing the aerodynamic drag by 25% [5]. Another problem
of high-speed trains occurs when the long, highly-rotational
boundary layer surrounding the train sheds from the trail-
ing car of the train. When the vorticity is shed alternately
from the right and left sides of the trailing car, the aerody-
namic forces associated with the shedding produce strong
sideways motions on and rocking of the train. The rocking
is not only an unpleasant experience for passengers, but also
can lead to derailment, especially when modest cross-winds
are present [4]. Thus, as high-speed trains are developed to
have increasingly fast speeds, it is important to find their
optimal aerodynamic shapes.

For an optimally designed train to be practical, the train
not only must have small drag and be stable aerodynam-
ically, but also must be inexpensive to manufacture and
maintain and also must be structurally sound. Therefore, a
practical design of a shape usually requires multi-objective
optimization, rather than single-objective optimization. Fur-
thermore, an optimally designed shape frequently must obey
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Fig. 1 Nomenclature for the major components of the leading-and-
trailing car of a high-speed train. The head is the union of the nose and
cow-catcher

a set of constraints. For example, the leading and trailing
cars of a train must be constrained such that the cars fit
on the tracks, pass through tunnels, couple to passenger
cars, etc. However, in this paper, to best demonstrate the
order-of-magnitude improvements that we can obtain over
competing design methods, we limit ourselves to optimizing
the leading and trailing car of a train and not the passen-
ger cars between them. Consistent with this approach, we
further limit our optimization to only the train head (see
Fig. 1), and not the passenger compartment, of the leading
and trailing car. We also limit our study to a single-objective
optimization in terms of a cost function. Here, we mini-
mize the train’s nose’s aerodynamic drag at one value of its
operating speed, and we use simple constraints that require
only that the train’s nose smoothly join onto the cow-catcher
and passenger compartment. Adding other objectives to the
cost function is straight-forward if a cost function can be
found that represents those objectives, and applying more
geometric constraints can be handled by imposing boundary
conditions—see Sect. 8.2 and Oh [43].

Here, we optimize an idealized train that has two prop-
erties. First, the leading and trailing cars of the train are
identical. This is the norm for high-speed trains that travel
“back-and-forth” between destinations with the leading and
trailing cars exchanging roles at each terminus rather than
having the train turn-around, which requires a large area.
Second, for simplicity, the train consists of only two cars: a
leading and a trailing car connected by a gangway. In Fig. 1,
we define the nomenclature we use for the components of
the leading-and-trailing car. The upper front shape of the
car is the nose; the object underneath the nose is the cow-
catcher; and the large part behind the nose is the passenger
component. The train’s head is the union of the nose and cow-
catcher. Behind the passenger component of the leading car
is a gangway which connects the leading-and-trailing car to
the passenger cars (or in the case studied here connects the
leading car to the trailing car). The wheel assemblies beneath
the nose and passenger compartment are the bogies.

In this paper, we take the point of view that from a
design perspective, it is important to find the best method-
ology for creating an optimal shape as well as to find the

optimal shape itself. We are interested in exploring design
spaces that contain not only designs that have small changes
from existing shapes, but also designs that are radical depar-
tures. The latter often cannot be found with current design
methods (see Sect. 2 for more detail). The main purpose of
this paper is to introduce a new design method that we call
design-by-morphing, which overcomes drawbacks of current
methods in optimal design. As discussed below, traditional
re-designs of a leading-and-trailing car of a train typically
lead to decreases of the aerodynamic drag of 1–3%, (although
a recent study using the adjoint method—see Sect. 3.2—
found a decrease of∼ 7%). Here using design-by-morphing,
we create an optimal design of a train (using only two degrees
of freedom) that decreases its aerodynamic drag bymore than
13%.

The remainder of this paper is constructed as follows. In
Sect. 2, we review how shapes of objects are represented and
deformed in traditional methods of design and introduce our
method of representing shapes and how we deform them. In
Sect. 3, we review traditional methods of optimal design for
trains and other objects where the aerodynamic or hydrody-
namic shape is important, and in Sect. 4, we outline our new
method and philosophy of optimal-design-by-morphing. A
review of traditional morphing and an outline of the morph-
ing methods we use here along with our way of imposing
constraints on the morphed shapes are in Sect. 5. The princi-
ple steps in design-by-morphing for finding the optimal train
design are laid out in Sect. 6, and our results of finding the
optimal design are in Sect. 7. Our conclusions and discussion
are in Sect. 8.

2 Shape representation and deformation

Methods for shape representation and deformation are essen-
tial to the overarching goal of aerodynamic shape optimiza-
tion. Because a shape has, in some sense, an infinite number
of degrees of freedom, in principle, the optimization of a
shape is essentially a minimization problem over an infinite-
dimensional space. Therefore, in a practical design process,
the different schemes of shape representation and the differ-
ent methods for their deformation require a severe reduction
in the number of degrees of freedom. Hence, the choices of
the finite-dimensional shape representation and deformation
scheme are of paramount importance.

Regardless of the specifics of any particular problem, all
shape optimization problems can be broken into three steps.
First, define an engineering goal-driven cost function of the
shape that is to be minimized:

min
Ω

J (Ω), (1)
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where J is the desired cost function and Ω is the shape of
interest. Second, parameterize the target shape and represent
the shape as a finite-length vector of numerical shape-
parameters, i.e.:

min
s

J (Ω(s)), (2)

where s is the vector corresponding to the shape in the para-
metric space of interest. Finally, the problem reduces to the
minimization of the cost function in the parametric space. In
most applications, the shape also has to satisfy a set of con-
straints. Therefore, a more general mathematical description
of the problem is:

min
s

J (Ω(s)) (3)

s.t. g j (s) ≤ 0 j = 1 . . .m (4)

hk (s) = 0 k = 1 . . . n, (5)

where there are m constraints that can be written in the form
of inequalities and n constraints in the form of equalities
[10,64]. Depending on how Eqs. 3–5 are executed, existing
shape optimization methods can be classified into different
classes.

One way of dividing traditional optimization methods
into different classes is to note that some methods make
local changes to the shape by representing the shape locally
and using gradient-like methods to make small, incremen-
tal changes to the parameter values, so that the “optimal”
solution is restricted to being only a local solution in the
design space. As an example of a local method, the ANSYS
Fluent software package can be required to use free-form
deformation to parameterize and deform the shape locally,
and then solve for the optimal deformation with gradi-
ent or adjoint methods. Other methods attempt to make
global changes to the shape by representing the shape glob-
ally and making large changes to the values of the design
parameters using genetic algorithms, simulated annealing, or
similar maximization/minimization methods. Another way
of dividing traditional optimization methods into differ-
ent classes is to note that some can use a relatively large
dimension (greater than, say, 100) design space while oth-
ers are limited to a small dimension design space [60].
Generally, local and global changes of the shape are used
with high- and low-dimension design spaces, respectively,
because spaces with large dimensions cannot easily be
optimized with global methods. Therefore, for global meth-
ods, choosing the relatively few parameters of the shape
representation and deformation is of great importance. In
the following sections, we will discuss current popular
approaches of shape representation and shape deformation of
an object.

2.1 Representation of shapes and their deformations
using CAD and polygonal meshes

2.1.1 Representation of shapes

One common approach to shape representation is the use of
CAD design parameters. Optimization is then performed by
sweeping through the parameter values such that the optimal
values are obtained that minimize a cost function. For exam-
ple, Shojaeefard et al. [53] represented the shape of anAgnew
draft tube for a turbine and optimized it with two parameters
(degrees of freedom): its height and its attachment angle. In
another example, Long et al. [36] represented the shape of a
pulsatile ventricular assist device and optimized it with four
parameters: the main chamber’s diameter, its height, and the
attachment angles of its inlet and outlet arms. As two other
examples, Demeulenaere et al. [15] optimized the design of a
turbine blade, and Demeulenaere et al. [16] optimized a tur-
bocharger compressor wheel by representing the shapes with
CAD design parameters. Generally, when optimizing shapes
with CAD parameterizations there are a only a small num-
ber of design variables (so that there is a small dimensional
design space to be searched for optimal values).

Another common method of surface shape representa-
tion uses polygonal meshes. A surface is represented as a
set of nodes and interconnected polygonal faces. Meshes
with triangular and quadrilateral faces are used most fre-
quently, although higher-degree polygons as well as hybrid
meshes with mixed degrees of polygons are also used. Theo-
retically, an infinitely fine polygonal mesh can approximate
any continuous surface. However, a finemesh leads to a large
dimensional, and therefore possibly unwieldy, design space.
Furthermore, changes to the location of any particular nodal
point in a fine mesh induce very local shape changes.

2.1.2 Deformation of shapes

The degrees of freedom associated with shape deformation is
generally either the sameas or less than the number of degrees
of freedom associated with shape representation. For shapes
represented with CAD parameters, the number of parameters
is small, and generally (unless some constraint on the shape
requires that one ormore parameters remain fixed) eachCAD
parameter is allowed to vary, so the number of degrees of
freedom of the deformation is equal to the number of degrees
of freedom of the shape parameterization. However, when a
shape is represented with a mesh, the number of degrees of
freedom (generally 3× the number of mesh points) of the
shape is so large that the number of degrees of freedom of
the deformation is usually much smaller in order to make
exploration of the design space computationallymanageable.
Thus, when deforming a mesh, the method of reducing the
number of degrees of freedom is of great importance.

