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a b s t r a c t 

To relate the vertical wind shear to horizontal temperature gradients at and near the equator, we derive 

an “Equatorial Thermal Wind Equation” (EQTWE) using a minimum set of assumptions that are easily 

satisfied for the atmospheres of all the giant planets and Earth. Similar to the textbook Thermal Wind 

Equation (TWE), the EQTWE requires a small Rossby number, but the relevant Rossby number for the 

EQTWE depends on the velocity and length scales of the equatorial flows, and on the Coriolis param- 

eter at the north pole (which is large), rather than the Coriolis parameter at the equator (which goes to 

zero) . Unlike the TWE, the EQTWE is valid only for the east-west component of the wind. We apply 

the EQTWE to the Jovian wind measured by the Galileo probe Doppler wind experiment at jovicentric 

latitude 6.53 °N (7.46 °N jovigraphic), which is valid because the EQTWE is accurate at latitudes θ < 18 °. 
Assuming that this wind profile holds at all longitudes, the EQTWE shows that near the equator at alti- 

tudes at 0.8 bar < P < 5 bar, the atmosphere is anomalously cool with respect to the surrounding flow, 

and at 5 bar ≤ P < 13 bar, it is warm. These anomalies imply adiabatic up-welling (down-welling) at 

0.8 bar < P < 5 bar (at 5 bar ≤ P ≤ 13 bar), which suggests a Jovian global circulation model with two 

layers of Hadley cells, with an upper layer like the one on Earth, and the lower has cells with the op- 

posite rotation. Applying the EQTWE to CIRS temperatures at altitudes above 330 mbar, shows that the 

large vertical wind shears measured by the Galileo probe extend to higher altitudes, and at 3 mbar create 

a stratospheric equatorial jet with a velocity of 205 m/s (almost 50% faster than the speed that had been 

obtained earlier with the TWE). 

© 2018 Elsevier Inc. All rights reserved. 
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1. Introduction and motivation 

The Thermal Wind Equation (TWE) (e.g., Pedlosky, 1979 Sec-

tions 2.6, 2.9b, and 6.5) relates the vertical shear of the horizon-

tal velocities to the horizontal gradients of the temperature in

a rotating system such as the atmosphere of a planet. The TWE

works well at polar and mid-latitudes, and sometimes, depend-

ing upon the application, at sub-tropical latitudes. However, it is

reputed not to work in regions close to the equator because the

Coriolis force is small and the traditional Rossby numbers are of

order unity there (see Section 3.2 ). Despite this, since there is

plentiful data and interesting phenomena near the equator, the

TWE is frequently applied there. Before dismissing the applica-

tion of the TWE near the equator, we note that observations by

Allen and Sherwood (2008) of the east-west component of Earth’s

atmospheric velocities and radiosonde temperature data sets show
∗ Corresponding author. 
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hat the TWE works “accurately, even in the deep tropics, where

he Coriolis force approaches zero”. This observation suggests that

or the east-west component of the velocity, there either must

e a variant of the TWE that works well at the equator, or that

or some unknown reason the TWE does not require approximate

eostrophic balance (which breaks down at the equator). Therefore,

t would be useful to determine the conditions (if any) for which

he TWE is valid close to the equator, and better yet, to derive a

ew equation that relates the vertical shear of horizontal velocities

o the horizontal gradients of the temperature that is valid at and

ear the equator. In this paper we derive such an equation, and

efer to it as the “Equatorial Thermal Wind Equation” (EQTWE).

e also show the circumstances under which a modified TWE can

ometimes be used at the equator. The EQTWE is not only accu-

ate at the equator but also in tropical regions at latitudes | θ | ≤ 18 °
ith only 10% errors. 

Our EQTWE has four features, all independent of each other,

hat make it practical to use: (1) it does not become invalid when

he traditional Rossby number becomes large (as usually hap-

ens near the equator); (2) it does not cease to produce useful

https://doi.org/10.1016/j.icarus.2018.09.037
http://www.ScienceDirect.com
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nformation, i.e., reducing to “zero equals zero”, at the equator as

ome modified thermal wind equations do (c.f., de la Torre Juárez

t al., 2002 ); (3) it does not become ill-conditioned at the equa-

or by requiring the division of one very small number by another

o obtain the shear at the equator; and (4) it provides a relation-

hip between the horizontal temperature gradient and the vertical

hear at the equator, rather than the wind shear with respect to

he axis of rotation (c.f., de la Torre Juárez et al., 2002; Li et al.,

008; Li et al., 2013 ). Our EQTWE can not only be used to study

tmospheric dynamics in the equatorial region of the Earth, but

lso in major gaseous planets whose equatorial regions are often

he most accessible to observers using ground-based telescopes,

he Hubble Space Telescope, and fly-by satellites. Equatorial regions

f the planets are rich in interesting dynamical features whose be-

avior we want to understand, such as: 

• The Jovian vertical wind shear deduced from the Galileo probe

Doppler wind experiment . The probe descended into Jupiter’s

atmosphere at the South edge of a 5 μm hot spot at 7.46 °N
jovigraphic latitude ( Young, 2003 ) and measured the zonal

winds as a function of altitude ( Atkinson et al., 1998 ). Since

geostrophic balance does not hold at this low-latitude, attempts

to explain the data have been made by making use of a more

general gradient wind balance ( Showman and Ingersoll, 1998 ).

To date, however, no model has fully explained the observed

wind shear. We apply our EQTWE to the probe velocities in

Section 3.3 . 
• The Jovian equatorial stratospheric jet . Flasar et al. (2004) re-

ported an intense stratospheric equatorial jet at an altitude near

3 mbar, which they believe is evidence of a 4–5 year quasi-

biennial oscillation. They used the TWE to find jet velocities of

140 m/s, which are nearly the same magnitude as the largest jet

velocities at the visible Jovian cloud-tops. This finding is some-

what contradictory to that of Li et al. (2006) who found that

the wind shear is negligible between 319 and 499 mbar. How-

ever, the TWE was used near 5 ° and at 3 °, respectively, in these

two studies, which is formally too close to the equator to use

the TWE. We apply our EQTWE to the CIRS temperatures in

Section 3.2 to re-examine the stratospheric jet. 
• Saturn’s equatorial jet . Saturn has a broad and fast equato-

rial jet, with a narrow “jet within a jet” showing up be-

tween ± 3 ° latitude, in data taken in 2004 and later ( Garcıa-

Melendo et al., 2010 ). Wind speeds derived from Cassini ISS,

Voyager , and Hubble images differ with wavelength and over

time ( Sánchez-Lavega et al., 2016; Porco et al., 2005 ). Sánchez-

Lavega et al. (2016) disentangled vertical and temporal trends

to summarize the evolution of this complex structure from the

Voyager era to the present day. Saturn’s equatorial region also

experiences a Stratospheric Oscillation, where the winds and

temperature vary periodically ( Li et al., 2008 ). An EQTWE could

elucidate how variations in temperature quantitatively affect

changing shape, vertical structure, and speed of the equatorial

winds. This approach would be particularly valuable in the nar-

row high-speed jet, whose position at the equator makes it in-

tractable for the textbook TWE. 
• Neptune’s zonal vertical wind shear . Significant vertical wind

shear is detected in Neptune’s equatorial region throughout

the upper atmosphere. Vertical wind shear in Neptune’s strato-

sphere (120 mbar–30 mbar) was calculated from temperature

retrievals from the infrared interferometer spectrometer (IRIS)

on Voyager 2, showing the winds decreasing in strength with

height ( Conrath et al., 1989 ). Retrievals of vertical wind shear

from stellar occultation measurements found comparable ver-

tical wind shear values, finding that the winds decayed in

magnitude at 0.38 mbar compared to the 100 mbar veloc-

ities following the zonal wind profile derived from Voyager
images ( French et al., 1998 ). Cloud tracking from Keck/NIRC2

images found that zonal velocity profiles differed at the equa-

tor between filters ( Fitzpatrick et al., 2014; Tollefson et al.,

2018 ). These filters probe different altitudes near and be-

low the tropopause (1 bar–100 mbar), implying variations of

the zonal flow with depth. The observed vertical wind shear

in these studies is opposite in direction of the stratospheric

wind shear and is inconsistent with the TWE and mea-

sured Voyager/IRIS temperature gradients ( Fletcher et al., 2014 ).

