
MeshfreeFlowNet: A Physics-Constrained Deep Continuous

Space-Time Super-Resolution Framework

Chiyu “Max” Jiang∗1, Soheil Esmaeilzadeh∗2, KamyarAzizzadenesheli3, KarthikKashinath4,
MustafaMustafa4, HamdiA.Tchelepi2, PhilipMarcus1, Prabhat4, and AnimaAnandkumar3,5

1
University of California, Berkeley, CA 94720, USA
2Stanford University, Stanford, CA 94305, USA

3California Institute of Technology, Pasadena, CA, 91125, USA
4Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

5NVIDIA, Santa Clara, CA 95051, USA

Abstract

We propose MeshfreeFlowNet, a novel deep learning-
based super-resolution framework to generate continuous
(grid-free) spatio-temporal solutions from the low-resolution
inputs. While being computationally efficient, Mesh-
freeFlowNet accurately recovers the fine-scale quantities
of interest. MeshfreeFlowNet allows for: (i) the output
to be sampled at all spatio-temporal resolutions, (ii) a set
of Partial Differential Equation (PDE) constraints to be im-
posed, and (iii) training on fixed-size inputs on arbitrarily
sized spatio-temporal domains owing to its fully convolu-
tional encoder.

We empirically study the performance of Mesh-
freeFlowNet on the task of super-resolution of turbulent
flows in the Rayleigh–Bénard convection problem. Across
a diverse set of evaluation metrics, we show that Mesh-
freeFlowNet significantly outperforms existing baselines.
Furthermore, we provide a large scale implementation of
MeshfreeFlowNet and show that it efficiently scales
across large clusters, achieving 96.80% scaling efficiency on
up to 128 GPUs and a training time of less than 4 minutes.
We provide an open-source implementation of our method
that supports arbitrary combinations of PDE constraints 1.

1 Introduction

In recent years, along with the significant growth of com-
putational resources, there has been an increasing attempt
towards accurately resolving the wide range of length and
time scales present within different physical systems. These
length and time scales often differ by several orders of mag-
nitude. Such time and length scale disparities are commonly
observed in different physical phenomena such as turbulent
flows, convective diffusive systems, subsurface systems, mul-
tiphase flows, chemical processes, and climate systems [1–
10]. Yet many key physical quantities of interest are highly
dependent on correctly resolving such fine scales, such as
the energy spectrum in turbulent flows.

∗Denotes equal contribution.
1source code available: https://github.com/maxjiang93/space_time_pde

From a numerical perspective, resolving the wide range
of spatio-temporal scales within such physical systems is
challenging since extremely small spatial and temporal nu-
merical stencils would be required. In order to alleviate the
computational burden of fully resolving such a wide range
of spatial and temporal scales, multiscale computational ap-
proaches have been developed. For instance, in the subsur-
face flow problem, the main idea of the multiscale approach
is to build a set of operators that map between the unknowns
associated with the computational cells in a fine-grid and the
unknowns on a coarser grid. The operators are computed
numerically by solving localized flow problems. The multi-
scale basis functions have subgrid-scale resolutions, ensur-
ing that the fine-scale heterogeneity is correctly accounted
for in a systematic manner [11–13]. Similarly, in turbu-
lent flows [14, 15], climate forecast [16], multiphase systems
[17, 18], reactive transport [19, 20], complex fluids [21] and
biological systems [22], multiscale approaches attempt to
relate the coarse-scale solutions to the fine-scale local solu-
tions taking into account the fine-scale physics and dynam-
ics. In these multiscale approaches, although the small scale
physics and dynamics are being captured and accounted for
at larger scales, the fine-grid solutions are extremely costly
and hence impractical to solve for. Reconstructing the fine-
scale subgrid solutions by having coarse-scale solutions in
space and/or time still remains a challenge.

In this manuscript, we refer to such a process of recon-
structing the fine-scale subgrid solutions from the coarse-
scale solutions as super-resolution, where the high-resolution
solutions are reconstructed using the low-resolution physi-
cal solutions in space and/or time. One key insight is that
there are inherent statistical correlations between such pairs
of low-resolution and high-resolution solutions that can be
leveraged to reconstruct high-resolution solutions from the
low-resolution inputs. Furthermore, this super-resolution
process can be effectively modeled using deep learning mod-
els that learn such statistical correlations in a self-supervised
manner from low-resolution and high-resolution pairs that
exist in a training dataset. A successful super-resolution
model should be able to efficiently represent the high-
resolution outputs, effectively scale to large spatio-temporal
domains as in a realistic problem setting, and allow for incor-
porating physical constraints in the form of PDEs to regular-

ar
X

iv
:2

00
5.

01
46

3v
2

 [
cs

.L
G

]
 2

1
A

ug
 2

02
0

https://github.com/maxjiang93/space_time_pde

ize the outputs to physically valid solutions. Furthermore,
in order for a learning-based methodology to be applied
to real problems such as Computational Fluid Dynamics
(CFD) simulations and climate modeling, the methodology
needs to address the High Performance Computing (HPC)
challenges of scalability to large scale computing systems,
for both the training and inference stages.

To this end, we propose MeshfreeFlowNet, a
novel physics-constrained, deep learning based super-
resolution framework to generate continuous (grid-free)
spatio-temporal solutions from the low-resolution inputs.
MeshfreeFlowNet first maps the low-resolution inputs
to a localized latent context grid using a convolutional en-
coder, which can then be continuously queried at arbitrary
resolutions. In summary, our main contributions are as fol-
lows:

• We propose MeshfreeFlowNet, a novel and efficient
physics-constrained deep learning model for super-
resolution tasks.

• We implement a set of physics-based metrics that al-
low for an objective assessment of the reconstruction
quality of the super-resolved high-resolution turbulent
flows.

• We empirically assess the effectiveness of the Mesh-
freeFlowNet framework on the task of super-
resolving turbulent flows in the Rayleigh–Bénard con-
vection problem, showing a consistent and significant
improvement in recovering key physical quantities of in-
terest in super-resolved solutions over competing base-
lines.

• We demonstrate the scalability of our framework to
larger and more challenging problems by providing
a large scale implementation of MeshfreeFlowNet
that scales to up to 128 GPUs while retaining a ∼ 97%
scaling efficiency.

2 Related Works

Recently, deep learning models have been applied for study-
ing fluid flow problems in different applications. In par-
ticular, a certain class of research works has studied flow
problems on a grid representation where dynamic flow prop-
erties (e.g., velocity, pressure, etc.) could be considered as
structured data similar to images. For instance, Guo et al.
[23] used convolutional architectures for approximating non-
uniform steady laminar flow around 2D and 3D objects.
Similarly, Bhatnagar et al. [24] used convolutional neural
networks for prediction of the flow fields around airfoil ob-
jects and for studying aerodynamic forces in a turbulent flow
regime. Zhu and Zabaras [25] used Bayesian deep convolu-
tional neural networks to build surrogate flow models for the
purpose of uncertainty quantification for flow applications
in heterogeneous porous media.

Alternatively, a different area of research has attempted to
solve PDEs governing different physical phenomena by us-
ing simple fully connected deep neural networks. In order to

enforce physical constraints, the PDEs under consideration
are added as a term to the loss function at the training stage.
For instance, E and Yu [26] used fully connected deep neural
networks with skip connections for solving different classes
of PDEs such as Poisson equations and eigenvalue prob-
lems. Bar and Sochen [27] used fully connected deep neural
networks for solving forward and inverse problems in the
context of electrical impedance tomography governed by el-
liptical PDEs. Long et al. [28] proposed a framework to un-
cover unknown physics in the form of PDEs by learning con-
strained convolutional kernels. Raissi et al. [29] applied fully
connected neural networks for solving PDEs in a forward or
inverse setup. Smith et al. [30] deployed residual neural net-
works to solve the Eikonal PDE equation and perform ray
tracing for an application in earthquake hypo-center inver-
sion and seismic tomography. Using their proposed frame-
work they solved PDEs in different contexts such as fluids,
quantum mechanics, seismology, reaction-diffusion systems,
and the propagation of nonlinear shallow-water waves.

More recently, alternative representations for spatial func-
tions have been explored. Li et al. [31] proposed using mes-
sage passing on graph networks in order to map between
input data of PDEs and their solutions. They showed that
the learned networks can generalize between different PDE
approximation methods (e.g., Finite Difference and Finite
Element methods) and between approximations that corre-
spond to different levels of discretization. Similar to our
MeshfreeFlowNet framework in using a latent context
grid that can be continuously decoded into an output field,
Jiang et al. [32] used such representations for the computer
vision task of reconstructing 3D scenes, where latent con-
text grids are decoded into continuous implicit functions
that represent the surfaces of different geometries.