123



26 Comput Mech (2018) 62:23–45

Generally, shape deformation of a mesh is carried out
by defining a relatively small (compared to the number of
degrees of the shape representation) set of control points.
Control points have a specified region of influence, and their
use changes the shape locally, rather than globally over the
entire shape. Free FormDeformation (FFD)methods [22,49]
and NURBS [26] are two common methods of changing
shapes with control points. With FFD, a user chooses the
locations of control points, and then the volume enclosed
by these control points is parameterized and represented as
an analytical function. The surface of the object that is to
be redesigned is then embedded in this volume. The con-
trol points of the embedding volume are then moved, and
the geometry inside the volume, including the surface of the
object, deforms accordingly. This method has been widely
used in aerodynamic shape optimization. As an example,
this approach has been used to minimize the drag force on
a two-dimensional airfoil [46]. As another example of this
approach, FFD was used to minimize the drag on the Com-
mon Research Model wing [37] by distributing 720 FFD
control points over thewing and varying their positions. Train
shapes were optimized using control points by Li et al. [35]
with FFD and by Sun et al. [57] using a commercial code
with an Arbitrary Shape Deformation technique. However,
shape explorations in all of these studies were constrained
to specific types of changes to the original shapes, and as
a result, only subtle changes to the original shape could be
used to produce an “optimal” shape. With FFD and NURBS,
generating global and radical changes to an object is difficult.
In addition, since the positioning of the control points is arbi-
trary, the outcomes of the optimization process are dependent
on the individual users performing the optimization. Increas-
ing the number of control points may help in reducing issues
associated with the arbitrariness of selecting control point
locations, but the increased number also increases the number
of degrees of freedom of the design space, which can make
the optimization computationally prohibitive. We note that
there are more complex methods of deforming meshes, such
as nonlinear methods that enforce an “as-rigid-as-possible
mesh deformation” [55].

2.2 Spectral methods

2.2.1 Representation of shapes

The spectral representation of a shape is a way of analytically
expressing a shape. It is a particularly useful way of repre-
senting a shape that is initially given by a set of grid points
when the shape needs to be morphed with other shapes or
when the shape needs to be modified to conform to imposed
constraints, such as having a wing fit onto a fuselage—see
Sect. 8.2. To explain how spectralmethods can be used to rep-

Fig. 2 The boundary of a star-shaped a 2D object or b 3D object can
be represented by approximating its radius with respect to its center as
a truncated sum of Fourier modes or spherical harmonic modes

resent the shape of an object,we begin by illustrating their use
in representing the 1D boundary of a 2D planar object. Con-
sider the 2D object whose boundary lies in the plane shown
in Fig. 2a. Using a polar coordinate system (r, φ) with the
origin in the interior of the object, the object’s shape can be
described by the radius r(φ) of its boundary.We approximate
the radius r(φ) as a truncated Fourier series of the azimuthal
angle φ:

r(φ) �
M∑

m=−M

am ei m φ, (6)

where am is the mth mode Fourier coefficient. This repre-
sentation has an advantage that if the shape of the object
is sufficiently smooth, the series converges exponentially,
which is referred to as spectral convergence. Of course, this
representation is only possible if the boundary is star-shaped,
meaning that an origin can be found within the 2D object
such that r(φ) is single-valued as a function of φ, or equiv-
alently, such that an origin can be found such that a straight
line segment can be drawn between it and each point on the
boundary such that segment does not intersect another point
on the boundary.

Spectral representations of shapes can be easily extended
to 3D. Consider a star-shaped object as shown in Fig. 2b.
The 2D shape of this 3D object can be described by its
radius R(θ, φ) in spherical coordinates, where θ is the lati-
tudinal angle and φ is longitudinal angle. The radius R(θ, φ)

is approximated as a truncated series of spherical harmonics
Ym
l (θ, φ):

R(θ, φ) �
L∑

l=0

l∑

m=−l

aml Ym
l (θ, φ), (7)

where l and m, are the degree and order of the spherical
harmonics, L is the degree of truncation, and aml is the (l,m)

spectral coefficient. For a non-star-shaped object, mappings
of θ and/or φ can be used to make the object star-shaped [8].
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2.2.2 Transforming between a spectral and a mesh
representation

Spherical harmonics have been used to approximate the
shapes of brain structures [11,51,52,56]; however in these
studies, a least squaresmethodwas used to compute the spec-
tral coefficients in the spherical harmonic sum starting with
brain shapes that were represented with a polygonal mesh.
It is well-known that the use of the least squares method to
compute spherical harmonic (or Fourier) coefficients is ill-
conditioned [23], and its use leads to poor convergence (not
exponential) of the truncated spectral sum, so that the errors
associatedwith the truncated sumare large. Fortunately, there
are well-established methods [7,9,23,38,50] for efficiently
obtaining the coefficients of Fourier and spherical harmonic
series from polygonal meshes that produce exponentially-
convergent truncations. These numerically fast methods are
equivalent to unitary linear transforms and inverse trans-
forms. The inverse transforms are used to compute the
spectral representation of a shape when the user is given the
shape’s representation as a polygonal mesh, and the trans-
forms are used to compute the shape’s representation with
a polygonal mesh when the user is given its spectral rep-
resentation. In particular, note that the spherical harmonic
Ym
l (θ, φ) is the normalized product of the Fourier mode eimφ

and the associated Legendre function Pm
l (cosθ). For exam-

ple given the shape of a star-shaped object as a set of mesh
points, to find an analytic representation of the shape as a
truncated series of spherical harmonics of degree L , as in
Eq. 7, the following steps should be carried out: (1) choose
an origin of a spherical coordinate system inside the object
(as in Fig. 2b) such that the shape is star-shaped; (2) by inter-
polation on the mesh, create new points that represent the
shape (i.e., the radius of the shape’s surface with respect
to the chosen origin) at the collocation points (θ j , φk), for
j = 0 . . . L , where the θ j are the inverse cosines of the
Gaussian quadrature points over the closed interval [−1, 1]
[48], and φk ≡ 2kπ/(2L + 1), for k = 0 . . . 2L . (3) Then,
following Canuto et al. [9], create the spectral coefficients
aml in Eq. 7 with an inverse transform by first doing a fast
inverse Fourier transform in φ, followed by the inverse trans-
form in θ using a Gaussian quadrature carried out as a matrix
multiply. Once a shape is represented spectrally, it can be
computed at the collocation points on the mesh by doing
the sum over l in Eq. 7 (which is a matrix multiply) and
then effectively doing the sum over m by doing a fast (for-
ward) Fourier transform in φ. The order of doing these two
sums (or transforms or matrix multiplies) is not important
either in the forward (from spectral sum to evaluation on the
mesh) or inverse (from mesh to spectral coefficients) trans-
forms.

3 Methods of optimal design

3.1 Non-systematic or trial and error methods

When the design of shape of an object under-performs,
engineers often rely on heuristic ways of improvement.
For example, they usually rely on their intuition based on
previous experience to decide whether a surface of a leading-
and-trailing car of a train should be made more concave
or convex, whether another piece should be lengthened or
shortened, or whether a part should be more circular or
more elliptical, etc. More systematic ways of creating a new
design, such asFFDand “push-pull” tools usedwithNURBS,
are often time-consuming. Moreover, because these methods
represent the shapes locally (e.g., with splines), they can-
not create radical new designs. Even modest design changes
created with these methods have shapes that are often prob-
lematic when coupled to other computer packages such as
mesh generators. In particular, surfaces generated with push-
pull packages are often not “watertight”. That is, the mesh
points along the newly designed surface are interpreted by
some computer packages to be multiple, disconnected sur-
faces rather than a single continuously connected surface.

3.2 Gradient-based and gradient-free methods

Gradient-based optimization methods, which use deriva-
tive information to search for minimum values of the cost
function, are efficient for high-dimensional problems. These
methods compute the cost function and “march downhill”
until a local minimum is achieved. One gradient-based
method that is especially sophisticated is the adjoint method,
pioneered by Pironneau [45] and Jameson [28]. The adjoint
method is used in tandem with control point-based shape
deformation methods. In aerodynamics, the adjoint method
formulates the optimization problem by computing the dual
of the cost function and then uses Lagrangian multipliers to
minimize it by computing the sensitivities of the aerodynamic
variables with respect to the adjoint variables [29]. Recently,
adjoint methods have been used to optimize the nose shapes
of high speed trains. Munoz-Paniagua et al. [41] performed
single-objective optimization to minimize the drag of the
train, reducing it by 7.2%. Jakubek andWagner [27] achieved
a 20% reduction in the pressure wave generated by a high
speed train, but their attempt to reduce its drag had only a
0.005% improvement.

Gradient-freemethods that minimize the cost function use
heuristic global optimizers such as genetic algorithms [40]
and particle swarm algorithms [63]. However, these global
methods can be prohibitively computationally expensive
when the number of design parameters is large. Therefore,
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these gradient-free methods are usually used when the rep-
resentation of a design can be done with only a few design
parameters, such as CAD shapes [15,16].

4 Design by morphing approach

4.1 Philosophy and dimensionality reduction

Our design-by-morphing methodology was developed for
cases in which a global, or even radical, design change is
desired and when the cost function of the design is computa-
tionally expensive to compute. The latter is the case for most
designs inwhich the aerodynamic or hydrodynamic behavior
of the shape needs to be calculated as part of the procedure
of evaluating the cost function. In addition, it is also often the
case when the cost function depends on thermodynamic or
structural properties of the design. The philosophy governing
design-by-morphing is that the number of shape parameters
and the number of parameters used for their deformation
should be severely reduced (fewer than 20–100 variables) so
that the design space is small and optimal solutions can be
found with global, rather than local, methods with relatively
few CFD or other types of numerically expensive calcula-
tions. Therefore, design-by-morphing is, in some sense, the
antithesis of finding a design with an adjoint method, which
explores a high-dimensional design space, but settles for a
local-attractor-prone, gradient-based optimizer.