Neptune’s rapid equatorial winds at the cloud tops (300–

400 m/s) also mean that geostrophic balance breaks down

there. Tollefson et al. (2018) use the EQTWE, derived in this

paper, to show how temperature variations in latitude along

with meridional variations in methane abundance explain the

observed vertical wind shear. 
• Jupiter’s deep equatorial ammonia plume . Understanding this

plume ( de Pater et al., 2016; Li et al., 2017 ) and its implica-

tions to the velocities measured by the Galileo probe is impor-

tant because the latitude of the probe entry and of the persis-

tent plume are nearly the same. This is discussed in Section 3.5 .

Others, c.f., Flasar et al. (2005) in studying Titan and

lasar et al. (2004) in studying Jupiter, have noted the break-

own of the textbook TWE at low latitudes and the utility of hav-

ng a modified TWE valid near the equator. de la Torre Juárez

t al. (2002) and Li et al. (2008; 2013) developed a modified TWE

alid near the equator that relates the horizontal variation in the

emperature to the derivative of the zonal flow with respect to

he z -axis of a cylindrical coordinate system, or equivalently the

otation axis of a planet. In contrast, the textbook TWE and the

QTWE that we develop here relate the horizontal variation in the

emperature to the derivative of the zonal flow with respect to r ,

he radial coordinate of a spherical coordinate system, or equiv-

lently the local vertical coordinate of a planet. Near the equa-

or, the derivative with respect to z is approximately equal to the

erivative with respect to the local north-south coordinate, so the

nformation in the modified TWE developed by de la Torre Juárez

t al. (2002) (in their Eq. (10)) and by Li et al. (2008; 2013) is liter-

lly orthogonal to the information in the EQTWE. de la Torre Juárez

t al. (2002) also derived a modified thermal wind equation (their

q. (12)) which they state can be used at the equator. Unfortu-

ately, this leads to a modified thermal wind equation that makes

he vertical wind shear zero at the equator (and almost zero near

he equator, up to and including the latitude of the Galileo probe

ntry), which produces results inconsistent with observations. (See

ection 3.2 .) 

Andrews et al. (1987) (in their Eq. (8.2.2)) also proposed a mod-

fied thermal wind equation valid at the equator on Earth, but

heir derivation was not general, and the authors assumed that

heir modified thermal wind equation had very limited applica-

ility (see the second footnote in Section 4.2 ). Other methods,

uch as the use of Jupiter’s gravity moments measured by the on-

oing Juno mission, can measure Jupiter’s internal differential ro-

ation ( Kaspi et al., 2017; 2018; Guillot et al., 2018 ). Unlike the

WE, these measurements can be used to find the zonal velocity

t the equator. However, vertical zonal shears have not yet been

etermined with this method, and, in fact, the functional form of

he vertical shear needs to be assumed by Kaspi et al. (2018) and

uillot et al. (2018) to carry out their calculations. 

In the following section, we remind the reader about the as-

umptions used in the standard thermal wind equation, and then

ummarize our results, including: the EQTWE, the list of assump-

ions used in its derivation, and estimates of fractional errors in

he equation in terms of dimensionless quantities. In Section 3 we

pply the EQTWE to Jupiter’s Galileo probe data to derive a temper-

ture profile (as a function of depth and latitude) near the equator
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that we show to be consistent with a 2-layer cellular global circu-

lation model of the atmosphere near the equator ( Ingersoll et al.,

20 0 0; Showman and de Pater, 2005 ). We also apply the EQTWE

to CIRS temperatures at altitudes of 500 mbar and above to show

that the strong vertical wind shear measured by the Galileo probe

at 0.7 bar continues to altitudes up to 1 mbar. These findings are

in contrast to those found earlier ( Li et al., 2006 ) with the TWE

that showed that the wind shear vanishes at these altitudes. The

qualitative difference between the results of the EQTWE and of the

TWE analysis illustrates the importance of the EQTWE. 

We further show with the EQTWE that the Jovian strato-

spheric equatorial jet is almost 50% faster than found by

Flasar et al. (2004) , whose application of the textbook TWE did not

permit them to resolve the jet peak velocity at the equator and

noted that their derived velocity is a lower bound to the actual

jet speed. We also consider the implications of the EQTWE to the

equatorial global circulations at the Jovian equator and compare

our results to Juno findings. Our conclusions, in Section 4 , include

a discussion of the circumstances under which the textbook TWE

is valid at low latitudes: if applied correctly, if temperature gradients

of sufficient accuracy can be obtained, and if the flow is sufficiently

symmetric about the equator. Three Appendices give the complete

derivation of the EQTWE. Because it is generally assumed that the

TWE can never be used at the equator and that the modified ther-

mal wind equation of Andrews et al. (1987) can be used only un-

der very restrictive conditions, we decided that it would be worth-

while to publish in the Appendices the full, unabridged derivation

of the EQTWE, including its limitations and fractional errors. 

2. Summary of the thermal wind equations 

The standard textbook TWE (c.f. Pedlosky, 1979 , Section 2.9b)

written in terms of spherical coordinates is: 

f 0 sin θ
∂ v ⊥ (r, θ, φ) 

∂r 
= 

g 

T 
ˆ r × ∇ ⊥ T 

∣∣∣
P 
, (1)

where f 0 ≡ 2 �0 is the Coriolis parameter at the north pole (so it is

a constant, rather than a function of latitude θ ); �0 is the angular

velocity of the planet around its z -axis (using a spherical coordi-

nate system in which z = r sin θ, where r is the radius); φ is the

longitude; v ⊥ is the horizontal ( θ and φ) component of the veloc-

ity; a “hat” means a unit vector; ∇ ⊥ is the horizontal component

of the gradient operator; T is the temperature; ρ is the density; P

is the pressure; and g is the gravity and is in the radial direction.

On the right side of the equation, we have used the pressure as

the independent vertical coordinate, rather than r , and | p means to

hold P , rather than r , constant when computing derivatives so that

the gradient is along a constant pressure surface. 

Assumptions needed for the textbook TWE to be valid are: (i)

The characteristic time over which the flow changes is slow. In par-

ticular, a sufficient (but not necessary) condition for the slowness

is that the characteristic time over which the flow changes is of

order or slower than the advective time (the time it takes for the

characteristic velocity V to travel over the characteristic length L of

the flow features). Fast waves can invalidate this assumption. (ii)

Flows are in approximate vertical hydrostatic equilibrium. (iii) The

traditional Rossby number Ro ≡ V /( f 0 L sin θ ) is small, where θ is the

latitude at which the TWE is applied. 

While these seem like straight-forward constraints, they have

many subtleties because there are often different characteristic ve-

locities and lengths in the east-west, north-south and vertical di-

rections. As pointed out by Pedlosky (1979) (Sections 2.6, 2.9b, and

6.5), these different velocities and scales, especially when the as-

pect ratios of the flows’ features are small (as they are in the Jo-

vian atmosphere), can make the required conditions of, and the

fractional errors in, the TWE more subtle and complex. Thus, in
eriving the EQTWE, we shall not assume that all length scales are

he same nor that all velocity scales are the same. For this reason,

ur stated required conditions for the validity of the EQTWE and

ts fractional errors appear to be more restrictive and complicated

han those of the textbook TWE, but actually they are not, as dis-

ussed in Section A.3 in Appendix A . A final necessary assumption

or the TWE is that the flow obeys 

∇P 

P 
= 

∇T 

T 
+ 

∇ρ

ρ
, (2)

r equivalently that (1 /ρ)(∂ ρ/∂ θ
∣∣∣

P 

) = −(1 /T )(∂ T /∂ θ
∣∣∣

P 

) and

(1 /ρ)(∂ ρ/∂ φ
∣∣∣

P 

) = −(1 /T )(∂ T /∂ φ
∣∣∣

P 

) is valid, which holds for an

deal gas equation with one component or for an ideal gas equa-

ion in which the mixing ratios of the various components do

ot vary significantly with location (i.e., that the anomalies in the

ensity of the gas are due to thermal, rather than computational,

nomalies). If this last assumption does not hold, then replacing

he kinetic temperature in the TWE with the virtual temperature

ill make the TWE valid (c.f., Sun et al., 1991; Tollefson et al., 2018 ,

nd Appendix C ). 