In the area of fluid dynamics, for turbulent flow predic-
tions, Wang et al. [33] developed a physics-informed deep
learning framework. They introduced the use of train-
able spectral filters coupled with Reynolds-averaged Navier-
Stokes (RANS) and Large Eddy Simulation (LES) models
followed by a convolutional architecture in order to pre-
dict turbulent flows. Jiang et al. [34] presented a differen-
tiable physics layer within the neural networks using spec-
tral methods in order to enforce hard linear constraints. By
performing a linear projection in the spectral space, they
were able to enforce a divergence-free condition for the veloc-
ity. Accordingly, they could conserve mass within the phys-
ical system both locally and globally, allowing the super-
resolution of turbulent flows to be statistically accurate.

In computer vision applications, the super-resolution (SR)
process has been proposed in the context of reconstructing
high-resolution (HR) videos/images from the low-resolution
(LR) ones. In the literature, different classical super-
resolution methods have been proposed such as prediction-
based methods [35, 36], edge-based methods [37, 38], sta-
tistical methods [39, 40], patch-based methods [41, 42] and
sparse representation methods [43, 44]. Most recently, deep
learning based super-resolution models have also been ac-
tively explored and differ mainly in their types of specific in-
tended application, architectures, loss functions, and learn-
ing principles [45–50].

3 Preliminaries

In this section, we provide a detailed explanation of the
problem set up, notations, data sets, along with the learning
paradigm and evaluation metrics.

3.1 Problem Setup

Consider a space and time dependent partial differential
equation (PDE) with a unique solution, written in the gen-
eral form as

Γy = s ∀x ∈ Ω , (1a)

Λy = b ∀x ∈ ∂Ω , (1b)

defined on a spatio-temporal domain Ω := ΩSpatial×[0, T] ∈
Rd+1 where ΩSpatial represents a d dimensional spatial do-
main, and [0, T] represents the one dimensional temporal
domain. Here the Γ is the operator defining the PDE within
the domain (Ω), s is the source function, b is the boundary
condition function, Λ is the operator defining the PDE on
the boundary (∂Ω), and the solution to the PDE in Eqn. 1
is y : Ω→ Rm.

For a partial differential equation (Eqn. 1), a problem
instance is realized with a given source and boundary con-
dition functions s and b. For a pair (s, b), we consider H to
be an operator that generates the high-resolution solution
yH, i.e., yH = H(s, b), and L to be an operator that pro-
duces the low-resolution solution yL, i.e., yL = L(s, b,yH).
Consider a compact normed space of operators ΠF , a set
of operators F ∈ ΠF , mapping low-resolution solutions to
high-resolution ones. For a given compact normed space
of functions Πu,b, let ε (ΠF ,Πs,b) denote the approximation
gap with respect to ΠF , i.e.,

ε (ΠF ,Πu,b) :=

max
(b,u)∈Πu,b

min
F∈ΠF

‖H(s, b)−F (L(s, b,yH)) ‖ , (2)

with continuous approximation error ‖H(s, b) −
F (L(s, b,y)) ‖ in F, s, b. Here the norm is with re-
spect to a desired Lp(µ) space where p ≥ 1 and µ is a
preferred measure2. In this work, given a problem instance
specified with (s, b), we are interested in learning F using
parametric models. In order to map a low-resolution
solution to its corresponding super-resolution with low
approximation error, we require ε (ΠF ,Πs,b) to be small
and comparable with a desired error level. Therefore, given
a problem set Πu,b, a proper and rich class of operators,
ΠF , allows for a desirable approximation error.

For a given PDE in Eqn 1, defined on a hyper-rectangular
domain in Rd+1, we consider a spatio-temporal grid of res-
olutions (n1, n2, . . . , nd+1) with nd+1 denoting the num-
ber of discretized points in time domain, and a data set

2Note that in the max-min game of the Eqn. 2, the action of the
environment player, (s, b), is revealed to the approximator player to
choose F . Therefore, since the game is in the favor of the approximat-
ing player, the value of the game, ε

(
ΠF ,Πs,b

)
can be much smaller

than its min-max counterpart. We require the min-max value to be
desirably small when we aim to have a single model F to perform well
on a set of designated problems.

D := {(xi,yi)}n1·n2·...·nd+1

i=1 , of points and their solution val-
ues.

Hot

Cold

Figure 1: Configuration of the Rayleigh–Bénard instability
problem - Cold and hot plates have temperatures of TC and TH

and separated with a distance of L. Flow parameters α, ν, κ
respectively are the thermal expansion coefficient, kinematic vis-
cosity, and thermal diffusivity. g is the gravity acceleration in
the z−direction, and Lx, Lz respectively are the length of the
plates and their separation distance. x and z respectively refer
to the coordinates of the Cartesian frame of reference.

Figure 2: An illustration of a typical solution to the
Rayleigh–Bénard problem (Eqns. (3a)-(3c)). The contours re-
spectively show the solution for temperature (T), pressure (p),
and the two velocity components (u and w). For this simulation
case Pr = 1, Ra = 106, and Lx = 4Lz = 4 [m]. The spatial reso-
lution is nx = 4×nz = 512, and upon an adaptive time stepping
scheme the presented solution above is obtained at t = 25 [s].

3.2 Dataset Overview

In this work, we generate the dataset as the solution to a
classical fluid dynamics system with a chaotic nature. We
consider the well-known Rayleigh–Bénard instability prob-
lem in 2D where a static bulk fluid (kinematic viscosity ν,
thermal diffusivity α) is initially occupying the space be-
tween two horizontal plates (see Fig. 1). The lower and
upper plates are considered to be respectively hot and cold
with temperatures of TH and TC . Gradually the temper-
ature of the bulk fluid adjacent to the hot (cold) plate in-
creases (decreases) and due to the buoyancy effects and den-
sity gradient the bulk fluid ascends (descends), leading to
the formation of vortices and growth of flow instability in a
chaotic and turbulent regime. The governing partial differ-

ential equations for the Rayleigh–Bénard instability prob-
lem are

∇ · u = 0 , (3a)

∂u

∂t
+ u · ∇u +∇p− T ẑ −R∗∇2u = 0 , (3b)

∂T

∂t
+ u · ∇T − P ∗∇2T = 0 , (3c)

where P ∗ = (RaPr)−1/2 and R∗ = (Ra/Pr)−1/2 with Ra
and Pr being the Rayleigh and Prandtl numbers respec-
tively defined as Ra = gα∆TL3ν−1κ−1 and Pr = νκ−1,
with g, α, ν, κ, ∆T , and L respectively being the gravity
acceleration, thermal expansion coefficient, kinematic vis-
cosity, thermal diffusivity, temperature difference between
hot and cold plates, and the separation length between the
plates. From a physical perspective Ra quantifies the bal-
ance between the gravitational forces and viscous damping,
and Pr quantifies the ratio between momentum diffusivity
and thermal diffusivity (balance between heat convection
and conduction).

We use the Dedalus framework [51] in order to numeri-
cally solve the system of Equations (3a)-(3c) using the spec-
tral method approach. We solve Equations (3a)-(3c) for a
duration of tf in time with a time step size of ∆t. In a
coordinate system of x-axis, and z-axis, we consider a plate
length Lx and a separation distance Lz, and discretize the
domain with nx and nz points respectively in the x and z
directions.

For the simulation cases, we consider Rayleigh and
Prandtl numbers respectively in the range of Ra ∈ [104, 108]
and Pr ∈ [0.1, 10]. Upon solving the system of Eqns. (3a)-
(3c), we create a high-resolution Rayleigh–Bénard simula-
tion dataset DH , unless otherwise mentioned, with a spatial
resolution of nx = 4× nz = 512, and a temporal resolution
of nt = 400 (upon adaptive time stepping). We consider a
normalized domain size of unit length in z-direction with a
domain aspect ratio of 4, i.e., Lx = 4 × Lz = 4 [m], and
solve the Rayleigh–Bénard problem for a duration of 50 [s].
Then we create a low-resolution dataset DL, by downsam-
pling the high-resolution data in both space and time. We
use downsampling factors of dt = 4 and ds = 8 for creating
the low-resolution data in the temporal and spatial dimen-
sions respectively.