Because design-by-morphing only uses a few design
variables, it is necessary that the variables be chosen appro-
priately. Rather than using a small set of control points or a
few CAD parameters to reduce the number of design param-
eters, design-by-morphing uses the shapes of existing or
proposed objects (or sub-objects from which an object is
made). We call these the baseline shapes. New designs are
then created by morphing the baseline shapes with differ-
ent weights for each baseline shape. Generally, the morphed
object must be constrained (so that its length, width and/or
volume are fixed, so that the angles of attachments of sub-
objects are fixed, or so that the location, slopes (i.e., the
tangent planes), and/or curvatures of its back or front are
fixed, etc.). The method by which constraints are imposed
can make the number of degrees of freedom of the design
smaller or larger than the number of baseline objects.

The reason that we use existing shapes of an object rather
than CAD variables or shapes is that we believe that there
is a large amount of useful information contained in an
existing shape because the existing object has already been
empirically tested and likely has some useful features. By
combining shapes of the baseline objects, we assume that
the new design will contain some of the good features of
the baseline objects or that even better features can be cre-
ated from them. In our method, combining the shapes of the

baseline objects is called morphing, and morphing is imple-
mented by determining the weights of baseline shapes used
in the morph. The shape of a new object can be optimized
by finding the optimal morphing weights. In the optimiza-
tion process either an associated cost function is minimized,
or a performance function is maximized, with respect to the
weights. In design-by-morphing, since each degree of free-
dom is associated with the overall shape of a baseline design,
shape changes induced by a variation in morphing weights
are global. The values of weights can be negative as well as
positive. If all weights are positive, it is called interpolation
morphing. Otherwise, the morphing is called extrapolation
morphing.

Perhaps the method most similar to our design-by-
morphing method was carried out by Kang [31] who
attempted to create a new shape of ships from different ships.
Kang et al. developed new ship designs by combining base-
line ships based on triangular mesh morphing. Although
Kang et al. demonstrated a capability to morph multiple
objects, they did not impose any geometric constraints on
their morphed designs nor report on any improved perfor-
mance of the morphed shapes.

4.2 Reconstruction of response surfaces with an
artificial neural network (ANN)

The direct calculation of the cost function usingCFDor other
large computer codes is generally the computationally most
expensive part of design-by-morphing. As discussed above,
we, like other designers, try to minimize the number of direct
calculations of the cost function by using response surface
methodology, which is a collection of mathematical and sta-
tistical techniques for modeling the functional relationship
between a dependent variable, such as the cost function,
and the independent variables on which it depends [32,33].
With design-by-morphing, theweights of the baseline shapes
used in the morph are the independent variables. Response
surface methodology is widely used in the optimization of
engineering systems [6]. It is particularly useful when the
functional relationship between the independent and depen-
dent variables is not analytically knownor is largely unknown
empirically and must be evaluated many times and at great
computational or laboratory cost.

To construct our response surfaces, design-by-morphing
uses artificial neural networks (ANN), which recently rose
to prominence in a number of fields for its enormous capac-
ity in deep learning and artificial intelligence. ANNs have
been used extensively in a number of fields as universal
function approximators [25]. A feed-forward, multi-layered
neural network has been shown to be capable of approximat-
ing a continuous function arbitrarily well [13]. The use of an
ANN for response surface methodology has been discussed
and demonstrated by Anjum et al. [3].
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Here, we illustrate the effectiveness of an ANN for the
optimization of a train using 3 or 2 train baseline shapes
that are constrained such that the design space has 2 or 1
degrees of freedom. We use two different ANNs. One is the
proprietary ANN from NUMECA [62] and the other is our
ownANNthat has 2hidden layers. Thebackbone code for our
ANN is powered by the open-source library TensorFlow [1].
The latter ANN is used to validate and extend the findings of
NUMECA’sANN.The training cost function J of theANN,1

which is used to train the ANN to simulate the response of a
full CFD calculation of the train’s cost function (which here
is the drag of the train) is defined by a mean-squared-error
with a regularization penalty λ:

J (w) =
n∑

i=1

(Cd,i − Cd,i )
2 + λ||w||22, (8)

where {Cd,i } are the values of the drag coefficient of the i th
test design (defined by its own unique set of weights of the
baseline shapes) computed with CFD, {Cd,i } are the values
of the drag coefficient predicted by the ANN,w is a vector of
neural network connectivityweights,λ is the penalty function
for the connectivity weights, and n is the number of design
points in the training set. Our reconstructed response surface
from the ANN used for the 3-baseline trains with 2 degrees
of freedom is presented in Sect. 6.7.

5 Morphing

Obviously an important part of design-by-morphing is the
morphing algorithm that creates the test object from the
baseline shapes. Here, we briefly review current morphing
methods, and in more detail we describe the spectral morph-
ing algorithm that we used here.

5.1 Current methods for surface mesh based morphing

The key to shapemorphing is the issue of surface point corre-
spondence. In most applications in computational geometry,
point correspondence is achieved by using shape parame-
terization. Shape parameterization finds point-to-point cor-
respondence for multiple input shapes as long as the input
shapes are parameterized to the same domain. Since shape
morphing is essentially the morphing of multiple surface
mesh patches, mesh parameterization techniques embed the
surface of three-dimensional objects in a common two-
dimensional domain [17]. Thereafter, point correspondence

1 The training cost function of the ANN and the cost function of the
optimized train,which in this case is the drag of the train, are two distinct
functions and should not be confused with each other.

can be easily achieved using a point-in-element search, and
nodal values can be acquired using barycentric interpola-
tion [39]. Depending on the geometric properties of the base
shape for morphing, different parameterization techniques
are used. For meshes with open boundaries, as well as com-
plex geometries, the mesh usually undergoes segmentation
and each piece undergoes planar parameterization [47]. For a
genus-zero closedmesh (i.e., noopenboundaries), the natural
parameterization is to a sphere due to its topological equiva-
lence, and a number of morphing techniques using spherical
parameterization have been proposed [21,39]. However, the
coding process for such a routine can be tedious. For simple
star-shaped genus-zero objects, spectral representations with
spherical harmonics are both easier and more accurate than
mesh parameterizations.

5.2 Spectral and grid based morphing

In the design-by-morphing method that we use in this paper,
morphing is implemented in two ways: (1) spectral mor-
phing and (2) grid-based morphing. Baseline objects are
linearly morphed by combining them with their correspond-
ing weights in both cases. The difference between the two
methods is the former starts by computing the set of spectral
coefficients that are used in each of the truncated spectral
sums that are used to represent the baseline shapes, while
the latter directly uses the locations of each baseline shape’s
mesh points. Using the spectral morphing methods outlined
in Sect. 2.2.1, a new morphed shape with radius R(θ, φ) is
created from N baseline shapes as:

R(θ, φ) ≡
L∑

l=0

l∑

m=− l

Am
l Y

m
l (θ, φ), (9)

where the spectral coefficient Am
l with degree l and order m

is

Am
l ≡

N−1∑

k=0

ωk aml (k), (10)

where {aml (k)} are the spectral coefficients of the kth baseline
shape, and ωk is its weight. The origins used in the spectral
representation of each of the baseline shapes must all be the
same point.

With the spectral representation in Eqs. 9 and 10, there
is a 1–1 mapping between the surface of the object and the
surface of a sphere. If we limit the domain to 0 ≤ θ ≤ π/2
and −π/2 ≤ φ ≤ π/2, there is a 1–1 mapping between the
shape of a surface and a quarter-sphere. In this paper, not
only are all of the train noses star-shaped, but also the back
and bottom of the nose are planes that form a right angle.
Furthermore, the train is right–left symmetric with respect
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Fig. 3 Geometric constraints should be imposed on the passenger
compartment and cow-catcher interfaces with the nose. The spherical
coordinate system we use is shown with its origin at the back and bot-
tom of the nose. The train velocity is along the positive x-axis so the
leading point of the nose is at φ = 0 and θ � π/2

to the centerline of the railroad track, so that we represent
the left half of the nose over the domain 0 ≤ θ ≤ π/2
and 0 ≤ φ ≤ π/2 (with the right half of the nose having
0 ≤ θ ≤ π/2 and −π/2 ≤ φ ≤ 0). The shape is an even
function of φ (see Fig. 3). The back of the nose (where it
joins the passenger compartment) has φ = ±π/2, and the
bottom of the nose (where it joins the cow-catcher and bogie)
has θ = π/2. The symmetry plane is at φ = 0. The front of
the nose is at φ = 0 and θ � π/2.