Our required assumptions for deriving our EQTWE are: 

1. The flow changes on a slow time scale. In particular, the

magnitude of ∂ ω φ / ∂ t is much less than the magnitude of

[ g/ (r 0 ρ)](∂ ρ/∂ θ ) 

∣∣∣
P 

, where ω φ is the azimuthal component of

the vorticity ω ≡ ∇ × v , where v is the fluid velocity, and

where r 0 is the radius of the planet where the EQTWE is ap-

plied. A sufficient, but not necessary, condition is that the char-

acteristic time over which the flow changes is longer than the

advective timescale. 

2. The vertical scale D of the flow is less than r 0 . 

3. The vertical scale D is less than or equal to L θ , the characteristic

length scale in the north-south direction at the equator. 

4. The vertical scale D is less than or equal to L φ , the characteristic

length scale in the east-west direction at the equator. 

5. The flow obeys Eq. (2) . 

These assumptions are modest, and easily hold for all of the gi-

nt gas planets since the atmospheric scale height is roughly equal

o D and is much less than the scale of the flow and the radius of

he planet. In addition, as in the TWE, if assumption # 5 in the list

numerated above does not hold, then the EQTWE is valid if the

inetic temperature is replaced with the virtual temperature (See

ppendix C ). 

In the Appendices, we derive the EQTWE that relates the ver-

ical shear of the azimuthal component of the velocity v φ to the

eridional change of the temperature T with respect to latitude θ .

ur EQTWE in its most general form is: 

g ′ 
r 0 T 

∂ 2 T 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

, (3)

here g ′ ≡ g − ( f 2 0 r 0 cos θ ) / 4 is the effective gravity (i.e., g ′ is g mi-

us the centrifugal acceleration in the radial direction). For Jupiter,

eptune, and Uranus g ′ = g within 10%, whereas for Saturn the dif-

erence is larger. In Eq. (3) , v φ and T are both averaged over all

ongitudes . Note that the EQTWE applies only to v φ , the east-west

omponent of the wind and states nothing about v θ , the north-

outh component, whereas, the textbook TWE applies to both com-

onents. 
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In the Appendices, we derive the fractional errors 1 of the

QTWE and show that they are 

O 

[
Ro 

(
r 0 
L θ

V 

2 
θ

V 

2 
φ

, 
r 0 
L φ

V θ

V φ
, 

r 0 
L φ

, 
D 

L θ

)
, 

DV 

2 
φ

gL 2 
φ

, 
DV 

2 
θ

gL 2 
θ

, 
DV φV θ

gL φL θ
, 

Dr 0 

L 2 
θ

, 

˜ Ro , 

(
[ T A ] 

[ T M ] 

)2 

, 

(
[ ρA ] 

[ ρM ] 

)2 

, 

(
[ v A ] 

[ v 
M 

] 

)2 

, 0 . 0 0 03 θ2 
0 

] 

, (4) 

here V θ is the characteristic velocity in the north-south direc-

ion at the equator; V φ is the characteristic east-west velocity at

he equator; Ro ≡ V φ/ ( f 0 L θ ) and is a modified Rossby number that

oes not blow up at the equator because it does not have sin θ in

he denominator; ˜ Ro ≡ V φ/ ( f 0 r 0 ) is another modified Rossby num-

er that does not blow up at the equator; and θ0 is the latitude

in degrees) where the EQTWE is applied. In expression (4) , the

 and M superscripts refer to the spatial symmetries of the flow.

pecifically, the density can be decomposed into a component that

s mirror-symmetric with respect to the equator, 

M (r, θ, φ) ≡ [ ρ(r, θ, φ) + ρ(r, −θ, φ)] / 2 , (5)

nd a part that is anti-mirror-symmetric, 

A (r, θ, φ) ≡ [ ρ(r, θ, φ) − ρ(r, −θ, φ)] / 2 . (6)

 similar decomposition holds for the temperature T (r, θ, φ) ≡
 

M (r, θ, φ) + T A (r, θ, φ) and for pressure and the φ and r com-

onents of the velocity. For the θ-component of the velocity, we

efine the terms oppositely with 

 

M 

θ (r, θ, φ) ≡ [ v θ (r, θ, φ) − v θ (r, −θ, φ)] / 2 , (7)

nd 

 

A 
θ (r, θ, φ) ≡ [ v θ (r, θ, φ) + v θ (r, −θ, φ)] / 2 . (8)

ue to the symmetries of the equations of motion, it is possible

hat an equilibrium flow could be perfectly mirror-symmetric with

 ≡ v A (r, θ, φ) = ρA (r, θ, φ) = T A (r, θ, φ) . [ T A ], [ T M ], [ ρA ], [ ρM ],

 v A ], and [ v M ] are defined as the characteristic values of the anti-

irror-symmetric and mirror-symmetric components of their cor-

esponding fields. The giant planets are nearly mirror-symmetric.

t and near the equator, the velocity and thermodynamic vari-

bles T and ρ of the atmospheres of the gas giant planets are

early mirror-symmetric with respect to the equator. For example

n Jupiter as Fig. 1 shows, the average temperature at 500 mbar

t the equator is about 140K. There are latitudinal variations about

his average temperature of approximately ± 5K, but these fluctu-

tions themselves are nearly symmetric with respect to the equa-

or. Therefore, even if the magnitude of the temperature fluctua-

ions near the equator increases to ± 20 K at depths of 10 bar (see

ection 3 ), the characteristic value of the magnitude of T A at the

quator, [ T A ], divided by the characteristic value of the magnitude

f T M at the equator, [ T M ] is likely to be no greater than 0.05. We

ould also expect [ ρA ]/[ ρM ] and [ v A ]/[ v M ] to be less than 0.05 at

he equator, so the fractional error due to anti-mirror-symmetric

ehavior of the flow (i.e., the last three terms in expression (4) are

ess than (0.05) 2 or less than 1%. 2 

Note that none of these fraction errors in expression (4) depend

n the traditional Rossby number or any other term that depends

inversely) on the local value of the Coriolis force f ≡ f 0 sin θ . The

act that the fractional errors in the EQTWE are independent of the

raditional Rossby number is what allows the EQTWE to be useful

t the equator. All of the terms in expression (4) for the giant gas

lanets are small as shown in Table 1 . 
1 meaning that the difference between the left and right sides of Eq. (3) are at 

ost the fractional error multiplied by the left or right side of Eq. (3) . 
2 Even Uranus, with its large obliquity, has small [ ρA ]/[ ρM ] and [ T A ]/[ T M ] because 

he mean density and temperature at the equator are much larger than their corre- 

ponding meridional gradients, ∂ ρ/ ∂ θ and ∂ T / ∂ θ , at the equator. 

w

 

b

−

The EQTWE is also valid a reasonable distance away from the

quator. The derivation of the EQTWE, given in the Appendices,

ses a Taylor series expansion in θ about the equator, and the

ractional errors due to this expansion are O ( θ2 ) (where θ is in

adians). Therefore, the EQTWE is not limited to the equator, but

ather, can be applied at a tropical latitude θ0 , leading to the last

erm in expression (4) . For | θ | < 18 °, that fractional error is less

han 10%. On the other hand, the TWE would have a fractional er-

or dependent on 1/sin ( θ ) > 3 at these same latitudes due to the

ependence on θ in the traditional Rossby number. Thus, for many

pplications, the EQTWE is more accurate than the TWE at lati-

udes as high as | θ | = 18 ◦. 

The fractional errors in expression (4) appear to be much more

omplicated and possibly restrictive than those in the usual TWE.

owever, a thorough derivation of the TWE, similar to the one

e used to derive the EQTWE in the Appendices, would yield

n expression for the fractional errors as complex as the one in

q. (4) . If in our analysis of the errors of the EQTWE, we had as-

umed that V φ (the characteristic velocity in the east-west direc-

ion) is of the same order as V θ (the characteristic velocity in the

orth-south direction) and that L φ is of the same order as L θ (as

one in the standard derivation and analysis of the TWE), and that

 T A ]/[ T M ] � [ ρA ]/[ ρM ] � [ v A ]/[ v M ], then the fractional errors in the

QTWE in expression (4) reduce to 

 

[ 

Ro 

(
r 0 
L θ

, 
L θ
r 0 

)
, 

DV 

2 
θ

gL 2 
θ

, 
Dr 0 

L 2 
θ

, 

(
[ T A ] 

[ T M ] 

)2 

, 0 . 0 0 03 θ2 
0 

] 

, (9) 

Without loss of generality, the EQTWE in Eq. (3) can be written

s 

g ′ 
r 0 T M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v M 

φ

∂r 
, (10) 

r {
g ′ 

r 0 T 

∂ 2 T 

∂θ2 

∣∣∣∣
P 

}M 

= f 0 
∂v M 

φ

∂r 
, (11) 

ith the same frame fractional errors as in expression (4) , where

he large curly brackets with the superscript M , {} M means “take

he mirror-symmetric component of the quantity within the brack-

ts”. Depending upon the application, the form in Eqs. (3) , (10) , or

11) will be the most useful form of the EQTWE. 