3.3 Evaluation Metrics

In this work, we use multiple physical metrics, each account-
ing for different aspects of the flow field, in order to re-
port the evaluation of the MeshfreeFlowNet model for
super-resolving low-resolution data. As the specific metrics
of evaluation, we report the Normalized Mean Absolute Er-
ror (NMAE) and R2 score for the physical metrics between
the ground truth and the predicted high-resolution data.
Such physical metrics are listed in the following.

• Total Kinetic Energy (Etot) : the kinetic energy per
unit mass associated with the flow is defined as the total
kinetic energy and can be expressed as Etot = 1

2 〈uiui〉 .

• Root Mean Square Velocity (urms) : the square root of
the scaled total kinetic energy is defined as the root
mean square (RMS) velocity as urms =

√
(2/3)Etot .

• Dissipation (ε) : is the rate at which turbulence ki-
netic energy is converted into thermal internal energy
by molecular viscosity and defined as ε = 2ν〈SijSij〉
with Sij and ν respectively being the rate of strain ten-
sor and the kinematic viscosity.

• Taylor Microscale (λ) : is the intermediate length scale
at which viscous forces significantly affect the dynamics
of turbulent eddies and defined as λ =

√
15 ν u2

rms ε
−1.

Length scales larger than the Taylor microscale (i.e.,
inertial range) are not strongly affected by viscosity.
Below the Taylor microscale (i.e., dissipation range) the
turbulent motions are subject to strong viscous forces
and kinetic energy is dissipated into heat.

• Taylor-scale Reynolds (Reλ) : is defined as the ratio of
RMS inertial forces to viscous forces and is expressed
as Reλ = urms λ ν

−1 .

• Kolmogorov Time (τη) and Length (η) Scales : Kol-
mogorov microscales are the smallest scales in turbulent
flows where viscosity dominates and the turbulent ki-
netic energy dissipates into heat. Kolmogorov time and
length scale can be respectively expressed as τη =

√
ν/ε

and η = ν3/4 ε−1/4 .

• Turbulent Integral Scale (L) : is a measure of the aver-
age spatial extent or coherence of the fluctuations and

can be expressed as L = π
2u2

rms

∫ E(k)
k dk .

• Large Eddy Turnover Time (TL) : is defined as the typ-
ical time scale for an eddy of length scale L to undergo
significant distortion and is also the typical time scale
for the transfer of energy from scale L to smaller scales,
since this distortion is the mechanism for energy trans-
fer and expressed as TL = L/urms .

3.4 Systems, Platforms and Configuration

In order to further illustrate the feasibility of utilizing
our proposed MeshfreeFlowNet framework for large
physical systems requiring processing orders of magnitude
more computation, here we study the scalability of Mesh-
freeFlowNet. We scale our model on a GPU stack on the
Cori supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC). We use data distributed
parallelism with synchronous gradient descent, and test per-
formance up to 16 nodes with a total of 128 GPUs.

In a data-parallel distribution strategy, the model is repli-
cated over all GPUs. At every step, each GPU receives
its own random batch of the dataset to calculate the lo-
cal gradients. Gradients are averaged across all devices
with an all reduce operation. To achieve better scaling
efficiency, the communication of one layer’s gradients is
overlapped with the backprop computation of the previ-
ous layer. PyTorch torch.distributed [52] package pro-
vides communication primitives for multiprocess parallelism
with different collective communication backends. We use

Low-Res
Input

Point
Samples

Pred. Values

Context
Generation
Network
(U-Net)

Latent
Context Grid

Continuous
Decoding
Network
(MLP)

Input Query Supervision

OutputLearned Model: MeshfreeFlowNet

Prediction
Loss

Equation
Loss

High-Res
Ground Truth

PDE Constraints

Figure 3: Schematic for the training pipeline for MeshfreeFlowNet model
for continuous space-time super-resolution. An input low-resolution grid is fed
to the Context Generation Network that creates a Latent Context Grid. A
random set of points in the corresponding space-time domain is sampled to
query the Latent Context Grid, and the physical output values at these query
locations can be continuously decoded using a Continuous Decoding Network,
implemented as a Multilayer Perception. Due to the differentiable nature of the
MLP, any partial derivatives of the output physical quantities with respect to
the input space-time coordinates can be effectively computed via backpropaga-
tion, that can be combined with the PDE constraints to produce an Equation
Loss. On the other hand, the predicted value can be contrasted with the ground
truth value at these locations produced by interpolating the high-resolution
ground truth to produce a Prediction Loss. Gradients from the combined losses
can be backpropagated to the network for training.

Backpropagation

Figure 4: Schematic for the continuous de-
coding module for MeshfreeFlowNet. The
continuous decoding network is a Multilayer
Perception that inputs the spatio-temporal co-
ordinates of a query point, along with a la-
tent context vector, and is decoded into the
required physical channels of interest. Since
each query point falls into a cell bounded by
8 neighboring vertices, the query is performed
8 times, each using a different latent context
vector and a different relative spatio-temporal
coordinate with respect to each vertex. The
values are then interpolated using trilinear in-
terpolation to get the final value at the query
point.

NVIDIA’s Collective Communications Library (NCCL) [53]
backend which gave us the best performance when running
on GPUs, both within and across multiple nodes. The
PyTorch torch.nn.parallel.DistributedDataParallel

[54] wrapper, which we use for the results in this paper,
builds on top of the torhch.distributed package to pro-
vide efficient data-parallel distributed training. With this
setup, we achieve more than 96% throughput efficiency on
16 Cori GPU nodes, 128 GPUs in total. Cori has 8 V100
(Volta) GPUs per node, the GPUs are interconnected with
NVLinks in hybrid cube-mesh topology [55]. The nodes are
equipped with Mellanox MT27800 (ConnectX-5) EDR In-
finiBand network cards.

4 MeshfreeFlowNet

In this work, we propose the MeshfreeFlowNet frame-
work as a novel computational algorithm for constructing
the super-resolution solutions to partial differential equa-
tions using their low-resolution counterpart solutions.

A schematic for the training pipeline for the Mesh-
freeFlowNet model is presented in Fig. 3. The model
inputs a low-resolution spatio-temporal grid that can be ac-

quired from a PDE solver, along with query locations that
can be any continuous value within the range of the input
domain. MeshfreeFlowNet produces a predicted output
vector at each query location. MeshfreeFlowNet con-
sists of two subnetworks, namely the Context Generation
Network, and the Continuous Decoding Network. The Con-
text Generation Network produces a Latent Context Grid,
which is a learned localized representation of the function.
The Latent Context Grid contains latent context vectors
c ∈ Rnc at each grid vertex, which along with spatio-
temporal coordinates x := {x, z, t}, can be concatenated
and fed into the Continuous Decoding Network, modeled
as a Multilayer Preceptron (MLP), to generate the physical
outputs y ∈ Rm. For training the model, two loss terms,
namely the prediction loss and the equation loss are used.
We present a more detailed architectural breakdown for our
method and our baseline method in Fig. 5. We discuss
the details of the Context Generation Network (Sec. 4.1),
Continuous Decoding Network (Sec. 4.2), and loss functions
(Sec. 4.3) in the following subsections.

Context Generation Network (3D U-Net, Shared)

Low-Res Input Latent Context Grid

Continuous
Decoding Network

(Ours)

Convolutional
Decoder

(Baseline II)

c = 4 c = 16 c = 32 c = 64 c = 128 c = 256 c = 128 c = 64 c = 32 c = 16

[4, 16, 16] [4, 16, 16] [4, 8, 8] [4, 4, 4] [2, 2, 2] [1, 1, 1] [2, 2, 2] [4, 4, 4] [4, 8, 8] [4, 16, 16]

Latent
Context
Vector

Point
Coords

32

Concatenate Copy & Concatenate
FC + Swish FC

3

35

512
256

128
64

32
4

Continuous
Decoding
Network
(Ours)

c = 32
c = 32

c = 32
c = 4

Latent
Context Grid

[4, 16, 16] [8, 32, 32] [16, 64, 64] [16, 128, 128]

Hi-Res Output

Convolutional
Decoder
(Baseline II)

ResBlock

Conv3d (1x1x1)
BatchNorm

ReLU

Conv3d (3x3x3)
BatchNorm

Conv3d (1x1x1)
BatchNorm

ReLU

ReLU

+

ResBlock ResBlock + Max Pool Up Sample + ResBlock c: # of Feature Dims [nt, nz, nx]: # of Physical DimsConcatenate

Figure 5: A schematic for the architecture of the MeshfreeFlowNet framework. MeshfreeFlowNet consists of two end-to-end
trainable modules: the Context Generation Network, and the Continuous Decoding Network. The Baseline (II) method that we
exhaustively compare with share the same 3D U-Net structure in the encoding arm, but instead uses a convolutional decoder for
producing the final output. In comparison, the MeshfreeFlowNet allows for continuous output that can be sampled at arbitrary
space-time locations.