Grid-based morphing among the grids of N baseline
shapes, each with P mesh points, is implemented by com-
bining grids of baseline shapes after one finds (possibly by
interpolation) a one-to-one correspondence for each of the
P mesh points for all of the N baseline shapes. (That is, if
we were morphing N human bodies, and the i th mesh point
of the first baseline shape was the tip of a nose, then the i th
mesh point of all of the other baseline shapes must be a tip of
a nose and not, say, the big toe). The locations of the P grid
points on the surface of the kth baseline shape are defined
as Xi

k ≡ (xik, y
i
k, z

i
k), where xik , y

i
k and zik are respectively

the x , y and z positions of the i th mesh point of the kth
baseline shape. A morphed object with shape Xi

morphed is
obtained by

Xi
morphed =

N−1∑

k=0

ωk Xi
k, (11)

for all i = 1 . . . P . If all of the baseline shapes are
star-shaped, and if we use spherical coordinates such that
(xik, y

i
k, z

i
k) and (r ik, θ

i
k, φ

i
k) correspond to the same physical

location, and if (θ ik, φ
i
k) are the same as the collocation point

angles (as defined in Sect. 2.2.2), the spectral and grid-based
morphing are the same up to round-off error.2

As discussed in the next section, the nose and cow-catcher
of the morphed leading-and-trailing car were constrained
so that there were no discontinuities in their surface shape
locations where they join. The cow-catchers were either rep-
resented using spherical harmonics, mapped to one quarter
of a sphere like the nose andmorphed spectrally, or theywere
represented with a polygonal mesh and changed with grid-
morphing. Both representations and their morphings worked
well, but spherical harmonics have two advantages. First, due
to the exponential convergence of the spectrally truncated
sums in Eq. 9, it takes far fewer spectral coefficients than
polygonal mesh points to represent a (sufficiently-smooth)
shape. Second, with spectral representation, geometric fea-
tures of a shape, such as its tangent planes and curvatures
have analytic representations that are very accurate and are
infinitely differentiable. These features can be very useful
when computing cost functions and other properties of the
morphed design.

5.3 Spectral and grid representation constrained by
weights

In practical designs, geometric constraints are often required.
Here, we require that the back of a train’s nose seamlessly
connected to the passenger compartment so that the loca-
tions and slopes of the surfaces have no discontinuities. Also,
when a train’s nose and cow-catcher are joined, the shape of
the train’s nose at the joint should be the same as that of
the cow-catcher. In this paper, we use the simplest method
to impose these constraints. We defer discussions of more
sophisticated ways of imposing constraints to our Discus-
sion section. Consider the interface where a train’s nose is
connected to the passenger compartment, as shown in Fig.
3. To enforce the constraint, we restrict ourselves to base-
line train noses that all join onto the same shape passenger
compartment and such that the locations and slopes at the
interface of all of the baseline noses with their passenger
compartments are continuous. With this set of baseline train
noses, it is straight-forward to show (see the Appendix) that
the morphed leading-and-trailing car will have a shape such
that the location of the surface and slopes of the surface are
continuous at the interface as long as the sum of all of the
morphing weights of the baseline noses is equal to unity.

In this study, the locations of the surface of the nose and
the surface of the cow-catcher are required to be continuous

2 If shapes are not represented on grids in thismanner, then themorphed
shapes based on their grid representations will not only differ from
the morphed shapes based on their spectral representations, but also
will often produce unexpected shapes that look very different from the
objects from which they were morphed.
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Fig. 4 Morphing of train
heads. Top row: the three
baseline train noses with
cow-catchers. From left to right,
are baselines 0, 1 and 2. Bottom
row: three examples of morphed
train heads. The three morphing
weights are shown in parenthesis
as (ω0, ω1, ω2). The weights
sum to unity which makes the
locations and slopes of the
tangent planes at Ip continuous.
The morphing weights of the
nose and cow-catcher are always
the same so that there are no
discontinuities in the locations
of the surface at Ic. a (1, 0, 0). b
(0, 1, 0). c (0, 0, 1). d (0.3, 0.5,
0.2). e (− 0.2, 0.8, 0.4). f (1,0.5,
− 0.5)

(a) (1, 0, 0((b))0 , 1, 0((c))0 , 0, 1)

(d) (0.3, 0.5, 0.2) (e) (−0.2, 0.8, 0.4) (f) (1, 0.5,−0.5)

at their interface (Ic in Fig. 3). However, the slopes of the tan-
gent planes at interface Ic are not required to be continuous.
(In fact, the baseline leading-and-trailing car that we labeled
baseline 2 has discontinuous slopes at Ic.) It can be easily
shown that if the locations of all of the baseline leading-
and-trailing cars are continuous at Ic and if the noses are
morphed with the same weights as their corresponding cow-
catchers, the locations of the surface of a morphed train at Ic
will also be continuous, even if the morphing weights do not
sum to unity. In this study, we use the same same weights
for the morphed noses and the morphed cow-catchers. The
reason that we did not represent the nose and cow-catcher, or
head, as a single object, was that the heads were neither star-
shaped nor sufficiently smooth for spectral representations
with spherical harmonics.

5.4 Examples of constrained morphing

Figure 4 shows three baseline and three morphed train heads
produced with constraints. The train baseline heads are in
the upper row. Those heads, like those in the morphed trains
in the lower row, have no discontinuities in location at Ic
because the morphing weights are the same for the noses
and cow-catchers. Baseline 2 in panel (c) has discontinu-
ities in the slopes of its tangent planes at Ic causing all
of the morphed trains to have discontinuous slopes there.
There are no discontinuities between the nose’s location or
its slope at the interface Ip with the passenger compartment
(not shown) because the sum of the morphing weights equals
unity. The noses were morphed with spectral morphing. The
cow-catchersweremorphedwith both spectralmorphing and
grid morphing, but we found no discernible differences.

More examples of morphed train heads (and a view from
a different perspective) are shown in Fig. 5. Here, the morph
is between only baseline 0 and 1, shown in the the top
row. The morph in panel (c) has weights (ω0, ω1, ω2) =
(0.5, 0.5, 0) and represents an interpolation. The morphs in
panels (d) and (e) are extrapolations with morphing weights
(1.5,−0.5, 0) and (−0.5, 1.5, 0), respectively. Extrapolation
morphing is important (and can be applied to more than two
baseline objects) because negative weights allow the new
design to de-emphasize characteristics of under-performing
baseline objects, and weights greater than unity allow the
enhancement of well-performing characteristics of baseline
objects. As mentioned in our Discussion section, extrapo-
lation can be particularly useful when different morphing
weights are applied to different sub-objects (such as the
nose, the cow-catcher, and the passenger compartment) of
an object. Radical design changes can be made with extrap-
olation.

In this paper,we represent all of the train noses as truncated
sums of spherical harmonic functions, although the shape of
each nose was originally provided to us as a set of points
on a polygonal mesh. To accurately represent a nose, we
set the degree of truncation, L in Eq. 7, to 512. With this
degree of truncation, all of the features of a train nose are
well-resolved (See Fig. 6). The accuracy of our truncated
expansion of spherical harmonic functions can be defined
quantitatively as

Er = ||Rmesh(θ, φ) − R(θ, φ)||2
||Rmesh(θ, φ)||2 (12)

where Rmesh(θ, φ) is the radius of the train nose on the
mesh, and R(θ, φ) is the radius computed with the truncated
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Fig. 5 Morphing of train heads. The train heads in a and b are base-
lines 0 and 1, respectively. The morph in c is an interpolation with
weights (0.5, 0.5, 0), and the extrapolations in d and e have weights

(1.5,− 0.5, 0) and (− 0.5, 1.5, 0), respectively. Here, train noses are
colored as light gray, while train cow-catchers are dark gray

Fig. 6 Effect of the degree L of truncation of a truncated series of
spherical harmonics on the shape of the baseline 1 train nose. The
shapes of the train noses in panels a–c are computed with L = 32,
128 and 512, respectively. Wiggles at the windshield of the train nose

occur when the train nose is approximated with the low L in panels (a)
and (b). These wiggles are not present in panel (c), which is virtually
indistinguishable from the original shape that was provided to us as a
set of mesh points

spectral sum. The value of Er with L = 512 for baseline
train noses 0, 1 and 2 are 2.815 × 10−7, 3.903 × 10−7 and
2.024 × 10−7, respectively.

6 Steps in design-by-morphing

6.1 Definition of the train and cost function to be
optimized

In this paper, we consider a train in which the leading car is
coupled directly to an identical trailing car as in Fig. 7. We
consider this idealized train due the observation by Cooper
[12], who showed that flow structure downstream of the
leading the car of a high-speed train and upstream of the trail-
ing edge of the trailing car does not significantly vary after
approximately one car length. We carry out single-objective
optimization by minimizing the total drag (our cost function)
on the train at one speed. Minimization of the rocking due to
vortex shedding, especially in a cross-wind, and the reduction
of the micro-pressure wave when a high-speed train travels
in a long tunnel could also have been objectives we could
have easily considered. However, we decided in this study of

Fig. 7 A simulated high speed train. The train consists of a leading car
and trailing car. The leading and trailing cars have the same shape

design-by-morphing to only consider the drag. It should be
noted that aerodynamic drag is approximately proportional
to the square of a train’s speed [44], so energy dissipation
caused by the aerodynamic drag, which scales as the cube
of the train’s speed becomes an overarching issue as train
speeds increase. When optimizing a train here, we only con-
sider changes to the shape of the head, in part due to the
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work of Ku et al. [34] who found that the drag was much
more dependent on the shape of the nose than it was on the
passenger compartment. Our own studies showed that the
effects of the bogies have little effect on the optimal shape,
so here we exclude the bogies, not only from the optimiza-
tion, but also from the computation of the drag with the CFD
code.

6.2 Defining the baseline shapes

The baseline shapes shown in the first row of Fig. 4 were
based on existing leading-and-trailing cars. Baseline 0 was
based on publicly available train shapes that mimicked the
CRH1 train. Baseline 1, with its accentuated slenderness and
concavity was based on the Talgo 350 and Talgo AVRIL
leading-and-trailing cars. Baseline 2 was based on publicly
available files of an existing train and was chosen because it
has a large drag compared with the other baseline leading-
and-trailing cars. We wanted to see if the optimal design
found by our algorithm would give baseline 2 a morphing
weight that was small or negative. The sum of the morphing
weights is required to be unity.

