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Abstract

Automatic mesh-based shape generation is of great interest across a wide range
of disciplines, from industrial design to gaming, computer graphics and various
other forms of digital art. While most traditional methods focus on primitive based
model generation, advances in deep learning made it possible to learn 3-dimensional
geometric shape representations in an end-to-end manner. However, most current
deep learning based frameworks focus on the representation and generation of
voxel and point-cloud based shapes, making it not directly applicable to design and
graphics communities. This study addresses the needs for automatic generation
of mesh-based geometries, and propose a novel framework that utilizes signed
distance function representation that generates detail preserving three-dimensional
surface mesh by a deep learning based approach.

1 Introduction

Automatic generation of three-dimensional shapes is of dear interest to disciplines such as computer
graphics (CG), where a vast amount of new shapes is required to populate a virtual world. 3D model
generation is of greater renewed interest thanks to the development of virtual and augmented reality
technology, where real-time shape analysis and synthesis by computer vision techniques is required.

The past decade has seen the development of a variety of techniques for addressing this need, mostly
originating from researchers in the computer graphics community. However, most of the work
in this direction are related to so-called assembly based 3D modeling, which creates new shapes
based on mix-and-matching different parts from a database of 3D models. Besides shape generation,
the computer graphics research community has developed a suite of tools for post-processing and
rendering of 3D mesh, making it possible for artists in the gaming and movie industry to create
photorealistic 3D models based on polygonal mesh data-structures. Though such methods manage
to create new out-of-sample models that are realistic looking with high levels of details, they suffer
from two major drawbacks, namely their inability to create conceptually novel shapes, and the lack
of a high-level global descriptor for generalized shapes.

Recent advances in deep-learning based computer vision (CV) research lead to a different approach
towards shape generation. New work along this line of research utilize deep learning frameworks,
most predominantly convolutional neural networks (CNN) to encode 3D shape information and
also to synthesize novel shapes from latent shape vectors that encodes a continuous space of 3D
shapes. These methods appeal to researchers for various reasons. First, these methods are capable
of producing novel shapes beyond simple recombination of parts from a database. Second, these
methods are valuable not only for the synthesis of new shapes, but also for the analysis of shapes,
since it provides an encoding scheme that encodes 3D shapes to a latent space containing high-level
feature abstractions. Moreover, these learning-based methods can be trained in an end-to-end fashion,
eliminating the need for complicated heuristics-based methods. However, most published results
along this line of research utilize volumetric occupancy voxel grids for the representation of input as
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well as generated shapes. Though voxel grids offer a lean, memory-efficient and convolution-ready
means of representing 3D shapes, the resulting shapes lack general visual appeal. Moreover, it is
impossible to post-process voxel based geometries with current mesh-oriented algorithms. Other
works alternatively use a point-cloud based representation for better integration with lidar sensors for
autonomous driving related applications, but the visual qualities of its results are even further from
applications in CG and design.

In light of current progress in CG and CV, we propose a novel deep learning based hierarchical
scheme for the generation of visually appealing 3D mesh-based shapes with enhanced details using
CNN that works with signed distance function representation of shapes. Instead of generating voxel
occupancy level shape information as in [1] [2], we propose to instead generate signed distance
function fields on gridded domain using a similar architecture consisting of up-convolutional layers,
for easy reconstruction of polygon mesh surface, which is of much higher quality compared to voxel-
based models. We further propose a hierarchical approach towards shape generation by separating
the frequencies in the resulting fields, and using two different generators to generate the different
frequency portions of the image. Resulting shapes from our recent study are smooth and visually
appealing, featuring high-resolution details. We make the argument that in the case of GAN assisted
shape generation, higher grid resolution does not necessarily amount to higher quality.

In the following sections, in section 2, we will discuss related work in the literature. in section 3, we
will discuss various details related to geometry representation and processing. In section 4, we will
discuss our model architecture and training details. In section 5, we present results synthesized by
our model. In section 6, we wrap up this study with conclusions and future directions.