100×NMAE
(R2)

γ Etot urms ε λ Reλ τη η L TL avg. R2

0
0.667

(0.9991)
0.768

(0.9987)
0.666

(0.9991)
0.545

(0.9985)
0.444

(0.9989)
0.753

(0.9981)
0.752

(0.9984)
0.837

(0.9968)
0.455

(0.995)
0.9986

0.0125
0.650

(0.9990)
0.616

(0.9992)
0.639

(0.9991)
0.457

(0.9989)
0.435

(0.9986)
0.589

(0.9988)
0.588

(0.9990)
0.670

(0.9982)
0.432

(0.9994)
0.9989

0.025
0.671

(0.9993)
0.699

(0.9992)
0.671

(0.9993)
0.454

(0.9990)
0.332

(0.9994)
0.705

(0.9985)
0.698

(0.9988)
0.781

(0.9973)
0.430

(0.9996)
0.9989

γ∗ = 0.05
0.621

(0.9993)
0.603

(0.9992)
0.617

(0.9993)
0.431

(0.9992)
0.429

(0.9989)
0.461

(0.9994)
0.483

(0.9994)
0.857

(0.9972)
0.418

(0.9996)
0.9991

0.1
3.209

(0.9894)
1.790

(0.9954)
3.015

(0.9907)
1.024

(0.9907)
1.013

(0.9917)
1.628

(0.9902)
1.636

(0.9925)
1.970

(0.9900)
2.443

(0.9922)
0.9914

0.2
1.396

(0.9979)
5.059

(0.9679)
1.373

(0.9978)
3.964

(0.8835)
3.553

(0.8781)
4.329

(0.9270)
4.415

(0.9436)
3.589

(0.9739)
1.636

(0.9962)
0.9518

0.4
3.560

(0.9854)
13.270

(0.7909)
3.533

(0.9854)
10.119

(-0.177)
10.056

(-0.366)
9.9149
(0.466)

10.392
(0.5923)

5.787
(0.9343)

1.751
(0.9917)

0.5780

0.8
11.433

(0.8507)
15.727

(0.6805)
11.171

(0.8701)
13.502

(-1.610)
14.664

(-2.556)
11.778

(0.0830)
12.385

(0.3005)
2.092

(0.9819)
8.033

(0.9231)
0.0582

1.0
13.617

(0.7954)
17.970

(0.6031)
13.441

(0.8206)
15.080

(-2.536)
16.508

(-3.746)
12.868

(-0.121)
13.631

(0.1487)
6.165

(0.9179)
8.546

(0.9154)
-0.2447

Table 1: Normalized Mean Absolute Error (NMAE) and R2-score of the flow-based evaluation metrics evaluated for the predicted
vs. the ground truth high-resolution validation data. γ refers to the coefficient of the Equation loss (Le) in the total loss function
(Eqn. 10).

4.1 Context Generation Network

The Context Generation Network is a convolutional encoder
that produces a Latent Context Grid from the low-resolution
physical input DL. Denote this network as

G = Ψθ1(DL) , (4)

where θ1 is the set of learnable parameters associated
with this network, G is the generated context grid, G ∈
Rn1×n2×···×nd+1×nc where nc is the number of latent chan-

nels or the dimensions of each latent context vector. It
is worth noting that the function Ψθ1 can be applied on
a small fixed-size sub-window of Ω, since the model is
fully-convolutional. By applying it to the input in a fully-
convolutional manner, the size of the domain at test time
(both spatial and temporal sizes) can be orders of magni-
tude greater than the dimensions of DL.

In this work, we implement the Context Generation Net-
work as a 3D variant of the U-Net architecture which was
originally proposed by Ronneberger et al. [56]. U-Net has
successfully been applied for different computer vision tasks
that involve dense localized predictions such as image style
transfer [57], image segmentation [58, 59], image enhance-
ment [60], image coloring [61, 62], and image generation
[63, 64]

Different from the original U-Net architecture, we re-
place the 2D convolutions with 3D counterparts and utilize
residue blocks instead of individual convolution layers for
better training properties of the network. The U-Net com-
prises of a contractive part followed by an expansive part.
The contractive part is composed of multiple stages of con-
volutional residue blocks, each followed by a max-pooling
layer (of stride 2). Each residue block consists of 3 convolu-
tion layers (1x1, 3x3, 1x1) interleaved with batch normaliza-
tion layers and ReLU activation. The expansive part mir-
rors the contractive part, replacing max-pooling with near-
est neighbor upsampling. In between the layers with similar
grid sizes within the contractive and expansive parts, a skip
connection concatenates the features from the contractive
layer with the features in the expansive layer as the input
to the subsequent layers in the contractive part in order to
preserve the localized contextual information.

4.2 Continuous Decoding Network

One unique property of our super-resolution methodology
is that the output is continuous instead of discrete. This
removes the limitations in output resolution, and addition-
ally, it allows for an effective computation of the gradients of
predicted output physical quantities, enabling an easy way
of enforcing PDE-based physical constraints.

The continuous decoding network can be implemented us-
ing a simple Multilayer Perceptron, see Fig. 4. For each
query, denote the spatio-temporal query location to be xi
and the latent context grid to be G := {(xj , cj); j ≤ ||G||},
where (xj , cj) are the spatio-temporal coordinates and the
latent context vector for the j-th vertex of the grid. Denote
Ni as the set of neighboring vertices that bound xi, where
for a (d+1) dimensional spatio-temporal grid ||Ni|| = 2d+1.
Denote the continuous decoding network, implemented as a
Multilayer Perception as

Φθ2(x, c) , (5)

where θ2 is the set of trainable parameters of the Multilayer
Perception network. The query value at x with respect to
the shared network Φθ2(x) and the latent context grid G can

be calculated as

C(xi,G,Φθ2) =
∑
j∈Ni

wjΦθ2(
xi − xj

∆x
, cj) , (6)

where
∑
j∈Ni

wj = 1, wj is the trilinear interpolation weight
with respect to the bounding vertex j, ∆x := {∆x,∆z,∆t}
is the stencil size corresponding to the discretization grid
vertices.

Since the Continuous Decoding Network is implemented
as an MLP, arbitrary spatio-temporal derivatives of the out-
put quantities: Γy can be effectively computed via back-
propagation through the MLP. Denote the approximation
of the derivative operator to be ΓΦ. We combine the par-
tial derivatives to compute the equation loss as the norm of
the residue of the governing equations. In the continuous
decoding network we consider two infinitely differentiable
activation functions namely Softplus and Swish, where we
have found the results obtained by Swish to outperform the
ones obtained by Softplus.

4.3 Loss Function

We use a weighted combination of two losses to train our
MeshfreeFlowNet network: the norm of the difference
between the predicted physical outputs and the ground
truth physical outputs, which we refer to as Prediction Loss,
and the norm of the residues of the governing PDEs, which
we refer to as Equation Loss.

Denote the set of sample locations within a mini-batch
B of training samples to be {(xij ,yij ,DiL); i ∈ B, j ∈ Bi}
where Bi is the mini-batch of point samples for the i-th
low-resolution input, y is the vector that represents the
ground truth physical output quantities. In the case of
the Rayleigh-Bénard Convection example in this study, we
have y := {P, T, u, v} where P, T, u, v are the pressure, tem-
perature, x-velocity and y-velocity terms respectively. The
super-resolution for the learned model queried at x condi-
tioning on low-resolution input DL is

ŷ(x,DL; θ1, θ2) = C(x,Ψθ1(DL),Φθ2) , (7)

where ŷ is the predicted output vector. The prediction loss
Lp for a mini-batch can be formulated as

Lp =
1

|B|
∑
i∈B

1

||Bi||
∑
j∈Bi

||yij − ŷij ||l , (8)

where || · ||l is the Frobenius l-norm of the difference. We
use the L1 Norm for computing the prediction loss. The
Equation loss Le for a mini-batch can be formulated as

Le =
1

|B|
∑
i∈B

1

||Bi||
∑
j∈Bi

||ΓΦŷ
i
j − s||l , (9)

which is the norm of the PDE equation residue, using the
PDE definition in Eqn. 1. Finally, a single loss term for
training the network can be represented as a weighted sum
of the two loss terms as

L = Lp + γLe , (10)

where γ is a hyperparameter for weighting the equation loss.