In atmospheres in which large changes in the mixing ratios

ave a significant impact on the density anomalies, the virtual

emperature can be substituted for the kinetic temperature in

qs. (3) , (10) , or (11) ; or we can eschew the temperature altogether

nd write the EQTWE directly in terms of the density as an “equa-

orial density wind equation” or EQDWE: 

g ′ 
r 0 ρ

∂ 2 ρ

∂θ2 

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

, (12) 

r 

g ′ 
r 0 ρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v M 

φ

∂r 
, (13) 

r 

g ′ 
r 0 ρ

∂ 2 ρ

∂θ2 

∣∣∣∣
P 

}M 

= f 0 
∂v M 

φ

∂r 
, (14) 

ith same fractional errors as in expression (4) . 

In contrast to our EQTWE, the east-west component of the text-

ook TWE in Eq. (1) , is: 

1 

sin θ

g 

r 0 T 

∂T 

∂θ

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

. (15) 
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Fig. 1. Longitudinally-averaged temperatures derived from TEXES (black circles) and CIRS (red triangles) from 1–500 mbar, taken from Fig. 14 in Fletcher et al. (2016) . Gray 

bars represent retrieval uncertainties. Our analysis in Section 7 uses the CIRS data since it was taken roughly 4 years after the Doppler Wind Experiment, and would therefore 

be on the same cycle as the Quasi Quadrennial Oscillation. 
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Table 1 

Above the double horizontal lines: estimates of the relevant parameters of Jupiter, Saturn, Uranus, 

and Neptune. All values in SI units. Below the double horizontal lines: most of the dimensionless 

fractional errors in expression (4) for the EQTWE in Eq. (3) , showing that the EQTWE is accurate to 

1% at the equator for all of the giant gaseous planets. 

Parameter and description Jupiter Saturn Uranus Neptune 

r 0 Equatorial Radius 7.0 × 10 7 5.8 × 10 7 2.5 × 10 7 2.5 × 10 7 

g Gravitational Acceleration 25 10 9 11 

�0 Angular velocity 1 . 7 × 10 −4 1 . 6 × 10 −4 1 . 0 × 10 −4 1 . 1 × 10 −4 

D Vertical Length Scale 2.7 × 10 4 6.0 × 10 4 2.8 × 10 4 2.0 × 10 4 

L φ Longitudinal Length Scale 10 8 10 8 10 8 10 8 

L θ Latitudinal Length Scale 10 7 10 7 10 7 10 7 

V r Characteristic Vertical Velocity 1–10 1–10 1–100 1–100 

V φ Characteristic Zonal Velocity 100 300 100 300 

V θ Characteristic Latitudinal Velocity 1–10 1–10 1–100 1–100 

Ro ≡ V φ/ ( f 0 L θ ) 0.03 0.09 0.05 0.14 

Ro (r 0 /L θ ) (V θ /V φ ) 2 0.002 0.0 0 05 0.1 0.04 

Ro (r 0 /L φ ) (V θ /V φ ) 0.002 0.002 0.01 0.01 

Ro r 0 /L φ 0.02 0.05 0.01 0.04 

Ro D/L θ 8 × 10 −5 5 × 10 −4 1 × 10 −4 3 × 10 −4 

DV 2 
φ
/ 
(
gL 2 

φ

)
1 × 10 −9 5 × 10 −8 3 × 10 −9 2 × 10 −8 

DV 2 
θ
/ 
(
gL 2 

θ

)
1 × 10 −9 6 × 10 −9 3 × 10 −7 2 × 10 −7 

DV θ V φ /( gL φL θ ) 1 × 10 −9 2 × 10 −8 3 × 10 −8 5 × 10 −8 

Dr 0 /L 2 
θ

2 × 10 −2 3 × 10 −2 7 × 10 −3 5 × 10 −3 ˜ Ro ≡ V φ/ ( f 0 r 0 ) 0.004 0.02 0.02 0.05 

N  

T  

h  

t  

θ  

f  

t  

t  

i
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Fig. 2. Zonal wind velocity vs. pressure (solid black line) with an error envelope 

(dashed black line) as measured by the Galileo probe and the Doppler Wind exper- 

iment, taken from Atkinson et al. (1998) . At P > 13 bar, the measured wind shear 

and its uncertainties are consistent with zero wind shear. 
ote the EQTWE depends on the second derivative of T , while the

WE depends on the first derivative. More importantly, the TWE

as a 1/sin θ term on the right side (making it inapplicable near

he equator), while the EQTWE does not have this dependence on

. Both the TWE and EQTWE are approximations and contain many

ractional errors, but only the TWE includes errors that are of order

he traditional Rossby number, and that is worrisome because near

he equator the traditional Rossby number and the fractional errors

t creates can be greater than unity. 

. Application to the Galileo Probe Doppler Wind Experiment 

nd to the equatorial stratospheric jet 

.1. Assumptions about the velocity field at the 5 μm hot spots 

In this section, we shall use the Jovian zonal winds measured

y the Galileo Probe Doppler Wind Experiment in two ways. First,

e use the wind speeds with the EQTWE to determine the temper-

ture as a function of latitude and altitude at the altitudes where

he probe measured the winds. These altitudes span pressures of

.7–21 bar where the temperatures have never been retrieved by

emote sensing. Second, we use the Jovian wind speeds measured

y the probe at an altitude near 700 mbar to establish a refer-

nce altitude where the value of the zonal wind at the equator is

nown precisely. This reference speed is needed to calculate zonal

elocities at the equator from the wind shears calculated with the

QTWE at altitudes spanning 0.7 bar to 1 mbar, well above the al-

itudes where the probe measured the zonal winds. Both of these

pplications of the probe-measured wind speeds require that we

now the accuracy of the winds at the latitude of the probe entry

ite. The Galileo probe descended into Jupiter on December 7, 1995

nto the southern edge of a 5 μm hot spot at 7.46 °N jovigraphic

nd transmitted data to the orbiter for 57 min before contact was

ost. Zonal wind velocities were derived from the probe’s location

ia the Doppler Wind Experiment and are shown, with an error

nvelope, in Fig. 2 (taken from Fig. 4 in Atkinson et al., 1998 ). 

Understanding properties of hot spots is important in this study

ecause we need to know if the velocities measured by the Galileo

robe were unique to a hot spot or representative of the aver-

ge zonal flow where the probe entered. The probe showed that

 hot spot is a dry region with low molecular weight ( Niemann

t al., 1998; Wong et al., 2004 ). There is no universally accepted
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and totally self-consistent picture of what hot spots and dark spots

are, but there are strong qualitative similarities in several analy-

ses and models of these features ( Allison, 1990; Ortiz et al., 1998;

Showman and Dowling, 20 0 0; Friedson, 20 05 ). Specifically, the

cloud patterns and temperature and density anomalies of the hot

spots are created by local, isolated downdrafts of nonlinear trapped

equatorial Rossby waves. In this scenario, the Rossby waves cir-

cumscribe the entire planet with wavelengths of 2 π r 0 / m , where

m is the average number of hot spots (6 ≤ m ≤ 13), which can vary

as a function of time. This downdraft, although weak, clears out

the upper aerosols that scatter sunlight back to us, resulting in

the signature dark spots at visible wavelengths ( Orton et al., 2017 ).

The relatively aerosol-free, low opacity upper region allows the

warmer low layers to be observable and appear as 5 μm hot spots.