2 Related Work

2.1 Assembly Based Shape Generation

Assembly based shape generation techniques create new shapes by segmenting geometries in a
database and recombine different parts to form new shapes. Such algorithms typically use a pipeline
of mesh-based algorithms for shape analysis and synthesis. Shape analysis consists of shape segmen-
tation, contact analysis and hierachy analysis of different parts. Shape synthesis typically consists of
shape matching and contact enforcement. Jain et al. [3] used such analysis and synthesis pipeline to
generate new shapes by linear interpolation of baseline shapes. Kalogerakis et al. [4] furthermore
used a learning based approach for automated combination of parts in a dataset, leading to creation
of more realistic and coherent shapes. However, such generations schemes are inherently unable to
generate conceptually novel shapes, or offer a more high-level representation for these shapes

2.2 Convolution Based Shape Generation

The use of 3D up-convolutional schemes for shape generation was, to our best knowledge, first
proposed by Wu et al. [1] to generate voxelized volumetric shapes. Such schemes utilize the
up-convolutional operators in deep learning, also sometimes known as transposed convolution or
deconvolution, for generating a function field on a gridded domain. Wu et al. [1] combined the use of
Generative Adversarial Networks [5] with 3D up-convolution based decoders for the unsupervised
learning of 3D shape representation as well as the generation of new shapes. A stream of followup
studies have looked into the use of such architectures for related tasks such as shape completion [6],
image-to-shape translation [7] and interective 3D modeling [8]. A more recent point of focus is in the
use of octree based up-convolution operations, as such memory efficient implementation allows a
push for higher spatial resolution of up to 2563 [2] [7].

2.3 Detail Enhancement by Nearest Neighbor

Some work in the literature have used nearest neighbor search for shape detail enhancement. Dai
et al. [6] performed detail enhancement using a patch-based k-nearest neighbor query to refine the
low-resolution input in R32×32×32 to R128×128×128. However such nonparametric models suffer
from slow query during test time and requires the availability of the entire shape database.
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3 Geometry Processing

In this section, we present a robust geometry processing pipeline that is used to convert large amount
of mesh based shape data to a learnable format (3D Signed Distance Function field). This section is
dedicated to providing a brief introduction to the properties of the signed distance function and an
outline of the pipeline we used for performing data conversion.

3.1 Signed Distance Function

Signed distance functions (SDF) have been widely used in the computer vision community for
applications such as rendering and segmentation. A mathematical definition of the signed distance
function is given as follows:

f(x) =

{
d(x, ∂Ω) ifx ∈ Ω

−d(x, ∂Ω) ifx ∈ Ωc (1)

where ∂Ω denotes the boundary of Ω. For any x ∈ X ,

d(x, ∂Ω) := inf
y∈∂Ω

d(x, y) (2)

where inf denotes the infimum. In Euclidean space, the signed distance function has some desirable
properties, such as for piecewise smooth boundary, the signed distance function is differentiable
almost everywhere, and its gradient satisfies the Eikonal Equation:

|∇f | = 1 (3)

3.2 Processing Algorithm

This study mainly involves the use the ShapeNet dataset [9]. The shape data in the dataset is given
as triangular mesh, hence a geometry processing pipeline is needed for the conversion of triangular
mesh to gridded signed distance field.

First, we center and normalize the imported triangular mesh and set up a unit size 3D spatial grid
around the geometry. Then we use the data structure AABB (Axis-aligned Bounding Box) tree for
efficient point-to-mesh distance query. After calculating the point to mesh distance everywhere in the
domain, we compute the winding number [10] for each point in the domain to determine the sign.
The algorithm is robust in that it is functional even in the case of a non watertight mesh.

In this study, we leveraged the computational geometry code infrastructure provided in the open-
source library libigl [11] to facilitate this process.

4 Model

In this section, we present an overview of the hierarchical models we adopted for shape generation.
The architecture consists of two separate networks, mainly the low-frequency generator (LFG) and
the high-frequency generator (HFG). We also describe the training procedures involved.

4.1 Low Frequency Generator

The architecture of the LFG is inspired by that of the two dimensional deep convolutional generative
adversarial network (DC-GAN) [12] and voxel based 3D-GAN [1]. Like the previous two examples,
our network utilizes an up-convolutional neural network for the generation of signed distance field.
Different from the previous examples, we perform low-pass filtering on the results to reduce noise in
the high-frequency domain and use it as an input for HFG to generate high frequency details.