100×NMAE
(R2)

Model Etot urms ε λ Reλ τη η L TL avg. R2

Baseline (I)
69.6360

(-19.7894)
3470.132

(-57.7717)
76.338
(-14)

78.164
(-11096)

75.729
(-4934)

77.410
(-12599)

122.55
(-3147)

137.376
(-0.5190)

109.398
(-3.0092)

-3541

Baseline (II)
6.489

(0.9557)
8.769

(0.8967)
6.144

(0.9593)
3.903

(0.9490)
2.489

(0.9711)
5.584

(0.9382)
6.019

(0.94019)
2.902

(0.9597)
5.076

(0.9644)
0.9482

MeshfreeFlowNet, γ = 0
0.667

(0.9991)
0.768

(0.9987)
0.666

(0.9991)
0.545

(0.9985)
0.444

(0.9989)
0.753

(0.9981)
0.752

(0.9984)
0.837

(0.9968)
0.455

(0.995)
0.9986

MeshfreeFlowNet, γ = γ∗
0.621

(0.9993)
0.603

(0.9992)
0.617

(0.9993)
0.431

(0.9992)
0.429

(0.9989)
0.461

(0.9994)
0.483

(0.9994)
0.857

(0.9972)
0.418

(0.9996)
0.9991

Table 2: Comparison between the performance of MeshfreeFlowNet framework for super-resolving the low-resolution data vs.
two baseline models.

100×NMAE
(R2)

Dataset(s)
(γ = γ∗)

Etot urms ε λ Reλ τη η L TL avg. R2

1
0.621

(0.9993)
0.603

(0.9992)
0.617

(0.9993)
0.431

(0.9992)
0.429

(0.9989)
0.461

(0.9994)
0.483

(0.9994)
0.857

(0.9972)
0.418

(0.9996)
0.9991

10
0.609

(0.9995)
0.599

(0.9993)
0.603

(0.9991)
0.428

(0.9991)
0.411

(0.9987)
0.470

(0.9990)
0.497

(0.9991)
0.673

(0.9998)
0.345

(0.9998)
0.9993

Table 3: For a MeshfreeFlowNet model that has been respectively trained on 1 dataset and 10 datasets each having a different
initial condition, the super-resolution performance evaluation is reported on a dataset with an unseen initial condition.

100×NMAE
(R2)

Ra Etot urms ε λ Reλ τη η L TL avg. R2

1× 104 1.180
(0.9973)

0.401
(0.99963)

0.709
(0.9992)

44.6435
(0.2038)

1.357
(0.9977)

2.983
(0.4588)

2.374
(0.8726)

70.34
(0.0104)

0.137
(0.9996)

0.7266

1× 105 0.670
(0.9987)

0.537
(0.9995)

0.611
(0.9990)

0.450
(0.9992)

0.472
(0.9989)

0.589
(0.9992)

0.574
(0.9993)

0.713
(0.9990)

0.331
(0.9996)

0.9992

5× 106 1.043
(0.9981)

1.0601
(0.9927)

1.017
(0.9963)

1.054
(0.9963)

0.954
(0.9961)

1.441
(0.9921)

1.692
(0.9924)

0.792
(0.9934)

0.441
(0.993)

0.9997

1× 107 1.395
(0.9958)

3.044
(0.9743)

1.405
(0.9957)

2.767
(0.9691)

1.821
(0.9862)

2.900
(0.9714)

2.924
(0.9725)

2.9817
(0.9749)

1.077
(0.9969)

0.9819

1× 108 3.184
(0.9870)

4.454
(0.9664)

3.221
(0.9869)

6.362
(0.8826)

7.471
(0.8110)

6.051
(0.9219)

5.704
(0.9375)

3.658
(0.9692)

2.027
(0.9930)

0.9395

Table 4: For a MeshfreeFlowNet model that has been trained on 10 datasets each having a different boundary condition
(Rayleigh number) as Ra ∈ [2, 90] × 105 with Pr = 1, the super-resolution performance evaluation is reported for: a Rayleigh
number within the range of boundary conditions of the training sets (i.e., Ra = 5 × 106), Rayleigh numbers slightly below and
above the range of boundary conditions of the training sets (i.e., Ra = 1×105 and Ra = 1×107 respectively), and Rayleigh numbers
far below and above the range of boundary conditions of the training sets (i.e., Ra = 1× 104 and Ra = 1× 108 respectively).

5 Experiments

In all the experiments, we use an Adam optimizer with
learning rate of 10−2, and l1 regularization for the loss func-
tion, 3000 random samples per epoch, and train for 100
epochs.

5.1 Prediction Loss vs. Equation Loss

In this part, we investigate the influence of the importance
given to the Equation loss and the prediction loss (see, Sec-
tion 4.3) on the performance of MeshfreeFlowNet. As
presented in Eqn. 10, the total loss (L) comprises of the
Prediction loss (Lp) and the Equation loss (Le) where the
Equation loss is weighted with a scaling coefficient γ. Ac-
cordingly, we study the influence of the hyperparameter
γ in the loss function given in Eqn. 10 on the accuracy
of MeshfreeFlowNet. For this purpose, we consider
γ ∈ {0, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.0}. Consider-
ing both Softplus and Swish activation functions in the con-

tinuous decoding network, we have found that the results
obtained by the latter one outperform the ones obtained by
the former one, for which, the values of the evaluation met-
rics for MeshfreeFlowNet trained with each of the γ val-
ues are presented in Table 1. γ = 0 indicates a loss function
which only depends on the Prediction loss, and the physical
aspects (PDE imposed constraints) of the predicted high-
resolution data are not accounted for. As presented in Table
1, the best performance on the validation set is achieved for
a loss function with the Equation loss weighting coefficient
of γ = 0.05. Allover this work we refer to this optimum
weighting coefficient as γ∗ and perform the training tasks
using the loss function in Eqn. 10 where the Equation loss is
weighted with γ∗ = 0.05. As presented in Table 1, a model
that is trained with γ = 0, which only focuses on the data
(i.e., uses Prediction loss only) and does not account for the
physics and the PDE constraints (i.e., ignores Equation loss)
underperforms compared to the trained model with γ = γ∗.
On the other hand models trained with a significant focus
on the physical constraints only (i.e., large γ) underper-

form in super-resolving the low-resolution data. In general,
a balance between the focus of the MeshfreeFlowNet on
the model and the physical constraints leads to an optimal
super-resolution performance. In achieving that, in Eqn. 10,
the Prediction loss (Lp) captures the global structure of the
data and the Equation loss (Le) further guides the model in
accurately reconstructing the local structure of the data.

5.2 MeshfreeFlowNet vs. Baseline Models

In this section, we present a comparison between the perfor-
mance of our proposed MeshfreeFlowNet framework for
super-resolving low-resolution data against two baselines,
namely: a classic trilinear interpolation algorithm (Base-
line (I)), and a deep learning based 3D U-Net model (Base-
line (II)). Specifically for the 3D U-Net model for Baseline
(II), we use the same U-Net backbone as in our Mesh-
freeFlowNet framework, with the difference being that
while MeshfreeFlowNet uses the 3D U-Net to generate
a latent context grid, the baseline U-Net continues with 3D
up-sampling and transpose-convolution operations up to the
target high-resolution space (see, Fig. 5). Table 2 presents
the comparison of the MeshfreeFlowNet with the base-
line models. As shown in Table 2, the Baseline (I) is a
purely interpolation-based approach and fails to reconstruct
the high-resolution data and resolve the fine-scale details,
leading to large errors in flow-based evaluation metrics that
characterize the flow dynamics. The extremely large nor-
malized mean absolute error (NMAE) of the calculated rms
velocity for the fine-scale solution found by Baseline (I) indi-
cates that a merely interpolative scheme cannot accurately
reconstruct the fine-scale local dynamics (e.g., the flow ve-
locities). Moreover, the NMAE of the total kinetic energy
(Etot), as a global characterizing parameter of the turbulent
dynamics, is also very large for the high-resolution solution
by Baseline (I). On the other hand, the deep learning based
Baseline (II) which utilizes the 3D U-Net model directly
maps the low-resolution data to the high-resolution space,
achieves better performance compared to Baseline (I). How-
ever, as presented in Table 2, our MeshfreeFlowNet
model performs significantly better than Baselines (I) and
(II). The specification of γ in Table 2 refers to the weighting
coefficient of the Equation loss component in the loss func-
tion in Eqn. 10. In Table 2, γ = 0 indicates that only the
prediction loss has been considered for training the Mesh-
freeFlowNet model, whereas γ = γ∗ refers to the opti-
mum value for the weighting coefficient of the Equation loss
from the ablation study (see, Table 1, Sec. 5.1).