Ortiz et al. (1998) and Friedson (2005) support their scenario in

a number of ways, including showing that the observed numbers

of dark/hot spots are consistent with the theoretical wave num-

bers of the Rossby waves and that the observed drift rates of the

dark/hot spots are consistent with the theoretical westward phase

speeds of Rossby waves with respect to the local zonal flow. In

addition, the observed variability of the number of dark/hot spots

as a function of time is consistent with the dispersion relation-

ship of equatorial Rossby waves. Further, more recent support for

this scenario is provided by Bjoraker et al. (2015) , who show, based

upon radiative transfer models that fit Keck observations, that hot

spots are dry, and contain no opaque clouds between 2 and the

7 – 8 bar level. In addition, an analysis of microwave observa-

tions ( Sault et al., 2004; de Pater et al., 2016 ) also show that

hot spots have depleted mixing ratios of ammonia down to the

8-bar level, similar to Galileo Probe Mass Spectrometer measure-

ments ( Wong et al., 2004 ). The upwelling branch of the wave, dis-

placed equatorward from the downwelling branch, as simulated by

Showman and Dowling (20 0 0) , was shown to be ammonia-rich by

de Pater et al. (2016) . 

The scenario that the hot spots are due to a Rossby wave is

important in our analysis because the EQTWE relates the verti-

cal wind shear approximately averaged over all longitudes , rather

than at a single isolated longitude, to the meridional temperature

gradient similarly averaged. 3 If the wind shear measured by the

Galileo probe were a peculiarity of a local hot spot and did not

represent the long longitudinal wavelength component or longitu-

dinal average of the zonal wind shear, then we could not apply the

EQTWE to the probe’s measurements. Note that our analysis uses

only the longitudinally-averaged meridional temperature profiles

shown in Fig. 1 and only makes predictions about longitudinally-

averaged temperatures. Whether or not a hot spot has a thermal or

a compositional anomaly compared to the longitudinally-averaged

values is irrelevant to our analyses. Our scenario only assumes

that the probe-measured zonal wind shear is representative of the

longitudinally-averaged values, and this is the same assumption

that Friedson (2005) uses in his model. 

Vertical wind profiles in Jupiter are not experimentally known

except in the probe entry site. Many interpretations of hot spots

share our assumption that wind shear within these features is the

same as the zonal average wind shear ( Allison, 1990; Ortiz et al.,

1998; Friedson, 2005 ). One exception is by Showman and Dowl-

ing (20 0 0) , who argued that the strong wind shear seen from 1 to

5 bars in the Galileo probe data was strongly affected by local con-

ditions (such that the wind shear would have been different had

the probe entered elsewhere in the equatorial region). Application

of our EQTWE would be invalid under these conditions. To test the

robustness of the locally anomalous winds from the Showman and
3 This is because the fractional errors in the EQTWE listed in the footnote in 

Section 4.1 are small only if L φ is of order or larger than r 0 . 

r

t

p

owling (20 0 0) model, we measured horizontal winds in a hot

pot observed in 2017. Fig. 3 compares hot spot velocities from

ubble Space Telescope observations (shading in top row) and in-

rared images at 4.68 μm from the Gemini North observatory (bot-

om row). 

The 2D velocity field, extracted with ACCIV 

4 ( Asay-Davis et al.,

009 ), is qualitatively similar to the observed velocities from

alileo Orbiter data shown by Showman and Dowling (20 0 0) in

heir Fig. 1. In particular, a large area of clockwise circulation is

ound to the south and east of the hot spot, just as in our Fig. 3 .

owever, their model velocity field shows a clockwise circulation

ust to the south of the model hot spot (or about 180 ° out of

hase), which leads them to find 40-m/s winds near the 1-bar

evel in their simulated probe entry location. This is the basis for

heir hypothesis that vertical wind shear in the probe region is

nomalous. However, since observations differ from the horizontal

elocity field in their model, it is conceivable that their conclusions

egarding the vertical wind profile also differ. 

In Fig. 4 , we compare mean eastward winds in the region sur-

ounding the hot spot in Fig. 3 , spanning 310–345 °W, with zonal

ind measurements taken about a year earlier ( Tollefson et al.,

017 ). There is strong agreement, suggesting that the zonal winds

n and around the hot spot are highly similar to the longitudinally-

veraged eastward flow. 

In an analysis subsequent to the publication of Showman et al.’s

ot spot model, Li et al. (2006) used cloud-tracking at two dif-

erent cloud decks to measure zonal velocities in and around the

pots. Within a hot spot and at the lower cloud deck at ∼ 3 bar,

he zonal winds were ∼ 170 m/s, consistent with the values mea-

ured by the Galileo probe. Li et al. could not measure the zonal

elcity within the hot spots at the altitude of the visible up-

er cloud decks (due to a lack of cloud tracers), but they found

hat the zonal velocity immediately surrounding the hot spots was

100 m/s, which is consistent with observed drift rates of the hot

pots themselves ( Ortiz et al., 1998; Friedson, 2005 ). All of these

bservations suggest, but do not prove, that the zonal velocities

ithin the hot spots do not differ from the longitudinally-averaged

onal velocities at the latitudes at which they are located, and we

se this hypothesis throughout the remainder of this section. 

.2. Equatorial wind shear above 500 mbar and the stratospheric jet 

In this Section, we use the EQTWE with CIRS measurements at

ltitudes above 500 mbar to determine the equatorial wind shear

nd zonal velocities. The EQTWE can provide the shear, but to

etermine the velocity it is necessary to integrate the shear and

herefore have a known reference value of the equatorial velocity

t a known altitude. The Galileo probe provides velocities at known

ltitudes, but these velocities are at 7.46 °N jovigraphic. Unfortu-

ately, zonal velocity profiles obtained by cloud displacements, re-

ardless of whether they use 1D correlation, 2D correlation, or dis-

rete feature tracking (c.f., see Table 1 in Tollefson et al., 2017 ),

ll show that the difference between the zonal velocity at the

quator and at 7.46 °N differ by ∼ 30%, or 24 m/s, so we can-

ot use the Galileo probe velocities to establish a reference value.

onal velocities determined by numerous cloud displacement stud-

es (c.f., Tollefson et al., 2017 ) provide equatorial velocities that are

ll nearly the same; however, those studies report that the veloci-

ies are at “cloud level”. In principle, the “cloud level” could be de-

ermined, in terms of a specific altitude, by calculating contribution
4 The velocity field used input maps sampled at 0.05 °/pixel, with final pass cor- 

elation box sizes of 50 pixels and a search range of 5 pixels. The final pass was 

he 4th ACCIV pass with 10-hour separations, following three short-separation (35–

45 min) passes, where the first pass used 70-pixel boxes with a range of 20 pixels, 

roviding sensitivity to any velocities up to a maximum of 440 m/s. 
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Fig. 3. Top row: Hubble Space Telescope WFC3/UVIS imaging data from Feb. 1–2, 2017, at 631 nm with wind vectors overlaid. Bottom row: The same wind field is compared 

with Gemini infrared image taken at 2017-02-01 UT 16:32. Comparison shows a strong correspondence between optically dark regions and 5 μm bright regions, as in 

Orton et al. (2017) . Two time steps are shown, based on 10-hour separated data processed using ACCIV ( Asay-Davis et al., 2009 ). Time steps listed at the top of each column 

correspond to the midpoint of the 10-hour separated data, which is the time corresponding to the velocity field as measured, rather than the time of individual observations. 

Arrows show velocity vectors after the subtraction of a constant eastward velocity of 78 m/s to facilitate a comparison with vectors plotted in Showman and Dowling (20 0 0) . 

The Gemini data are from a single image, which was advected by a uniform velocity over the whole map area of 108 m/s eastward to match the time steps of the velocity 

fields. Gemini data are still under analysis for publication, but a preliminary data frame is shown here to demonstrate the strong anti-correlation between optical albedo and 

thermal emission. 