6.3 Design steps

We first searched for an optimal solution using only baseline
heads 0 and 1. Because the two morphing weights were con-
strained to add to unity, there was only one degree of freedom
in that design space. We also searched for optimal solutions
in a design space with two degrees of freedom by using all
three baseline heads constrained such that the sumof the three
morphing weights added to unity. Our optimization can be
roughly divided into the following steps.

1. Design Space Choose the ranges that the independent
morphing weights can have in the search for the optimal
design. However, if it becomes apparent (say, by finding
that the optimal solution is at or near the edgeof thedesign
space), that the optimal solution is outside of the initial
choice of search space, the ranges should be extended.

2. Design of Experiment Choose the points in the design
space where the drag is to be initially calculated with
CFD so that an ANN can be trained to compute a
reconstructed response surface in which the independent
variables are the independent morphing weight(s) of the
baseline shapes and the dependent variable is the drag.

3. Drag computed with CFD Compute the drag by first
defining a computational mesh around the train; then
compute the flow (which in this case was forced to be
a steady state); and then compute the drag on the train.

4. ANN Train and validate the ANN. Initially, do this with
the design points found in step 2 along with their CFD-
compute drags from step 3. However when iterating, use

the expanded set of designpoints (defined in step 6below)
and their CFD-computed drags. Create the reconstructed
response surface using the drag predicted by the ANN.

5. OptimizeUse a genetic algorithm to find the optimalmor-
phing weights using the drags computed with the ANN.
Using the optimal weights, create the “optimal” design.
Validate the “optimal” design selected by the genetic
algorithm (that used the ANN-computed drag) by using
CFD to compute the drag of the “optimal” design and
determine the error E , which is the difference between
the cost function computed with the ANN and with the
CFD code (as defined below in Eq. 13).

6. Iterate steps 4 and 5 Go back to step 4 and retrain
NUMECA’s ANN by adding the “optimal” design point
most recently found in step 5 along with its CFD-
computed drag to the original set of design points along
with their drags and to all of the design points and drags
found in previous iterates. Then, repeat the optimization
in step 5. Repeat this iteration until either a maximum
allowable number (set by the user) of iterations are car-
ried out, or until there is no further decrease in the drag
of the optimal design.

6.4 Design space

For the one-degree of freedom optimization based on base-
lines 0 and 1, we chose a design space such that themorphing
weight of baseline 0 satisfied − 1 ≤ ω0 ≤ 2. This range
allows extrapolation in both directions, i.e., so that the design
space contains a regionwithω0 < 0 andwithω1 ≡ 1− ω0 <

0. For the two-degree of freedom optimization based on the
3-baseline trains, we chose a design space such that the mor-
phing weights of baseline 0 and 1 satisfied − 1 ≤ ω0 ≤ 3
and − 1 ≤ ω1 ≤ 2. The search space of ω0 is bigger than ω1

because we found that the drag is very small when ω0 � 2.
Therefore, we increased the upper limit of ω0 from 2 to 3.
These ranges allow extrapolation in all three directions, i.e.,
so that the design space contains a region with ω0 < 0, with
ω1 < 0, and ω2 ≡ 1 − ω0 − ω1 < 0.

6.5 Design of experiment

There are many well-studied methods for selecting the ini-
tial points in the design space to begin the reconstruction of
the response surface. For example, Vanaja and Shobha Rani
[59] discuss the Plackett-Burmann method, and the factorial
and cubic face centered, are reviewed by Shyy et al. [54].
Here we used a discrete, level-based point distribution for
our initial choice of points where initial design points are
equally distributed in the design space because this method
is intuitive and easy to understand. In particular for the 1-
degree of freedom design space, 10 equally spaced points
were chosen. For the 2-degree of freedomproblem, six points
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were equally distributed in each of the two independent direc-
tions ω0 and ω1 of the design space, so a total of thirty-six
design points were initially selected for the first design of
the experiment. Although the level-based point distribution
works well when there are only a few design variables, the
computational work of this method increases rapidly as the
number of design variables increases, making the level-based
point distribution impractical. When there are large numbers
of design variables, more efficient methods of the design of
experiment should be used such as the D-optimal method
[19] or the optimal Latin hypercube method [61].

6.6 Drag computed with CFD

To compute the drag numerically, we solved the Reynolds
Averaged Navier–Stokes (RANS) equation to simulate the
flow around a high-speed train. A k-ω model with the wall
function was used to model the turbulence. The turbulence
intensity and length scale were defined as 3% and 0.3 m,
respectively, and the velocity of the high-speed train was
set at 360km/hr. The train was located inside a simulation
box with size 4L × 2L × L/4 in length, width and height,
respectively, where L = 40 m is the length of the simulated
high-speed train. The reason we choose a relatively large
width and small height of the simulation box is because the
trailing vortices generated from the back of the train spread
over awide horizontal plane but do not travel very far upward.
The distance between the upstream side of the simulation
box and the front of the train was 1L , leaving a distance of
2L between the back of the train and the downstream side of
the simulation box.We found that increasing the stream-wise
size of the simulation box had no significant effect on the drag
nor on the qualitative features of the flow around the train.
The velocity at the upstream boundary of the simulation box
was uniform and at the downstream boundary of the simula-
tion box we applied a uniform pressure boundary condition.
No-slip boundary conditions were used at the train’s surface
and at the bottom of the simulation box. External boundary
conditions, in which the flow is required to obey asymptotic
conditions representing the far field, were used on the top and
side surfaces of the computational box. The bottom boundary
was modeled as a smooth surface without a model of a track
or ties.UsingNUMECA’sHEXPRESSTM/Hybrid,mesh gen-
erator, we created a new mesh for each of the baseline trains
and for each morphed train that resolved the boundaries and
the key vortical features of the wake (see Fig. 8). We used
NUMECA’s FINETM /Open to simulate the flow and the drag
on the train. Calculations were validated by increasing the
spatial resolution until convergence was reached. In addition,
some of the drag calculations were independently validated
using the OpenFOAM code.

Several shapes of train heads at the ten initially selected
points are presented in Fig. 9with their correspondingweight

Fig. 8 Mesh around a a high-speed train with b a blow-up of the mesh
at the leading edge of the train

ω0 and computed drag coefficients Cd . Figure 10 show sev-
eral shapes of morphed train heads at the 36 initially selected
design points along with their corresponding weights and
computed drag coefficients.

6.7 ANN

In both the 2-baseline train optimization with 1 degree of
freedom and the 3-baseline train optimization with 2 degrees
of freedom, we used NUMECA’s ANN, i.e., the software
FINETM/Design3D, to find the optimal shapes of a train. For
the 1-degree of freedomoptimization,NUMECA’sANNwas
initially trained (i.e., step 4 in Sect. 6.3) using the CFD-
computed drag at 10 equally distributed points in the design
space (Fig. 11). Then, we used a generic genetic algorithm
along with the ANN-computed drag coefficients (i.e., step 5
in Sect. 6.3) to find the “optimal” weights of the “optimally”
designed train. We then iterated (i.e., step 6 in Sect. 6.3) the
training and optimization steps 10 times. The train with the
least drag has ω0 = 0.536 and is an interpolation, rather than
an extrapolation of the two baseline trains. For the 2-degree
of freedom optimization using 3-baseline trains, NUMECA’s
ANN was initially trained using the CFD-computed drag at
the 36 equally-distributed design points shown as black solid
circles in Fig. 12. The ANN training and optimization were
iterated (i.e., step 6 in Sect. 6.3) 20 times.

To train and validate the ANN, we defined the error, E :

E =
∑M

i=1

(
Cd,i − Cd,i

)2

M
, (13)

whereCd,i andCd,i are respectively i th drag coefficient from
the CFD simulation and from the ANN, and M is the number
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ω0 = −0.333
Cd = 0.360

ω0 = 0.333
Cd = 0.325

ω0 = 0.667
Cd = 0.333

ω0 = 1.333
Cd = 0.354

Fig. 9 Several examples of morphed train heads among the initially chosen ten design points of the 2-baseline train with 1 degree of freedom. The
weight ω0 and CFD-computed drag coefficient of each train are shown

ω0 = −0.200
ω1 = −0.400
Cd = 0.628

ω0 = 0.600
ω1 = 0.200
Cd = 0.337

ω0 = −0.200
ω1 = 0.200
Cd = 0.410

ω0 = 1.400
ω1 = 0.200
Cd = 0.325

ω0 = 2.200
ω1 = 0.800
Cd = 0.312

ω0 = 2.200
ω1 = 0.200
Cd = 0.316

Fig. 10 Several examples of morphed train heads among the initially chosen thirty-six design points of the 3-baseline train with 2 degrees of
freedom. The weights ω0 and ω1, and CFD-computed drag coefficient of each train are shown

Fig. 11 CFD-computed drag coefficients of the 10 initially selected
design points of the 2-baseline train with 1 degree of freedom as a
function of their weights ω0

of design points. The error defined in Eq. 13 can be used to
compute two types of errors: (1) training error when the error
is computed with the design points used to train the ANN and
(2) test error when the error is computed with design points
that were not used to train the ANN. Unfortunately, only a
training error is accessible with NUMECA’s ANN because

Fig. 12 The reconstructed response surface from the ANN built with
TensorFlow for the 3-baseline train with 2 degrees of freedom. The
uniformly distributed solid circles are theCFD-computed drag for the 36
design points from the training set. The griddedweb is the reconstructed
response surface found by the ANN trained with those 36 design points.
The bottom part of the figure is a color-map of the ANN-computed Cd
as a function of ω0 and ω1. The red dashed line shows the range of the
design of the 36 training points

the software does not permit the user to supply independent
design points and then query the ANN to compute a value
for its prediction of the drag. However, the training error of
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Table 1 Input parameters for our artificial neural network (ANN) built
with TensorFlow that was used to compute the reconstructed response
surface for 3-baseline train with 2 independent degrees of freedom

Hidden layer 1 size n1 256

Hidden layer 2 size n2 128

Activation function Rectified linear unit (ReLu)

Initialization STD σ 2 × 10−2

Regularization constant λ 10−4

Base learning rate α 10−2

Exponential decay Rate d 0.8

Decay steps 1000

Training steps 20,000

NUMECA’s ANN with the initial 36 design points of the
3-baseline train was 3.53 × 10−5.