5.3 Generalizability of MeshfreeFlowNet

We further evaluate the robustness of MeshfreeFlowNet
for resolution enhancement of low-resolution datasets that
have physical initial and boundary conditions different from
the datasets the MeshfreeFlowNet model has been
trained on. We refer to such initial and boundary condi-
tions as unseen initial/boundary conditions. In order to
investigate the generalizability of MeshfreeFlowNet on
unseen initial and boundary conditions, we study the effect

of each condition separately in the following setups.

5.3.1 Unseen Physical Initial Conditions

We investigate the robustness of a trained Mesh-
freeFlowNet for enhancing the resolution of a low-
resolution unseen data with physical initial conditions
different than the training datasets that the Mesh-
freeFlowNet has been trained on. Table 3 shows the
performance of the MeshfreeFlowNet on a dataset with
unseen initial conditions. The first row of Table 3 shows
the values of the evaluation metrics for unseen test data
when MeshfreeFlowNet is trained only on one dataset
whereas the second row shows the values of the evalua-
tion metrics when MeshfreeFlowNet is trained on 10
datasets each with a different initial condition. As can
be observed from the results, the performance of Mesh-
freeFlowNet on unseen cases can be improved by train-
ing on a more diverse set of initial conditions.

5.3.2 Unseen Physical Boundary Conditions

We further investigate the robustness of a trained Mesh-
freeFlowNet for super-resolving a low-resolution unseen
dataset with physical boundary conditions different from
the training datasets that the MeshfreeFlowNet has
been trained on. As the use of more datasets in Sec. 5.3.1
was shown to be effective in improving the performance of
MeshfreeFlowNet for super-resolution, here we use a
dataset that comprises of 10 different sets of boundary con-
ditions (i.e. different Rayleigh numbers of Ra ∈ [2, 90]×105,
corresponding to Reynolds numbers of up to 10,000). Ta-
ble 4 shows the performance of such a trained Mesh-
freeFlowNet for 5 different test datasets each with a
different Rayleigh number boundary condition. In Table
4, MeshfreeFlowNet’s performance is evaluated for a
Rayleigh number within the range of boundary conditions
of the training sets (i.e., Ra = 5×106), for Rayleigh numbers
slightly below and above the range of boundary conditions
of the training sets (i.e., Ra = 1× 105 and Ra = 1× 107 re-
spectively), and for Rayleigh numbers far below and above
the range of boundary conditions of the training sets (i.e.,
Ra = 1× 104 and Ra = 1× 108 respectively). As presented
in Table 4, MeshfreeFlowNet achieves a good perfor-
mance not only on the boundary conditions within the range
of Rayleigh number boundary conditions it has been trained
on, but also on the unseen boundary conditions far out of
the range of Rayleigh number boundary conditions it has
been trained on. This illustrates the fact that a trained
MeshfreeFlowNet model can generalize well to unseen
boundary conditions.

5.4 Scalability of MeshfreeFlowNet

Last but not least, we study the scalability of the Mesh-
freeFlowNet model to study its applicability to larger
problems that require orders-of-magnitude more compute.
The scaling results are presented in Fig. 7. Figs. 7a demon-
strates that an almost-ideal scaling performance can be
achieved for the MeshfreeFlowNet model on up to 128

High-Resolution
Ground Truth

High-Resolution
Prediction

(MeshfreeFlowNet)

Low-Resolution
Input

Figure 6: Sample tuples of low-resolution input data for MeshfreeFlowNet, the high-resolution super-resolved data by Mesh-
freeFlowNet, and the ground truth high-resolution data for the 4 physical parameters of the Rayleigh–Bénard problem, i.e.,
T, p, u, w as the temperature, pressure, and the x and z components of the velocity. The contours correspond to the Mesh-
freeFlowNet model evaluation presented in Table 4 for Ra = 1× 108.

0 25 50 75 100 125
Number of GPUs

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (s

am
pl

es
 p

er
 se

c)

1e3
measured
ideal

(a) Throughput vs. Num. of GPUs

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

1 gpu
2 gpus
16 gpus
128 gpus

(b) Loss vs. Num. of Epochs

0.0 0.5 1.0 1.5 2.0
Wall Time (s) 1e4

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

1 gpu
2 gpus
16 gpus
128 gpus

(c) Loss vs. Wall Time

Figure 7: Scaling performance on up to 128 GPUs on NERSC Cori GPU cluster. Scaling efficiency is close to ideal performance, at
96% with all 128 GPUs. Training convergence is greatly accelerated by scaling across more GPUs. The shaded band in Fig. 7b-7c
denotes the (10%, 90%) noise interval. Throughput refers to the number of samples per second.

GPU workers, achieving approximately 96.80% scaling effi-
ciency. In Fig. 7b, we show the convergence for the model
training loss with respect to the number of epochs. In
Fig. 7c, we show the loss convergence with respect to to-
tal wall time, where an increasing number of GPU workers
leads to a drastic decrease in total training time. As the
models achieve similar levels of losses after 100 epochs, yet
the training throughput scales almost linearly with the num-
ber of GPUs, we see a close to an ideal level of scaling for
convergence speed on up to 16 GPUs. A small anomaly
regarding the loss curve for 128 GPUs where the loss does
not decrease to an ideal level after 100 epochs shows that
a very large batch size could lead to diminishing scalability
with respect to model convergence. This has been observed
in numerous machine learning scaling studies and requires
further investigations within the community.

6 Conclusion and Future Work

In this work, for the first time, we presented the Mesh-
freeFlowNet, a physics-constrained super-resolution
framework, that can produce continuous super-resolution
outputs, would allow imposing arbitrary combinations of
PDE constraints and could be evaluated on arbitrary-sized
spatio-temporal domains due to its fully-convolutional na-

ture. We further demonstrated that MeshfreeFlowNet
can recover a wide range of important physical flow quanti-
ties (e.g., including Turbulent Kinetic Energy, Kolmogorov
Time and Length Scales, etc.) by accurately super-resolving
turbulent flows significantly better than traditional (tri-
linear interpolation) and deep learning based (3D U-Net)
baselines. We further illustrated the scalability of Mesh-
freeFlowNet to a large cluster of GPU nodes with a high
speed interconnect, demonstrating its applicability to prob-
lems that require orders of magnitude more computational
resources.

Future work includes exploring the applicability of Mesh-
freeFlowNet to other physical applications beyond 2D
Rayleigh Bernard convection. One interesting direction to
pursue is to explore the use of 4D spatio-temporal convo-
lution operators such as those proposed by Choy et al. [65]
to further extend this framework to 4D space-time simula-
tions. That will open up a wide range of applications in
Turbulence modeling, where statistical priors between the
low-resolution simulation and subgrid-scale physics can be
learned from 3 + 1D Direct Numerical Simulations (DNS).
The scalability of the model on HPC clusters will be critical
in learning from such large scale datasets, where single node
training will be prohibitively slow. The fully convolutional
nature of the MeshfreeFlowNet framework, along with

the demonstrated scalability makes it well poised for such
challenges. Moreover, due to the generalizability of our PDE
constrained framework, it would be interesting to apply this
framework on applications beyond turbulent flows.

Acknowledgements

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a DOE Of-
fice of Science User Facility supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. The research was performed
at the Lawrence Berkeley National Laboratory for the U.S.
Department of Energy under Contract No. DE340AC02-
05CH11231. K. Kashinath is supported by the Intel Big
Data Center at NERSC. K. Azizzadenesheli gratefully ac-
knowledges the financial support of Raytheon and Ama-
zon Web Services. A. Anandkumar is supported in part
by Bren endowed chair, DARPA PAIHR00111890035 and
LwLL grants, Raytheon, Microsoft, Google, and Adobe fac-
ulty fellowships. We also acknowledge the Industrial Con-
sortium on Reservoir Simulation Research at Stanford Uni-
versity (SUPRI-B).