Fig. 4. No significant difference is seen between the longitudinally-averaged zonal winds from Tollefson et al. (2017) (black curve), and the mean eastward velocities in the 

velocity field in and near the hot spot in Fig. 3 (orange curve). Error bars show the standard deviation of individual vectors in each bin. A velocity of 40 m/s at a latitude of 

5 °N, as given by the model of Showman and Dowling (20 0 0) , is inconsistent at the 4.9-sigma level with the distribution of observed mean velocities at this latitude. At the 

actual latitude of the probe site, the difference is 3.9 sigm a. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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uncertainty in the second derivative cannot be determined by examining the dis- 

tance between the observational points (squares and circles) in Fig. 5 and the best- 

fit parabola because all of the observational points are either in the northern or 

southern hemisphere. Therefore, none of those points will lie on the curve of T M ( P, 

θ ) for fixed P , so even if the best-fit parabola exactly represented T M , the observa- 

tional points would not lie on the parabola (unless T A ≡ 0). One possible estimate of 

the uncertainty could be made by varying the range in θ over which a parabola is 

fit. Changing the range from | θ | ≤ 5 ° to | θ | ≤ 10 ° in panels a–g in Fig. 1 , fractionally 

changed the values of ∂ 2 T M / ∂θ2 by 20%. However, we believe that the range | θ | ≤ 5 °
has too few points to carry out a proper best-fit, and therefore we think that 20% 

severely overestimates the fractional error of ∂ 2 T M / ∂θ2 . Many studies have used 

temperatures with the TWE to estimate velocity shears. Unfortunately, neither the 

algorithms for computing ∂ T M / ∂ θ nor their uncertainties are typically published, so 

we have no way of comparing our fractional errors to those of previous studies. For 

panel h in Fig. 1 , varying the range of θ made a very large change in the value of 

∂ 2 T M / ∂θ2 . Therefore, we chose not to use temperatures at 500 mbar to compute 

the velocity shear or the velocity. (See the next footnote in this section.) Possibly, 

the measurements at 500 mbar have a large uncertainty due to aerosol effects on 

the spectrum at this altitude. 
6 As discussed in the first footnote in Section 3.2 , the temperatures at 500 mbar 

(the lowest altitude at which the CIRS temperatures were reported by Fletcher et al., 

2016 ) were considered to be too noisy to use. Therefore, we decided not to use the 
functions by assuming a model atmosphere and using radiative

transfer models to compute opacities (c.f., Fig. 16 in Tollefson et al.,

2018 which shows contribution functions for Neptune; and de Pa-

ter et al., 2016 which shows contribution functions for Jupiter at

radio wavelengths, where the decrease in NH 3 gas signifies the

cloud base, e.g., NH 4 SH, NH 3 -ice). However, for Jupiter there is

no definitive altitude of the cloud features used in the derivation

of the wind profile, and estimates vary between 500 mbar (c.f.,

Flasar et al., 2004 ) and 1.5 bar (the tops of NH 4 SH clouds). There-

fore to establish the pressure for “cloud level”, we used an equa-

torial zonal velocity of 76.7 ± 5 m/s from the cloud displacement

study of Garcıa-Melendo and Sánchez-Lavega (2001) because that

study used images that were taken near the time of the Galileo

probe entry at the “cloud level”. From this same study, we used

the value of 101 ± 10 m/s for the zonal velocity at the probe en-

try latitude. The Galileo probe data ( Fig. 2 ) show that a velocity

of 101 m/s corresponds to an altitude of 950 mbar. Using the up-

per and lower bounds of the probe velocities shown by the dashed

lines in Fig. 2 , we argue that the reference altitude is 950 mbar

bounded above and below by 1.2 bar and 680 mbar. Therefore, we

use as a reference point an equatorial velocity of 76.7 ± 5 m/s

at an altitude of 950 ± 250 mbar. The uncertainty in the Galileo

probe velocities dominate the uncertainty in determining the cloud

level, so we base our estimates of the uncertainty of the reference

altitude on the uncertainty that arises from the probe velocity un-

certainties in Fig. 2 rather than on the smaller uncertainties in the

velocities obtained from the cloud displacement study. 

In addition to a reference velocity and altitude, to compute the

zonal velocity at the equator, equatorial zonal velocity shears must

be obtained with the EQTWE, which, in turn, requires calculating

the second derivative of the mirror-symmetric component of the

temperature ∂ 2 T M (P, θ ) /∂θ2 

∣∣∣
θ=0 

. We do this with a least-squares

fit of the temperature data in each panel of Fig. 1 . Near the equa-

tor, we fit T M ( P, θ ) (which, by definition, is an even function of θ )

to a parabola that is symmetric with respect to θ = 0 , so 

T M (P, θ ) = T M (P, θ = 0) + c θ2 (16)

= T M (P, θ = 0) + 

∂ 2 T M (P, θ ) 

∂θ2 

∣∣∣∣
θ=0 

θ2 

2 

. (17)

We emphasize that c ≡ ∂ 2 T M (P, θ ) /∂θ2 

∣∣∣
θ=0 

/ 2 because the reason

for the least-squares fit is to determine the observed value of

∂ 2 T M (P, θ ) /∂θ2 

∣∣∣
θ=0 

. To do the least-squares first, we first fold the

temperature values T ( P, θ ) in Fig. 1 about the equator to obtain the

values of T M ( P, θ ) shown in Fig. 5 . The values of the longitudinally-

averaged, mirror-symmetric shears ∂ v M 

φ
/∂ r at the equator are de-

termined from these temperature fits and the EQTWE in Eq. (10) ,

or in writing the shear in terms of ln P , 

∂v M 

φ

∂ ln P 
= −H 

∂v M 

φ

∂z 
= 

R 

r 0 f 0 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

, (18)

where all quantities in the equation above are to be evaluated at

the equator, and where H ≡ RT / g is the local pressure scale height

and R is the specific gas constant for the Jovian atmosphere. The

shears are shown in Fig. 6 . 5 
5 The fractional errors in the shear are equal to the fraction errors in determi- 

nation of ∂ 2 T M 

∂θ2 

∣∣∣
P,θ=0 

. Using the absolute error bars of any individual temperature 

measurement in Fig. 1 would make a derivative or a second derivative of the tem- 

perature have errors of order unity. However, taking the temperature measurements 

as a group, we argue that fitting a parabola through them gives a quantitatively 

significant way of determining second derivative of the temperature. Estimating the 

t

T

a

a

t

i

i

a

h

The zonal mirror-symmetric velocity is determined by integrat-

ng the vertical velocity shears at the equator and is shown in

ig. 7 . The symbols in the figure are the velocities at v M 

φ
( ln P i ) at P 0

solid squares, the reference pressure, which is 950 mbar for the

lack (and 1.2 bar and 680 mbar for the gray curves), each with

 velocity of 76.7 m/s), P 1 = 330 mbar, P 2 = 220 mbar, P 3 = 100

mbar, P 4 = 10 mbar, P 5 = 5 mbar, P 6 = 2 mbar, and P 7 = 1 mbar.

he vertical shears, d v M 

φ
/d ( ln P ) 

∣∣∣
i 

, are known at each value of P i

y the EQTWE in Eq. (18) for 1 ≤ i ≤ 7. For i = 0 , the shear can be

btained by differentiating the velocity determined by the Galileo

robe (but see the next footnote). To obtain the values of v M 

φ
( ln P 1 )

rom its shear or vertical derivative, we integrate d v M 

φ
/d ( ln P ) in

( ln P ) using the trapezoidal rule, or 

 

M 

φ ( ln P i +1 ) ≡ v M 

φ ( ln P i ) 

+ 

[( ln P i +1 ) − ( ln P i )] 

2 

( 

d v M 

φ

d ( ln P ) 

∣∣∣∣
P i 

+ 

d v M 

φ

d ( ln P ) 

∣∣∣∣
P i +1 

) 

. (19)

ith i = 0 . Because the shears v M 

φ
( ln P i ) are known for all i , once

 

M 

φ
( ln P i ) has been found, the value of v M 

φ
( ln P i +1 ) can be deter-

ined. Using the trapezoidal rule in this fashion, we have com-

uted the values of v M 

φ
( ln P i ) and plotted them as open circles in

ig. 7 for i ≥ 1. To compute the continuous curves that connect

he open circles in Fig. 7 , rather than use a curve fitting sub-

outine, we use the trapezoidal rule for consistency: Eq. (19) is

quivalent to finding v M 

φ
( ln P i ) by drawing the quadratic curve in

( ln P ) that passes through the point 

(
v M 

φ
( ln P i ) , ( ln P i ) 

)
that has

lopes d v M 

φ
/d ( ln P ) 

∣∣∣
P i 

and d v M 

φ
/d ( ln P ) 

∣∣∣
P i +1 

, respectively, at ln P i

nd ln P i +1 . The value of v M 

φ
( ln P i +1 ) in Eq. (19) is the value of

his quadratic curve at ln P i +1 . Each continuous curve in Fig. 7 is

he union of the quadratic curves between ln P i +1 and ln P i con-

tructed in this manner. This method of construction makes each

urve and its derivative continuous in ( ln P ) . 6 As mentioned in the
emperatures and the shear determined from them using the EQTWE at 500 mbar. 