To obtain an estimate for the test error of NUMECA’s
ANN and also to explore the possibility that the optimal train
design lay outside the test range of the weight parameters
we explored, we carried out several numerical experiments
with our TensorFlow-based ANN for the 3-baseline train.
We trained the TensorFlow-based ANN with the same 36
design points shown in Fig. 12 used to train NUMECA’s
ANN. The training error of the TensorFlow-based ANN was
2.22 × 10−7. Figure 12 shows the reconstructed response
surface (fine mesh) of the ANN-computed drag created with
the TensorFlow-based ANN that was built with the param-
eters in Table 1. In this figure, the 2 degrees of freedom,
ω0 and ω1, extend beyond the range (shown with red dashed
lines) that was explored in the optimization with NUMECA’s
ANN.At the bottom of Fig. 12, the values of ANN-computed
drag coefficients are shownwith a color-map where the color
indicates Cd . The range of the TensorFlow-based ANN was
extended toward the directionwhere the influence of the base-
lines 0 and 1 is increased and baseline 2 decreased because
it allowed us to consider the possibility that the optimal solu-
tion exists outside of our originally defined design space.
However, the drag in this extended range is not small and
does not decrease with distance from the red dashed lines,
suggesting that the optimal train might well be within the
range explored by NUMECA’s ANN. We also studied the
possibility that the optimal design has large negative values
of ω0 or ω1 (not shown in the figure) because a reconstructed
response surface found by our TensorFlow-based ANN sug-
gested there was another local, or perhaps global, minimum
of the drag for negative values of ω0 and ω1. However, when
we further extended the design space to include more nega-
tive values of ω0 and ω1, we found that the drag increased
rapidly.

Using our TensorFlow-based ANN, we had the ability to
give it an arbitrary design point and query it for its predic-

Fig. 13 The shape of the optimal train head obtained from the 2-
baseline train with 1 degree of freedom optimization

tion of the drag.3 We therefore computed a test error for
the TensorFlow-based ANN using the 20 “optimal” design
points found with NUMECA’S ANN (in the iteration of step
6 in Sect. 6.3) and for which we already had the values of
the CFD-computed drag coefficients. Using these 20 points,
the test error of the TensorFlow-based ANN is 5.39× 10−4,
which demonstrates the high accuracy of the TensorFlow-
based ANN in the design space near the optimal designs. We
presume that NUMECA’s ANNhas a similar value for its test
error. Note that the 20 test points were not used to re-train the
TensorFlow-based ANN, which was never re-trained after its
training with the 36 design points in Fig. 12.

7 Results

7.1 Summary of optimizations

We found the optimal shapes of a high-speed train for the
2-baseline train (with 1 degree of freedom) optimization and
for the 3-baseline train (with 2 degrees of freedom).

7.1.1 2-baseline train

The optimal train head of the 2-baseline train with 1 degree
of freedom optimization hasω0 = 0.536 andω1 ≡ 1− ω0 =
0.464. The optimal design is an interpolation, rather than an
extrapolation and is shown in Fig. 13. It has a drag coefficient
Cd = 0.3095, while the Cd of the baseline 0 and 1 trains is

3 The ANN provided by NUMECA is not open-source code and is
written in a way that does not give the user the ability to find the ANN-
predicted drag at an arbitrary design point. (The NUMECA ANN only
predicts drag values of the design points in a training set.) Determining
the ANN’s predicted drag at points outside the training set is important
for reconstructing a response surface with a fine mesh (and not just
interpolating the drag from the design points of the training set) and for
predicting drag at points outside the design space as shown in Fig. 12.
The latter is useful to determine whether the design space is too small; if
the location of the ANN-predicted minimum drag is near the boundary
of the design space or outside the design space, then the design space
is too small.
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Table 2 Weights and CFD-computed drag coefficients of several 3-
baseline trains. The first three rows correspond to the three baseline
trains. The two rows labeled “Best from DOE” correspond to the mor-
phed train with the smallest drag that was found from the 10 design
points of the 2-baseline train (i.e., the design points shown with cir-
cles in Fig. 11), or to the morphed design with the smallest drag found
from the 36 design points of the 3-baseline train (i.e., the design points

shown with solid circles in Fig. 12). The two rows labeled “Optimal
train” correspond to the optimization of the 2- and 3-baseline trains
with the lowest drags. The column labeled “Reduction of Cd” is the
percentage of the CFD-computed drag reduction that the morphed train
has compared to the best-performing baseline train, which is always
baseline 0

Weights Cd Reduction of Cd (%)

Baseline train 0 (1.000, 0.000, 0.000) 0.3365 –

Baseline train 1 (0.000, 1.000, 0.000) 0.3489 –

Baseline train 2 (0.000, 0.000, 1.000) 0.4523 –

Best from DOE (2 baseline trains) (0.333, 0.667, 0.000) 0.3250 3.418

Best from DOE (3 baseline trains) (2.200, 0.800,− 2.000) 0.3124 7.162

Optimal train (2 baseline trains) (0.536, 0.464, 0.000) 0.3095 8.024

Optimal train (3 baseline trains) (2.023, 0.619,− 1.642) 0.2912 13.462

0.3365 and 0.3489, respectively. Thus, the optimal train has
a 8.024% reduction in Cd of the best performing baseline
train.

7.1.2 3-baseline train

Table 2 summarizes the results of the optimization of the 3-
baseline train with 2 degrees of freedom. The table shows
that the train optimized with design-by-morphing has a drag
reduction of 13.462% with respect to the best performing
baseline train. As expected, the morphing weight of the
poorly-performing baseline 2 train, is negative, meaning that
the optimal train design is an extrapolation. However, the 3-
baseline train provided us with an unanticipated result. By
including the poorly-performing shape of baseline 2, the drag
reduction of the optimal train with respect to the best per-
forming baseline train is almost twice as large as the drag
reduction foundwhen baseline 2 is not included in themorph.
We initially believed that providing our design-by-morphing
algorithm baseline shapes with good features would allow
our algorithm to choose among the best features to create an
optimal shape, and our conjecture was proved by the result of
the 2-baseline train with 1 degree of freedom optimization.
The optimizationwith three baseline trains shows that choos-
ing baseline shapes with bad features can also lead to large
improvements by providing the algorithm with examples of
features to avoid.

The optimal shape of the head is shown in Fig. 14. Com-
pared to the shapes of the three baseline trains, the optimal
design is radically changed. Inward curling edges are present
at both sides of the optimal train nose. No baseline train noses
have this geometric characteristics, but these features appear
on the optimal design. One issue regarding this optimal shape
is that its inward curling edges might be difficult to manu-

Fig. 14 The shape of the optimal train head obtained from the 3-
baseline train with 2 degrees of freedom optimization

facture, maintain, or clean. This point is discussed below in
Sect. 8.2.

7.1.3 Cost function as a function of iteration number

Figure 15a shows the optimal weights of the 2-baseline train
with 1 degree of freedom optimization as a function of the
optimization iteration step (i.e., step 6 in Sect. 6.3). Fig-
ure 15b shows the CFD-computed and ANN-computed drag
coefficients at each iteration step. Note that the best train
shape was found in the sixth iteration, rather than in the last
iteration. The ANN-computed values of the drag are smaller
in iterations 8, 9, and 10 than it is in iteration 6, but the CFD-
computed drags are slightly larger in iterations 8, 9, and 10
than it is in the 6th iteration. Figure 16 is similar to Fig. 15
but computed for the optimization with three baseline trains
with 2 degrees of freedom. Surprisingly, the best train shape
was found at the third iteration step. Both the CFD-computed
and ANN-computed drags oscillated after the third iteration
rather than increasing or decreasing monotonically. Defin-
ing Cd,i and Cd,i respectively as the CFD-computed and
ANN-computed drag coefficients at the i th iteration step, the
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Fig. 15 The weight ω0 in a and CFD-computed ANN-computed drag
coefficients in b of the 2 baseline train optimization (with 1 degree of
freedom) as functions of the optimization iteration step. The drag coef-
ficients computed from CFD and the ANN are respectively plotted in

black and blue in b. The minimum drag was found at the sixth iteration
step atω0 = 0.536. The values ofCd andω0 of the zeroth iterate are the
minimum drag coefficient and corresponding weight shown in Fig. 11
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Fig. 16 Same as in Fig. 15, but for the 3 baseline train (with 2 degrees of freedom) optimization

prediction error of the ANN at the i th iteration step can be
defined as

E predict
i = |Cd,i − Cd,i |

Cd,i
. (14)