References

[1] Guoqing Hu and Dongqing Li. Multiscale phenomena
in microfluidics and nanofluidics. Chemical Engineering
Science, 62(13):3443–3454, 2007. ISSN 00092509. doi:
10.1016/j.ces.2006.11.058.

[2] James Hurrell, Gerald A. Meehl, David Bader, Thomas L.
Delworth, Ben Kirtman, and Bruce Wielicki. A Unified
Modeling Approach to Climate System Prediction. Bulletin
of the American Meteorological Society, 90(12):1819–1832,
dec 2009. ISSN 0003-0007. doi: 10.1175/2009BAMS2752.1.

[3] Biman Bagchi and Charusita Chakravarty. Interplay be-
tween multiple length and time scales in complex chemical
systems. Journal of Chemical Sciences, 122(4):459–470, jul
2010. ISSN 0974-3626. doi: 10.1007/s12039-010-0081-0.

[4] Chaoqun Liu and Zhining Liu. Multiple scale simulation for
transitional and turbulent flow. In 33rd Aerospace Sciences
Meeting and Exhibit, Reston, Virigina, jan 1995. American
Institute of Aeronautics and Astronautics. doi: 10.2514/6.
1995-777.

[5] P. Szymczak and A. J. C. Ladd. Interacting length scales
in the reactive-infiltration instability. Geophysical Research
Letters, 40(12):3036–3041, jun 2013. ISSN 00948276. doi:
10.1002/grl.50564.

[6] Zhipeng Qin, Soheil Esmaeilzadeh, Amir Riaz, and
Hamdi A. Tchelepi. Two-Phase Multiscale Numerical
Framework for Modeling Thin Films on Curved Solid Sur-
faces in Porous Media. Journal of Computational Physics,
page 109464, Apr 2020. ISSN 00219991. doi: 10.1016/j.jcp.
2020.109464.

[7] Shaoping Quan. Simulations of multiphase flows with multi-
ple length scales using moving mesh interface tracking with

adaptive meshing. Journal of Computational Physics, 230
(13):5430–5448, 2011. ISSN 10902716. doi: 10.1016/j.jcp.
2011.03.050.

[8] A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr. Onset
of convection in a gravitationally unstable diffusive bound-
ary layer in porous media. Journal of Fluid Mechanics,
548(-1):87, feb 2006. ISSN 0022-1120. doi: 10.1017/
S0022112005007494.

[9] Soheil Esmaeilzadeh, Amir Salehi, Gill Hetz, Feyisayo
Olalotiti-lawal, Hamed Darabi, and David Castineira. Mul-
tiscale modeling of compartmentalized reservoirs using a
hybrid clustering-based non-local approach. Journal of
Petroleum Science and Engineering, 184(September 2019):
106485, jan 2020. ISSN 09204105. doi: 10.1016/j.petrol.
2019.106485.

[10] Soheil Esmaeilzadeh, Amir Salehi, Gill Hetz, Feyisayo
Olalotiti-lawal, Hamed Darabi, and David Castineira. A
General Spatio-Temporal Clustering-Based Non-Local For-
mulation for Multiscale Modeling of Compartmentalized
Reservoirs. In SPE Western Regional Meeting, volume 2019.
Society of Petroleum Engineers, apr 2019. doi: 10.2118/
195329-MS.

[11] P. Jenny, S.H. Lee, and H.A. Tchelepi. Adaptive fully im-
plicit multi-scale finite-volume method for multi-phase flow
and transport in heterogeneous porous media. Journal of
Computational Physics, 217(2):627–641, sep 2006. ISSN
00219991. doi: 10.1016/j.jcp.2006.01.028.

[12] P. Jenny, S. H. Lee, and H. A. Tchelepi. Adaptive Multiscale
Finite-Volume Method for Multiphase Flow and Transport
in Porous Media. Multiscale Modeling & Simulation, 3(1):
50–64, jan 2005. ISSN 1540-3459. doi: 10.1137/030600795.

[13] P. Jenny, S.H Lee, and H.A Tchelepi. Multi-scale finite-
volume method for elliptic problems in subsurface flow sim-
ulation. Journal of Computational Physics, 187(1):47–67,
may 2003. ISSN 00219991. doi: 10.1016/S0021-9991(03)
00075-5.

[14] F. Bramkamp, Ph Lamby, and S. Müller. An adaptive mul-
tiscale finite volume solver for unsteady and steady state
flow computations. Journal of Computational Physics, 197
(2):460–490, 2004. ISSN 00219991. doi: 10.1016/j.jcp.2003.
12.005.

[15] Michael F. Modest. Multiscale Modeling of Turbulence, Ra-
diation, and Combustion Interactions in Turbulent Flames.
International Journal for Multiscale Computational Engi-
neering, 3(1):85–106, 2005. ISSN 1543-1649. doi: 10.1615/
IntJMultCompEng.v3.i1.70.

[16] Bo-Wen Shen, Bron Nelson, Samson Cheung, and Wei-Kuo
Tao. Improving NASA’s Multiscale Modeling Framework
for Tropical Cyclone Climate Study. Computing in Science
& Engineering, 15(5):56–67, sep 2013. ISSN 1521-9615. doi:
10.1109/MCSE.2012.90.

[17] K. H. Luo, J. Xia, and E. Monaco. Multiscale modeling of
multiphase flow with complex interactions, volume 1. 2009.
ISBN 1756973709. doi: 10.1142/S1756973709000074.

[18] Hsiaotao T. Bi and Jinghai Li. Multiscale analysis and
modeling of multiphase chemical reactors. Advanced Pow-
der Technology, 15(6):607–627, 2004. ISSN 09218831. doi:
10.1163/1568552042456223.

[19] Matthias Bauer and Gerhart Eigenberger. Multiscale model-
ing of hydrodynamics, mass transfer and reaction in bubble
column reactors. Chemical Engineering Science, 56(3):1067–
1074, 2001. ISSN 00092509. doi: 10.1016/S0009-2509(00)
00323-7.

[20] Mehmet T. Odman and Armistead G. Russell. Multiscale
modeling of pollutant transport and chemistry. Journal of
Geophysical Research, 96(D4):7363, 1991. ISSN 0148-0227.
doi: 10.1029/91JD00387.

[21] Weiqing Ren and E. Weinan. Heterogeneous multiscale
method for the modeling of complex fluids and micro-
fluidics. Journal of Computational Physics, 204(1):1–26,
2005. ISSN 00219991. doi: 10.1016/j.jcp.2004.10.001.

[22] Paris Perdikaris, Leopold Grinberg, and George Em Karni-
adakis. Multiscale modeling and simulation of brain blood
flow. Physics of Fluids, 28(2), 2016. ISSN 10897666. doi:
10.1063/1.4941315.

[23] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional
neural networks for steady flow approximation. In Proceed-
ings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016.

[24] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik
Duraisamy, and Shailendra Kaushik. Prediction of aerody-
namic flow fields using convolutional neural networks. Com-
putational Mechanics, 64(2):525–545, 2019.

[25] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convo-
lutional encoder–decoder networks for surrogate modeling
and uncertainty quantification. Journal of Computational
Physics, 2018. ISSN 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2018.04.018.

[26] Weinan E and Bing Yu. The deep ritz method: A deep
learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics,
3 2018. ISSN 2194-6701. doi: 10.1007/s40304-018-0127-z.

[27] Leah Bar and Nir Sochen. Unsupervised deep learning al-
gorithm for pde-based forward and inverse problems. arXiv
preprint arXiv:1904.05417, 2019.

[28] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong.
Pde-net: Learning pdes from data. arXiv preprint
arXiv:1710.09668, 2017.

[29] Maziar Raissi, Paris Perdikaris, and George E Karniadakis.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Com-
putational Physics, 378:686–707, 2019.

[30] Jonathan D Smith, Kamyar Azizzadenesheli, and Zachary E
Ross. Eikonet: Solving the eikonal equation with deep neu-
ral networks. arXiv preprint arXiv:2004.00361, 2020.

[31] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Neural operator: Graph kernel net-
work for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020.

[32] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, and Thomas Funkhouser. Local
implicit grid representations for 3d scenes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[33] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian
Albert, and Rose Yu. Towards physics-informed deep
learning for turbulent flow prediction. arXiv preprint
arXiv:1911.08655, 2019.

[34] Chiyu Jiang, Karthik Kashinath, Prahbat, and Philip Mar-
cus. Enforcing physical constraints in cnns through differ-
entiable pde layer. In ICLR 2020 Workshop on Integration
of Deep Neural Models and Differential Equations, 2020.