he value of v M 
φ

plotted at 500 mbar in Fig. 7 with the open square is the value 

t 500 mbar of the quadratic curve connecting ( ln P 0 ) (the solid square) and ( ln P 1 ) 

t 330 mbar that was constructed with the trapezoidal rule. The value of the shear 

hat we plotted with an open square in Fig. 6 at 500 mbar is “reverse engineered”; 

t is the value of the derivative of the quadratic curve connecting ( ln P 0 ) and ( ln P 1 ) 

n Fig. 7 that was constructed with the trapezoidal rule. We used this shear value 

t 500 mbar with the EQTWE (and the value of T (P = 500 mbar , θ = 0) in panel 

, Fig. 1 ) to determine the value of ∂ 2 T M (P, θ ) /∂θ2 

∣∣∣
P=500 mbar ,θ=0 

. We then used this 
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Fig. 5. Least-squares fits (solid line) to the temperature data in Fig. 1 with a parabola symmetric about the equator. The data in Fig. 1 are folded about the equator to 

provide the mirror-symmetric component of temperature T M . Solid black circles (open red squares) are the temperature data in the northern (southern) hemisphere. The fits 

only use the temperatures at latitudes | θ | ≤ 10 ° jovigraphic to assure a local fit to the equator. As explained in the text, the parabola in panel h is not determined from a 

least-squares fit, but rather, “reverse-engineered” from the shear at 500 mbar. 
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Fig. 6. The velocity shear ∂ v M 
φ

/
∂ ln P ≡ −H∂ v M 

φ

/
∂ r as a function of altitude, where 

H is the vertical pressure scale height, approximately 27 km at 1 bar. The open 

circles are the values of the shear at the equator obtained from the EQTWE ap- 

plied to the temperatures in panels a–g in Fig. 5 . The open square at 500 mbar is 

its “reverse-engineered” shear value at the equator described in the text. The thin 

line through the open circles and square is to “guide the eye”. The shear shown 

by the thick curve is the vertical derivative of the zonal velocity from the Galileo 

probe shown in Fig. 2 at latitude 7.46 °N (jovigraphic). There is no physical reason 

why the thick and the thin curves should smoothly join together because they are 

at different latitudes; however, as discussed in the text, it appears that the verti- 

cal shears of the zonal velocities may be nearly independent of latitude. The top 

altitude shown in the thick curve is the “reference altitude” defined in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

Fig. 7. The thin black curve shows the zonal velocity v M 
φ

derived with the EQTWE 

at the equator and by integrating the shear from Fig. 6 as a function of altitude. 

The thick black curve below 700 mbar shows the zonal velocity from the Galileo 

probe in Fig. 2 at a jovigraphic latitude 7.46 ° N , rather that at the equator. The open 

black square and open black circles are at the same altitudes as they are in Fig. 6 , 

and the slope of the thin black curve at each open circle is equal to the shear at 

the corresponding open circle in Fig. 6 . The black solid square at 950 mbar is at 

the reference altitude or “cloud level” (see text), and its value was set equal to the 

zonal velocity that was determined from cloud displacements ( Garcıa-Melendo and 

Sánchez-Lavega, 2001 ) at the “cloud level”. The thin continuous curve that connects 

the black symbols and the open black symbols themselves were computed by in- 

tegrating the velocity shears with the trapezoidal rule (see text). The gray curves, 

open circles, open square, and solid square plotted to the right and left of their 

black counterparts correspond to the same values as their black counterparts, with 

the exception that the reference altitude for the “cloud level” is 680 mbar or 1.2 bar. 

The stratospheric jet near 3 mbar has a peak westward velocity of ∼ 205 m/s when 

the cloud level is set to 950 mbar. In general, the velocity of the stratospheric jet 

increases with decreasing altitude of the cloud level reference altitude. 
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∼  
footnote following Eq. (100) at pg. 80, rather than use the EQTWE

in Eq. (10) , there is an alternate form of the EQTWE that can be

used to evaluate 
∂v M 

φ

∂r 
that does not have any fractional errors in-

volving [ T A ]/[ T M ]: 

∂v M 

φ

∂r 
= − g ′ 

r f 0 T M 

[ 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

− 1 

T M 

(
∂T A 

∂θ

∣∣∣∣
P 

)2 
] 

, (20)

where all quantities and their derivatives are computed at the

equator. In principle, the quantities on the right side of Eq. (20)

can be determined from the temperature in Fig. 1 . Curve-fitting

the data with parabolas that are not constrained to be symmetric

yield values of T M and 

∂ 2 T M 

∂θ2 such that the values are much larger

than their uncertainties. However, curve-fitting does not give re-

liable values of ∂T A 

∂θ
at the equator because the values of these

terms are smaller than their uncertainties. Therefore, it is better

to use the EQTWE in Eq. (10) , forego the seemingly more accurate

Eq. (20) , and accept the fact that Eq. (10) has a fractional error of

order {[ T A ]/[ T M ]} 2 . 
value of the temperature’s second derivative and the value of T (P = 500 mbar , θ = 

0) in panel h, Fig. 1 to create, or “reverse-engineer”, a new parabola (symmetric 

about the equator as in Eq. (17) ). This reverse-engineered parabola is shown in 

panel h, Fig. 5 . This parabola does a good job fitting the two temperature values 

earest the equator, but does a poor job far from the equator. Perhaps this is not 

a surprising finding considering the noisy data and the fact that the parabolic ap- 

proximation of the temperature profile is only valid close to the equator. Finally, 

we note that we might have been incautious in determining the value of the ver- 

tical shear of v M 
φ

at the equator by using the Galileo probe data because the latter 

was taken at jovicentric latitude 6.53 °N (7.46 °N jovigraphic), rather than θ = 0 . To 

check the validity of estimate of the vertical shear at the equator, we constructed 

a new quadratic curve as a function of ( ln P) for v M 
φ

at the equator by connecting 

data at ( ln P 0 ) , ( ln P 1 ) , and ( ln P 2 ) such that v M 
φ

at ( ln P 0 ) is 76.7 m/s, and the 

vertical shear at ( ln P 1 ) and ( ln P 2 ) are the values of the vertical shear determined 

from the temperature by the EQTWE. This quadratic curve in ( ln P) is nearly in- 

distinguishable from the curve plotted in Fig. 7 . The closeness of these two curves 

shows that at cloud level, the vertical shear of the azimuthal velocity at the equator 

at and at jovicentric latitude 6.53 °N are nearly the same, despite the fact that the 

azimuthal velocity itself differs substantially at these two latitudes. See Fig. 9 . 
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Figs. 6 and 7 show that the vertical wind shear remains at

he large negative value that was measured by the Galileo probe

t P = 685 mbar up to altitudes of P � 200 mbar and then be-

omes positive at a value of P between 10 and 100 mbar (i.e., just

bove the tropopause, in the stratosphere), and changes sign and

ecomes negative again at P between 2 and 5 mbar. In fact, be-

ause the EQTWE in Eq. (10) shows that the wind shear is directly

roportional to ∂ 2 T / ∂θ2 , these comments about the wind shear

bove 500 mbar are obvious by a casual inspection of Fig. 1 . 