The prediction errors of the ANNs as functions of the itera-
tion step are presented inFig. 17. The prediction errors tend to
decrease in the first few iteration steps, and then not improve
with further iteration. The reason for why the trains with the
least drag occurred in Figs. 15 and 16 at the sixth and third
iterations respectively is unclear. The reason could be due
to the behavior of E predict

i or due to “lucky” choices of the
genetic algorithm at the sixth and third iterations or due to
some other effect. However, we suspect that the reasonmight
be due to a flaw in our ANN. In addition to E predict

i , there
is another measure for how well an ANN computes the drag.
In the study with two baseline trains, in the last (10th) iter-
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Fig. 17 Prediction error E predict
i of the ANN-computed drag coef-

ficient as a function of optimization iteration number. The prediction
errors of the 2-baseline train optimization (with 1 degree of freedom)
and the 3-baseline train optimization (with 2 degrees of freedom) are
plotted in black and blue, respectively
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Fig. 18 ANN-computed and CFD-computed drag coefficients for the
2-baseline train (with 1 degree of freedom) as a function of the weight
ω0. The results are for the ANN trained with 19 design points, which is
the ANN that was used for the last iteration in Fig. 15. The design points
(black circles) are the design points of the training set (computed with
CFD). The blue diamonds are the drag coefficients computed with the
ANN at the same values of ω0 of the black circles. The optimal weights
found with the CFD and the ANN differ. The inset box shows that the
ANN fails to capture the abrupt change in the drag near ω0 = 0.65

ation there were 19 design points in the training set of the
ANN. (10 are from the originally selected design of experi-
ment, and 9 more are from the previous 9 iterations.) Using
the ANN trained with these 19 design points, Fig. 18 shows
the ANN-computed drag coefficients evaluated at those 19
points along with the CFD-computed drag evaluated at the
same design points. The ANN-computed drag coefficients
are a smoother function of ω0 than the CFD-computed drag
coefficients are. Perhaps this is not surprising because it is
known that the properties of the solutions to the equations
of motion that govern fluid dynamics are not smooth func-
tions of the control parameters. This is famously true for drag

coefficients, which often undergo a “crisis” or abrupt change
of value as the properties of the flow change. The drag com-
puted by the ANN knows nothing of the properties of the
governing equations of fluid motion, and perhaps the way in
which theANN is constructed or trained attempts tomake the
drag coefficient too smooth a function of parameters such as
ω0. A better ANN, in which an abrupt change in drag occurs
nearω0 = 0.65,might allow design-by-morphing to produce
designswith smaller drags as the iteration number in Fig. 15b
increases, resulting in an overall improved train.

7.2 Physical properties of the optimal designs

Figure 19 shows the static pressure fields around the heads
of the leading cars of the three baseline trains and the two
optimal designs. At the fronts of the two optimal trains,
the high-pressure regions are smaller than the correspond-
ing high-pressure regions of the baseline 0 and 2 trains. The
decrease in size of these high-pressure regions reduces the
drag on the optimal trains. Furthermore, both optimal trains
have smaller high pressure regions near their windshields
than does baseline 1, which also reduces their drag. Overall,
the static pressures at the fronts of the optimal train heads
are lower than those of the baseline trains, showing a good
compromise of the aerodynamic features of baselines 0 and
1. Figure 20 shows the static pressure fields around the trail-
ing car’s of the baseline trains and of the two optimal trains.
Baseline trains 1 and 2 have low-pressure zones at their trail-
ing edges that induce drag, while the two optimal designs do
not have corresponding low-pressure regions.

Figure 21 shows stream lines in the trailing wake vortices.
Baseline trains1 and2 have tangled stream lines beneath their
cow-catchers, which induce drag, but neither optimal train
has a similar tangle. The stream lines of the optimal train

Fig. 19 The static pressure at the symmetry-plane (i.e., at φ = 0,
using the spherical coordinate system shown in Fig. 3 of the baseline
and optimal trains’ leading heads. a baseline train 0; b baseline train 1; c

baseline train 2; d optimal train from the 2-baseline train optimization;
and e optimal train from the 3-baseline train optimization. The train is
moving from left to right. (Color figure online)
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Fig. 20 Same as in Fig. 19, but for the trailing head of the train

Fig. 21 Side and top views of the stream lines at the trailing cars, indicating the shed trailing wake vortices from the baseline and optimal trains. a
baseline train 0; b baseline train 1; c baseline train 2; d optimal train from the 2-baseline train optimization; and e optimal train from the 3-baseline
train optimization

based on 3-baseline trains are exceptionally smooth beneath
its cow-catcher. The vertical thicknesses of the shed vortex
wakes in the optimal trains in panels (d) and (e) are notice-

ably thinner than in the baseline trains in panels (a) and (c);
other researchers [2,20] noted that decreasing the vertical
thickness of the shed vortex wake reduces drag. The optimal
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train from the 3-baseline train optimization study in panel (e)
has a pair of trailing vortices that are more narrowly sepa-
rated from each other compared to the trailing vortices shed
from baseline trains 1 and 2. Duriez et al. [20] and Aider et
al. [2] in their study of TGV trains and other bluff bodies
also found that drag is decreased by modifying the trailing
car shape to narrow the distance between the two shed vor-
tices. The wake of the optimal train in panel (e) has a smaller
momentum deficit than any of the baseline trains, and the
smaller deficit also leads to less drag.

8 Conclusion and discussion

8.1 Summary and conclusions

We presented a new, general design method, called design-
by-morphing for an object whose performance is determined
by its shape due to hydrodynamic, aerodynamic, structural,
or thermal requirements. To illustrate the method, we min-
imized a cost function that was set equal to the drag of
a train traveling at 360 km/hr. The overarching concept
of the method is to create a new shape by morphing the
shapes of different objects. Here, we designed a new leading-
and-trailing car of a train by morphing existing baseline
leading-and-trailing cars. Our objective was to find the opti-
mal weights of each of the baseline shapes so that the
morphed shape had minimum drag. In our first attempt at
optimization we used two baseline trains, and in our second
attemptweuse three.Themorphingwasdoneby representing
the shapes of the trains in two different ways: with polygonal
meshes and spectrally with a truncated series of spherical
harmonics. The morphed shapes were constrained such that
the head of the morphed leading-and-trailing car seamlessly
joined to its passenger compartment (so that the locations of
the surfaces and the slopes of its tangent planes were con-
tinuous) and to its cow-catcher (so that the locations of the
surfaces were continuous at the joint, but the slopes of its
tangent planes were allowed to be discontinuous there). The
constraints were imposed in a way that reduced the num-
ber of degrees of freedom of the design space from 3 to 2
for the optimization using 3 baseline trains and from 2 to 1
for the optimization using 2 baseline trains. Optimal weights
were found by setting a range of weights to be explored,
using CFD to compute the drag of the trains in the design-of-
experiment, and using an artificial neural network to create a
reconstructed response surface and to allow a genetic algo-
rithm to find the optimal weights without repeatedly using
an expensive CFD code. The optimal designs found with the
artificial neural network were validated with CFD.We found
that with only two baseline trains that mimic current high-
speed trains with low drag (so that the design space had only
one degree of freedom) that the drag of the optimal train was

reduced by 8.04% with respect to the baseline train with the
smaller drag. The optimal shape exploited the best features
of both baseline designs. When we repeated the optimization
by adding a third baseline train with high drag to the morph,
we were surprised by the results. Although we expected the
new, optimally morphed train to have a negative morphing
weight for the third baseline train, we did not anticipate that
the drag would be reduced by 13.46% with respect to the
baseline train with the smallest drag. This near doubling of
the drag reduction meant that the optimization not only de-
emphasized the poor features of the third baseline, but also
actively negated them. Bad examples of design are as useful
as good examples in determining an optimal design.

8.2 Discussion of future work

We believe that design-by-morphing is practical for design
spaces with degrees of freedom greater than 2, but proba-
bly, due to computational limitations in training the artificial
neural network, fewer than 100 if the cost function must be
evaluated with CFD, another type of computationally expen-
sive code, or with laboratory experiments. The question for
future work is: how should we best use those degrees of free-
dom? We believe that the answer is not necessarily to use
more baseline objects to include in the morphing. Rather,
we believe that those degrees of freedom should be used in
breaking up the baseline objects into sub-objects. It is likely
that each baseline object has some features that perform well
and others that perform poorly. Rather than penalize an entire
baseline object for one poorly performing part, it is probably
better to just penalize that part. We have already begun to
explore this concept in a PhD thesis [43] and plan to expand
upon it. Part of the thesis dealtwith optimizing the lift-to-drag
ratio of a plane by using amorph with two baseline planes. In
this work, one of the baselines was an idealized version of an
air force SR-71 and the other was a fictional plane inspired by
a “Naboo starfighter” fromStarWars. Each planewas broken
into 15 sub-objects (Fig. 22), so, in principle, there could be
15 independent morphing weights for each baseline plane,
making a total of 30 weights and 30 degrees of freedom.