The overall loss can be written as a sum of the losses from the discriminator and the generator, given
as:

LGAN = logD(x) + log(1−D(G(z))) (4)
where x is the value of the signed distance function in 64× 64× 64 of a real sample in the training
set, z is a 200-dimensional vector that is sampled i.i.d. from a uniform distribution over [−1, 1]. D(x)
is the output from the discriminator, and G(z) is the output from the generator in 64× 64× 64.
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Figure 1: Schematic for the Low-Frequency Generating network. The network takes in a random
vector z ∼ U [−1, 1] and use up-convolution layers to project to R64×64×64. During test time, the
results are passed through a low-pass filter to extract low-frequency components. The discriminator
for LFG is a mirror of the above architecture, excluding the low-pass filter.

Figure 2: High-Frequency Generator (HFG) Architecture. HFG is a conditional GAN that includes
skip layers. The HFG takes in low-frequency inputs from the dataset and map it to the corresponding
high-frequency image from the dataset.

The generator takes in the vector z and projects the vector to a higher dimension using linear layer
and reshapes it (512 × 4 × 4 × 4). It then passes through four up-convolution operations with
kernel size 5 × 5 × 5 and strides 2, with batch normalization and followed by ReLU layer after
each convolutional layer. The result is then passed through the hyperbolic tangent (tanh) activation
function to comply with the output range of -1 and 1. Though not a part of the training process, the
generated results are post-processed by passing them through a low-pass gaussian filter and then fed
to the High-Frequency Generator. A triangular-meshed surface can be further extracted from the SDF
field using the marching cubes algorithm. An illustration of the Low-Frequency Generator can be
found in Figure 1.

The discriminator is an almost mirror image of the generator network, with the difference being that
instead of using ReLu, it utilizes leaky ReLU with slope of 0.2. Leaky Relu is formulated as:

LReLU(x) = max(x, αx) (5)

where α < 0 is the slope.

4.2 High Frequency Generator

High Frequency detailed are generated by the High Frequency Generator, which is a conditional
GAN conditioned on low frequency inputs. The architecture of the HFG is inspired by that of the
two dimensional pix2pix network [13] that performs image-to-image translation. Similar to the goal
of the pix2pix network, the objective of the HFG is to perform image to image translation from low
frequency to high frequency on a per pixel basis. Hence, the network is signature by an encoding
part, a decoding part, and skip layers between the encoder part and the decoder part to pass through
per-pixel level information.A schematic for the generator of HFG is presented in Figure 2. The
discriminator architecture for HFG is similar to that of the LFG, except that the image is penalized by
a patch-level penalty, meaning that the discriminator is tasked to distinguish between real and fake
image patches rather than entire images. This better preserves local high-frequency structures.

The loss for the HFG network consists of generator loss, discriminator loss, and a L1 loss which be
written as follows:

LGAN = logD(xlf , xhf ) + log(1−D(xlf , G(xlf ))) + ||xhf −G(xlf )||1 (6)
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Figure 3: A sample of the shapes generated by our model using 200 dimensional random vectors
sampled uniformly from U [−1, 1]. The top three rows show our generated samples and bottom three
rows show samples generated by Wu et al. [1] from the corresponding classes.

where xlf and xhf are the low frequency and high frequency parts of the same image from the
training set. D(xlf , xhf ) is the output of the discriminator when presented with a low-frequency
and high-frequency pair. The encoder section uses a leaky Relu as activation function after each
convolution operation, and the decoder section uses a Relu as activation before each up-convolution.

4.3 Training Details

The LFG and HFG are trained separately. Using different data partitions. The LFG is trained using the
original Signed Distance Function in R64×64×64 gridded domain. The HFG is trained using the same
dataset, but after splitting it into low-frequency and high-frequency pairs, since it is a conditional
GAN for learning low-frequency to high-frequency mapping. We use the Adam optimizer [14] for
the training of both the generator and the discriminator. In order to stabilize the training process and
prevent the discriminator from overpowering the generator, we use a combination of two approaches
during the training process. First, we train the discriminator with a learning rate of 2× 10−4 and the
generator with a greater learning rate of 5× 10−4. Second, we skip the training of the discriminator
when the classification accuracy in the previous iteration exceeds 80%.