[35] Michal Irani and Shmuel Peleg. Improving resolution by
image registration. CVGIP: Graphical Models and Image
Processing, 53(3):231–239, may 1991. ISSN 10499652. doi:
10.1016/1049-9652(91)90045-L.

[36] R. Keys. Cubic convolution interpolation for digital image
processing. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 29(6):1153–1160, dec 1981. ISSN 0096-
3518. doi: 10.1109/TASSP.1981.1163711.

[37] Gilad Freedman and Raanan Fattal. Image and video up-
scaling from local self-examples. ACM Transactions on
Graphics, 30(2):1–11, apr 2011. ISSN 0730-0301. doi:
10.1145/1944846.1944852.

[38] Jian Sun, Jian Sun, Zongben Xu, and Heung Yeung Shum.
Image super-resolution using gradient profile prior. 26th
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR, 2008. doi: 10.1109/CVPR.2008.4587659.

[39] Kwang In Kim and Younghee Kwon. Single-Image Super-
Resolution Using Sparse Regression and Natural Image
Prior. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(6):1127–1133, jun 2010. ISSN 0162-8828.
doi: 10.1109/TPAMI.2010.25.

[40] Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Robust Web
Image/Video Super-Resolution. IEEE Transactions on Im-
age Processing, 19(8):2017–2028, aug 2010. ISSN 1057-7149.
doi: 10.1109/TIP.2010.2045707.

[41] W.T. Freeman, T.R. Jones, and E.C. Pasztor. Example-
based super-resolution. IEEE Computer Graphics and Ap-
plications, 22(2):56–65, 2002. ISSN 02721716. doi: 10.1109/
38.988747.

[42] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-
resolution through neighbor embedding. In Proceedings of
the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., vol-
ume 1, pages 275–282. IEEE, 2004. ISBN 0-7695-2158-4.
doi: 10.1109/CVPR.2004.1315043.

[43] Jianchao Yang, John Wright, Thomas S. Huang, and Yi Ma.
Image Super-Resolution Via Sparse Representation. IEEE
Transactions on Image Processing, 19(11):2861–2873, nov
2010. ISSN 1057-7149. doi: 10.1109/TIP.2010.2050625.

[44] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma.
Image super-resolution as sparse representation of raw im-
age patches. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, jun 2008. ISBN
978-1-4244-2242-5. doi: 10.1109/CVPR.2008.4587647.

[45] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Deep Laplacian Pyramid Networks for Fast
and Accurate Super-Resolution. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol-
ume 2017-Janua, pages 5835–5843. IEEE, jul 2017. ISBN
978-1-5386-0457-1. doi: 10.1109/CVPR.2017.618.

[46] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,
Accurate, and Lightweight Super-Resolution with Cascad-
ing Residual Network. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 11214
LNCS, pages 256–272. 2018. ISBN 9783030012489. doi:
10.1007/978-3-030-01249-6 16.

[47] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
Losses for Real-Time Style Transfer and Super-Resolution.
In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9906 LNCS, pages 694–711. 2016.
ISBN 9783319464749. doi: 10.1007/978-3-319-46475-6 43.

[48] Adrian Bulat and Georgios Tzimiropoulos. Super-
FAN: Integrated Facial Landmark Localization and Super-
Resolution of Real-World Low Resolution Faces in Arbi-
trary Poses with GANs. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, number c,
pages 109–117. IEEE, jun 2018. ISBN 978-1-5386-6420-9.
doi: 10.1109/CVPR.2018.00019.

[49] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced Deep Residual Networks for
Single Image Super-Resolution. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), volume 2017-July, pages 1132–1140. IEEE, jul
2017. ISBN 978-1-5386-0733-6. doi: 10.1109/CVPRW.2017.
151.

[50] Yifan Wang, Federico Perazzi, Brian McWilliams, Alexan-
der Sorkine-Hornung, Olga Sorkine-Hornung, and Christo-
pher Schroers. A Fully Progressive Approach to Single-
Image Super-Resolution. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), volume 2018-June, pages 977–97709. IEEE, jun
2018. ISBN 978-1-5386-6100-0. doi: 10.1109/CVPRW.2018.
00131.

[51] Keaton J. Burns, Geoffrey M. Vasil, Jeffrey S. Oishi, Daniel
Lecoanet, and Benjamin P. Brown. Dedalus: A Flexible
Framework for Numerical Simulations with Spectral Meth-
ods. 2019.

[52] Distributed communication package - torch.distributed,
. URL https://pytorch.org/docs/stable/distributed.

html.

[53] Nvidia collective communications library. URL
https://docs.nvidia.com/deeplearning/sdk/

nccl-developer-guide/docs/overview.html.

[54] Torch distributed data parallel, . URL https://pytorch.

org/docs/stable/nn.html#distributeddataparallel.

[55] Cori gpu node topology. URL https://docs-dev.nersc.

gov/cgpu/hardware/#node-topology.

[56] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 9351, pages
234–241. 2015. ISBN 9783319245737. doi: 10.1007/
978-3-319-24574-4 28.

[57] Lvmin Zhang, Yi Ji, Xin Lin, and Chunping Liu. Style
transfer for anime sketches with enhanced residual u-net and
auxiliary classifier GAN. Proceedings - 4th Asian Conference
on Pattern Recognition, ACPR 2017, pages 512–517, 2018.
doi: 10.1109/ACPR.2017.61.

[58] Sheng Lian, Lei Li, Guiren Lian, Xiao Xiao, Zhiming Luo,
and Shaozi Li. A Global and Local Enhanced Residual U-
Net for Accurate Retinal Vessel Segmentation. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
14(8):1–1, 2019. ISSN 1545-5963. doi: 10.1109/tcbb.2019.
2917188.

[59] Wei Chen, Boqiang Liu, Suting Peng, Jiawei Sun, and
Xu Qiao. S3D-UNet: Separable 3D U-Net for Brain Tu-
mor Segmentation. volume 2, pages 358–368. Springer In-
ternational Publishing, 2019. ISBN 9783030117252. doi:
10.1007/978-3-030-11726-9 32.

[60] Yu Sheng Chen, Yu Ching Wang, Man Hsin Kao, and
Yung Yu Chuang. Deep Photo Enhancer: Unpaired Learn-
ing for Image Enhancement from Photographs with GANs.
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 6306–
6314, 2018. ISSN 10636919. doi: 10.1109/CVPR.2018.
00660.

[61] Gang Liu, Xin Chen, and Yanzhong Hu. Anime sketch col-
oring with swish-gated residual U-net. Communications in
Computer and Information Science, 986(August):190–204,
2019. ISSN 18650929. doi: 10.1007/978-981-13-6473-0 17.

[62] Ming Fang, Yu Song, Xiaoying Bai, Yushu Ren, and Shuhua
Liu. A Method for Coloring Low-resolution Black and White
Old Movies through Object Understanding. Proceedings of
the 31st Chinese Control and Decision Conference, CCDC
2019, pages 5944–5949, 2019. doi: 10.1109/CCDC.2019.
8833380.

[63] Patrick Esser and Ekaterina Sutter. A Variational U-Net
for Conditional Appearance and Shape Generation Heidel-
berg Collaboratory for Image Processing. Proceedings of
the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 8857–8866, 2018.

[64] Shuaibin Zhang, Haoran Su, Tangbo Liu, and Xin Fu. Artis-
tic Image Generation from Sketch by Using Conditional Ad-
versarial Network and Style Feature Transform. pages 1–6.

[65] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084,
2019.

https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/overview.html
https://pytorch.org/docs/stable/nn.html#distributeddataparallel
https://pytorch.org/docs/stable/nn.html#distributeddataparallel
https://docs-dev.nersc.gov/cgpu/hardware/#node-topology
https://docs-dev.nersc.gov/cgpu/hardware/#node-topology

	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Problem Setup
	3.2 Dataset Overview
	3.3 Evaluation Metrics
	3.4 Systems, Platforms and Configuration

	4 MeshfreeFlowNet
	4.1 Context Generation Network
	4.2 Continuous Decoding Network
	4.3 Loss Function

	5 Experiments
	5.1 Prediction Loss vs. Equation Loss
	5.2 MeshfreeFlowNet vs. Baseline Models
	5.3 Generalizability of MeshfreeFlowNet
	5.3.1 Unseen Physical Initial Conditions
	5.3.2 Unseen Physical Boundary Conditions

	5.4 Scalability of MeshfreeFlowNet

	6 Conclusion and Future Work