A problem encounteredwhen breaking a single object into
many sub-objects is that although the baseline sub-objects fit
seamlessly together in the baseline object, the independently
morphed sub-objects, in general, have discontinuities where
they are re-joined in the morphed object. To solve this prob-
lem, in the thesiswork, all of the sub-objectswere represented
spectrally. The surfaces of the objectswere thenmade to obey
a temporal diffusion equation and were integrated forward in
time with one step. For a diffusion equation to be well-posed,
boundary conditions must be imposed. We imposed bound-
ary conditions such that the morphed sub-objects seamlessly
fit together. This capability of design-by-morphing allows us
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Fig. 22 A single aircraft is broken into 15 independent sub-objects.
Each sub-object can be given its own morphing weight, so that a new
morphed plane made from the sub-objects of 2 planes has 30 indepen-
dent weights or degrees of freedom. Each sub-object is shown with a
different color. a An idealized air force SR-71; b a fictional “Naboo
starfighter” inspired from Star Wars

to break the baseline objects (such as planes) into sub-objects
(such as wings, fuselages, tails, etc.) so that the algorithm can
incorporate the best performing pieces of the baseline objects
and negate the poorly performing pieces.

To be practical, a systematic methodology for optimiz-
ing the shape of an object will likely require multi-objective
optimization, rather than single-objective optimization, as
studied here. Here, we have considered only single-objective
optimization by minimizing the drag on a train because this
is the first study of design-by-morphing, and we are more
concerned here with the proof of its concept rather than its
practicality. One way of doing multi-objective optimization
is with a Pareto optimal solution (c.f., Nemec et al. [42] and
Jiaqi and Feng [30]), which could be used with design-by-
morphing. However, for many applications, an easier way
of allowing design-by-morphing to be more practical and
to carry out multi-objective optimization is to define a cost
function in terms of several criteria that need to be maxi-
mized or minimized, as was done in the study by Jakubek
and Wagner [27]. For example, to decrease both the drag on
a train and the amount of its rocking due to vortex shedding,
a cost function to be minimized could be defined to be the
sum of one weighting coefficient multiplied by the drag and
another weighting coefficient multiplied by the amplitude of
the rocking, where the values of the weights are a subjective
choice of the designer. If it were difficult to compute effi-
ciently the amplitude of the rocking, the cost function could
be defined as a function of the torque induced on the train by a
shedding vortex, where the function of the torque serves as a
proxy for the amplitude of the rocking. There are many costs
that might be difficult to compute numerically but need to be
minimized. For example, the manufacturability and mainte-
nance of an object are often major costs, and therefore of
practical concern in an optimization. The surface of the opti-
mal train in Fig. 14 has small features thatmight be difficult to
manufacture, lead to large stresses and diminished lifetimes,
or correspond to small grooves that might be expensive to
clean. A proxy for those costs might be the minimum radius
of curvature of the shape, which could be incorporated into
the cost function.

Although some geometric constraints can be directly writ-
ten into the algorithm that defines an object’s shape, such as
the constraints we imposed in Sect. 5.3 where the back of
the nose was forced to fit to the front of the passenger car,
some cannot. For example, a train may need to pass through
a tunnel, which would require that its maximum width and
height could not be greater than imposed values. The easiest
way to enforce these types of constraints is to include them
in the cost function as penalties. The cost function would
be defined to increase very rapidly if the maximum width
or height of a morphed shape came close to or exceeded the
imposed values (c.f., Demeulenaere et al. [15,16]).

Our original philosophy behind design-by-morphing was
that shapes of objects that have stood the test of time and that
are currently used, must have good features. By blending
or morphing those features, a better design can be pro-
duced. Therefore, we chose our baseline shapes to be existing
shapes, and, for example, not CAD shapes or their unions.
The study presented here has already shown a flaw in this
philosophy by demonstrating that the inclusion of baseline
shapes with bad features teaches our design algorithm fea-
tures to avoid.

It is currently beyond anyone’s ability to determine the
optimal set of baseline shapes to use in design-by-morphing,
but we are exploring two avenues for baselines shapes that
are not shapes of existing objects. In Oh [43], we consid-
ered the optimal design of a sharp heeled draft tube. Only
one of the baseline shapes was an existing object because
no others were readily available. We created additional base-
line shapes using CAD tools and intuition. We then morphed
those shapes to find an optimal design (which differs from
creating a new design by changing the radii, angles, heights,
etc. of CAD shapes as in Demeulenaere et al. [15,16]). We
found improvements in the performance of the draft tube of
11% with design-by-morphing using these additional base-
line shapes. A second avenue for developing baseline shapes
is to allow a neural network to create them. Just as a neural
network can be taught to determine whether an object is a
cat or a dog from its appearance, we have been able to teach
a neural network whether a 3D shape is an airplane. Once a
neural network has that knowledge, it can create new airplane
baseline shapes. Numerical experiments with these baselines
are currently underway.

Due to the versatility of design-by-morphing, we believe
that it can be extended to many engineering problems. This
automated method, with its ability to extrapolate as well as
interpolate existing designs, can find optimal designs that
are radical departures from existing ones that might not be
considered “intuitive” by engineers nor be obtained using
traditional design methods.
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Appendix

We require that all of the designs of the leading-and-trailing
cars thatwe create bymorphing baseline leading-and-trailing
cars have continuous surfaces. In particular, we require that
at the interface labeled Ip in Fig. 3 where the nose joins
the passenger compartment that the surfaces are sufficiently
smooth that (I) the locations of the surfaces of the passenger
compartment and the nose at Ip are continuous, and (II) that
the slopes of the tangent planes of the surfaces at Ip also be
continuous. Here we show that sufficient conditions for this
smoothness are

1. The passenger compartments of all of the baseline
leading-and-trailing cars have the same shape.

2. At the interface Ip, all the baseline shapes satisfy condi-
tions (I) and (II) listed above.

3. The sum of the weights ωi used in the morph in Eq. 10
sum to unity.

Because the train’s is symmetric we need only concern our-
selves with π/2 ≥ φ ≥ 0 and π/2 ≥ θ ≥ 0 (see Fig. 3).
Let Rk(θ, φ) be the surface of the kth baseline nose. Ip is
located on the x = 0 plane at φ = π/2, π/2 ≥ θ ≥ 0. The
location, R̃(θ) of the interface Ip of each of the N baseline
leading-and-trailing cars is the the same because all of the
passenger compartments are identical:

R̃(θ) = Rk(θ, π/2), k = 0, 1, . . . , N − 1, (15)

The radius of a morphed train nose R(θ, φ) is obtained from
Eqs. 9 and 10, so it can be rewritten as

R(θ, φ) =
N−1∑

k=0

ωk Rk(θ, φ). (16)

Therefore, from Eqs. 15 and 16, if 1 = ∑N−1
k=0 ωk , the

location R(θ, π/2) of the morphed nose at Ip is R̃(θ), so
condition (I) is satisfied.

The slopes of the surfaces of two adjacent objects are
continuous at their interface if the tangent planes of the two
objects are the same at each each location of their interface.
The latter will be true if the unit normal vectors of the tan-
gent planes are the same at each location of the interface.
Let Xk(θ, φ) be the vector from the origin (in Fig. 3) to

Rk(θ, φ) andX(θ, φ)be the vector from theorigin to R(θ, φ).
So,

X =
N−1∑

k=0

ωkXk . (17)

A standard geometrical result [14,18] shows that at Ip:

nk(θ) = ∂Xk

∂θ

∣∣∣
φ=π/2

× ∂Xk

∂φ

∣∣∣
φ=π/2

, (18)

n(θ) = ∂X
∂θ

∣∣∣
φ=π/2

× ∂X
∂φ

∣∣∣
φ=π/2

, (19)

where nk(θ) and n(θ) are the unnormalized normal vectors
to the tangent planes of the noses of the kth baseline nose and
of the morphed nose, respectively, at θ at Ip. These normal
vectors can be normalized (indicated with ”hats”) to provide
unit vectors:

n̂k(θ) = nk(θ)/||nk(θ)||, (20)

n̂(θ) = n(θ)/||n(θ)||. (21)

Substituting Eqs. 17 into 19 gives at Ip:

n(θ) =
N−1∑

j=0

ω j
∂X j

∂θ

∣∣∣
φ=π/2

×
N−1∑

k=0

ωk
∂Xk

∂φ

∣∣∣
φ=π/2

(22)

Assumptions (1) and (2) in the first paragraph of the
Appendix require that at Ip

n̂0 = n̂1 = n̂2 = · · · = n̂N−1 (23)

and

χ(θ) ≡ ∂X0

∂θ

∣∣∣
φ=π/2

= ∂X1

∂θ

∣∣∣
φ=π/2

= · · · = ∂XN−1

∂θ

∣∣∣
φ=π/2

.

(24)

With the definition of χ in Eq. 24, Eq. 22 at Ip can be rewrit-
ten:

n(θ) =
N−1∑

j=0

ω jχ ×
N−1∑

k=0

ωk
∂Xk

∂φ

∣∣∣
φ=π/2

(25)

n(θ) =
N−1∑

j=0

ω j

N−1∑

k=0

ωk

(
χ × ∂Xk

∂φ

∣∣∣
φ=π/2

)
(26)

n(θ) =
N−1∑

j=0

ω j

N−1∑

k=0

ωknk, (27)

where the last equality comes from the fact that the quantity
in parenthesis in Eq. 26 is nk . From Eqs. 20 and 23, nk can
be written as
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nk(θ) = akn0(θ), (28)

where ak is constant and a0 ≡ 1. Substituting Eq. 28 into 27,
at Ip we obtain

n(θ) = n0(θ)

N−1∑

j=0

ω j

N−1∑

k=0

ωkak . (29)

Substituting Eq. 29 into 21 shows that the unit normal vector
of the tangent plane of the morphed train nose at Ip is equal
to that of baseline 0 nose at Ip, which itself is equal to that
of all of the other baseline noses at Ip due to Eq. 23. Thus,
condition (II) is satisfied.
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