4.4 Testing Details

Denote the random input vector as z ∈ R200, LFG as L : R200 7→ R64×64×64, low pass filter
as σ : R64×64×64 7→ R64×64×64, HFG as H : R64×64×64 7→ R64×64×64, generated SDF as
S ∈ R64×64×64, we describe the conjoined test process for shape generation as:

S = σ(L(z))︸ ︷︷ ︸
Low-frequency Part by LFG

+ H(σ(L(z)))︸ ︷︷ ︸
High-frequency Part by HFG

(7)

A simple low-pass filter, as implemented in this example, can be achieved by:

σ(:) = F−1(Pω(F(:))) (8)

5



Figure 4: A rendering of some examples generated in the chair and table classes. The mesh are
post-processed by conventional CG techniques, namely marching cubes algorithm (surface mesh
extraction), Laplace smoothing, uv-unwrap and texture mapping. Scene is rendered using Blender
[15]

.

Where F and F−1 denote the forward and inverse Fourier Transform, Pf denotes the process of
padding all frequency modes greater than ω to zero. As a practical note, for better visual appearance,
symmetry of geometric shapes of interest can be exploited and enforced during test time. Results in
this study are produced by enforcing mirror symmetry at test time.

5 Results

In this section we present the results from this study. We first give a qualitative display of generated
results and compare them with the previous state-of-the-art. We also display a rendered result of the
resulting mesh after going through an automated mesh processing pipeline to illustrate the quality of
the results and its potential in CG. We then show the detail enhancing effects of our high-frequency
generator to illustrate its effectiveness. Last but not least, we show that our network possess the same
latent space properties that allow shape semantic arithmetics and shape interpolations.

5.1 Shape Generation

A different model is trained for each individual class in the ShapeNet dataset. In this study, we
trained for three object classes namely the car, chair and table classes in ShapeNet. A sample from
each classes is displayed in Figure 3. A random sample is reproduced from [1] and displayed for
comparison. Results generated from this study is qualitatively more visually appeasing, partially due
to the smooth meshed surfaces extracted from signed distance function fields, but also due to detail
enhancing from HFG that creates sharp high frequency local features.

A rendered image of chair and table models created by this learning framework is given in Figure 4.
This rendering is to illustrate the quality and refined detail levels of the models generated, and it’s
potential for real-world applications.
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Figure 5: Left: Low frequency portion (retaining modes [−8, 8]) of LFG output sample. Center: high
frequency portion (retaining modes [−32,−9]∪ [9, 31]) of LFG output sample. Right: high frequency
generated by HFG from leftmost as input. Distance functions are generated at 643 resolution level.

Figure 6: Left: surface extracted from Low frequency portion (retaining modes [−8, 8]) of LFG
output sample. Center: original low and high frequency combined LFG output sample. Right: final
output consisting of LFG low frequencies plus HFG high frequency output.

5.2 Detail Enhancement

The effects of detail enhancement is illustrated in Figure 5. The figure shows a representative sample
generated for the chair class. The LFG network closely mimics the network architecture of [1]. By
separating out the low and high frequencies of the output, it is clear that the generator is able to learn
low frequency functions quite well, but fail to learn meaningful high frequency functions. Though the
GAN and up-convolutional network is appealing for it’s one-step generation of 3D shape functions
(combined high and low frequencies), the higher frequencies are noisy and not meaningful. Hence
the true resolution of the output (modes of meaningful frequencies) via the network architecture in
LFG and [1] is lower than the physical resolution (number of voxels). The HFG is successful in
mapping lower frequencies to it’s corresponding higher frequencies to achieve super-resolution in
frequency domain. Figure 6 illustrates the noise in the original output from LFG, effects of low-pass
filtering, and HFG’s super-resolution effects for generating sharp features.

5.3 Shape Arithmetics

Semantic shape arithmetics can be performed for latent shape vectors. Linear interpolations of latent
space vectors can result in morphed output shapes.
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Figure 7: Continuous morphing of output shapes achieved by linear interpolation of shape vectors.

6 Conclusion

We have shown in this study that the signed distance function is a data representation that provides
better resolved results for shape generation using 3D-GAN, compared to previous methods that utilize
binary voxel representations. We have shown that generated shapes have smooth surface properties, as
well as refined details. They are conceptually novel and different from examples given in the training
set. We have further shown that manipulations in latent vector space can result in semantic arithmetic
operations in the physical space. Our main contribution, however, is in the use of a hierarchical
architecture of two networks, namely the Low-Frequency Generator and High-Frequency Generator
for the generation of refined surfaces of high quality.
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