The stratospheric equatorial jet shown in Fig. 7 is centered near

n altitude of 3 mbar and has a vertical thickness of ∼ 20 km.

ccording to Figs. 1 and 5 , it has a meridional width of ∼ 20 °
r ∼ 25,0 0 0 km. It has a maximum eastward-going velocity of

205 ± 15 m/s. To understand our estimate of the uncertainty of

he jet speed, note that the uncertainty in the altitude of the refer-

nce altitude at “cloud level” has an effect on the velocity because

he velocity is an integral of the zonal shear that starts at the ref-

rence velocity and altitude. A change in the reference velocity of

5 m/s will simply shift the zonal velocity plotted in Fig. 7 by

5 m/s. A change in the reference altitude by ± 250 m/s will have

 bigger effect. The two thin gray curves in Fig. 7 show the ef-

ects of changing the reference altitude from 950 mbar to 1.2 bar

nd 680 mbar (the lower and upper limits on the cloud level alti-

ude as determined from the uncertainty in the Galileo probe ve-

ocity measurements), respectively, while keeping the “cloud level”

onal fixed at 77 m/s. Lowering the reference altitude increases the

aximum velocity of the stratospheric jet. The uncertainty of the

tratospheric jet speed, ± 15 m/s is based on the uncertainty in the

eference altitude, which is larger than the uncertainty in the jet

peed due to the uncertainties in the reference velocity. (Here, we

o not consider the effect of the uncertainties in the zonal wind

hears obtained via the EQTWE due to the difficulty in obtaining a

eliable measure of the uncertainties in ∂ 2 T M / ∂θ2 ). 
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Fig. 8. The difference 
T ≡ [ T (P, 0) − T M (P, 7 . 5 ◦)] /T (P, 0) between the equatorial 

temperature and the temperature at 7.5 ° jovigraphic, normalized by the value of 

temperature at the equator as a function of P . The thick curve shows values deter- 

mined by the EQTWE using the zonal wind from the Galileo probe. The equator is 

cool compared to its surrounding latitudes with 
T ( P ) < 0 at altitudes between 1 

and 5 bar; however, the equator is relatively warm with 
T ( P ) > 0 at altitudes be- 

tween 5 and 13 bar. The open circles are values of 
T ( P ) found by fitting the sym- 

metric component T M ( P, θ ) of observed CIRS temperatures in Fig. 1 with a parabola 

that is symmetric about the equator. The open square at 500 mbar is “reverse en- 

gineered” as described in the footnote in Section 3.2 . The thin curve through the 

open circles, open square, and connecting to the thick curve is to “guide the eye”. 

As explained in the text, the “kink” in the temperature between ∼ 500 mbar and 

1.5 bar may be nonphysical due to uncertainties in the values of the Galileo probe 

wind shear. As explained in the text at the end of Section 3.3 , replacing those wind 

shear values with a straight-line extrapolation of the wind shear at 1.5 bar would 

change the “kink” to the dot-dash line between ∼ 500 mbar and 1.5 bar. 
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7 Replacing the hooked curve with the straight-line extrapolation would make a 

negligible difference in the determination of the reference velocity. 
8 We have called into question the accuracy of the experimental velocity mea- 

surements of the Galileo probe at the highest altitudes where the measurements 

were reported. We have also called into question the accuracy of the experimen- 

tal temperature measurements at the lowest altitudes where they were reported. 

As pointed out by Feynman and Leighton (1986) , experimental data at the extreme 

ends of the range over which data is reported should be treated with caution. 
.3. Application of the EQTWE to the Galileo probe 

Little is known about the temperature profiles at altitudes be-

ow 700 mbar, because infrared temperature measurements can-

ot typically be done at theses depths. Thus, we wish to use the

QTWE to determine the meridional temperature profile at the

epths where the Galileo probe took measurements (0.7–21 bar).

sing the EQTWE in Eq. (10) to express the second derivative

 

2 T M /∂θ2 in terms of the zonal shear σ (P ) ≡ ∂ v M 

φ
/∂ r at the equa-

or, which is defined to be the longitudinal average of ∂ v M 

φ
/∂ r 

∣∣∣
θ=0 

,

nd approximating T M ( P, θ ) as a parabola symmetric about the

quator, as in Eq. (17) , then near the equator: 

 

M (P, θ ) = T (P, 0) [1 − r 0 f 0 σ/ (2 g ′ ) θ2 ] . (21)

ote that T ( P , 0) ≡ T M ( P , 0). Fig. 1 shows by direct observation

hat at altitudes corresponding to P ≤ 500 mbar, that there are lo-

al extrema of T M at the equator, so σ � = 0. A convenient way to

xpress the magnitudes of these extrema is Fig. 8 , which shows

T (P ) ≡ [ T (P, 0) − T M (P, θ̄ )] /T (P, 0) , where θ̄ is a reference lati-

ude that we set to 7.46 ° jovigraphic. From Eqs. (17) and (21) , we

ee that 
T ( p ) and the equatorial zonal shear σ and d v φ/d ln P 

∣∣∣
θ=0 

re related by : 

T (P ) = θ̄2 r 0 f 0 σ/ (2 g ′ ) = − θ̄2 r 0 f 0 
2 g ′ 

dv φ
d( ln P ) 

1 

H 

= − θ̄2 r 0 f 0 
2 R T (P, 0) 

dv φ
d ln P 

. (22) 

sing Eq. (22) , we obtain values of 
T ( P ) from values of

 v φ/d ln P 

∣∣∣
θ=0 

, where the latter are obtained by differentiating the

onal velocity in Fig. 2 . 

From the Galileo probe we have values of the shear at 7.46 °N,

ather than at the equator where the EQTWE requires them. Al-

hough the zonal velocities at 7.46 °N and the equator are quite dif-

erent, Fig. 9 , which is a blow up of Fig. 7 near the reference alti-

ude of 950 mbar, shows that the values of the zonal velocity shear

t 7.46 °N and the equator are quite similar (differing by less than

%). In particular, at 950 mbar, the value of the vertical shear at

.46 °N (as determined by differentiating the Galileo probe velocity)

ives a shear value for ∂ v φ / ∂ ln P of 44.5 m/s per ln P , or equiva-

ently, a shear value for ∂ v φ/∂ r of −1.91 (m/s)/km. At 950 mbar,

he value of the vertical shear at the equator (as determined with

he temperature observations at the equator and the EQTWE) gives

 shear value for ∂ v φ/∂ ln P of 43.8 m / s per ln P , or equivalently, a

hear value for ∂ v φ / ∂ r of −1.88 (m/s)/km. It is this observation

t 950 mbar and our assumption that ∂ v M 

φ
/∂ ln P remains approx-

mately independent of latitude down to altitudes of ∼ 13 bar,

hat we justify our use of the shear from the Galileo probe in the

QTWE. 

To determine the vertical shear at 950 mbar at the equator from

he EQTWE and the temperatures in Fig. 1 , we did the following:

ecause we did not feel that we had reliable temperature informa-

ion at the equator for altitudes lower that 330 mbar, we used the

QTWE at 220 mbar and at 330 mbar to determine the shear at

he equator, and then extrapolated these values to 950 mbar. We

id the extrapolation by assuming that the zonal velocity was a

arabolic function of the pressure ( n.b. , this assumption that the

elocity is parabolic in altitude has no relationship with the fact

hat we assumed that T M was locally parabolic in θ , other than

 fact that that a parabola is the first three terms of a Taylor ex-

ansion). The parabola is uniquely determined by requiring that its

erivatives (or velocity shears) at 220 and 330 mbar are equal to

he values that we derived from the EQTWE (as shown in Fig. 6 ),
nd that the velocity at 950 mbar is the one we chose for the ref-

rence altitude (as shown in Fig. 7 ). Differentiating this parabola

t 950 mbar gives our value for the extrapolated vertical shear at

50 mbar at the equator from the EQTWE. Throughout the remain-

er of this section, we make the approximation that the shear at

he equator is the value of the shear measured by the probe. 

The uncertainties in 
T are due to the fractional errors in the

ertical shear of the Galileo probe velocity and due to our assump-

ion that the shear at the equator and 7.46 °N are the same. We

ote that the blow-up of the probe velocity in Fig. 9 shows a

hook” near 900 mbar. The difference in the velocities given by

he thick curve with the hook and a new curve that is a straight

xtrapolation (the dot-dash line that removes the “hook”) of the

urve at altitudes above 1 bar is small. 7 A straight extrapolation

alls well within the uncertainties in the figures. However, the dif-

erence in the slope between the hooked curve and the straight

xtrapolation is large between 680 mbar and 1 bar, and this dif-

erence in slope creates factor-of-2 differences in the shear ∂ v φ / ∂ r
f the hooked curve and the straight extrapolation (and, therefore

n 
T ) at those altitudes. The small hook in the probe velocity’s

hear in Fig. 9 near 900 mbar may be nonphysical. 8 Therefore,

he kink in Fig. 8 at altitudes between 680 mbar and 1 bar may

lso be nonphysical. If we use the wind shear from the dot-dash

urve (extrapolation), rather than the thick continuous curve (ac-

ual Galileo probe measurements), in Fig. 9 at altitudes between

00 and 1.5 bar in the EQTWE to determine 
T , (i.e., use the far

ight side of Eq. (22) to compute 
T , where the value of d v φ/d ln P 
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Fig. 9. Blow up of the lower part of Fig. 7 that is based on the reference altitude 

of 950 mbar. The zonal velocity v M 
φ

at the equator (thin continuous curve) is ob- 

tained from the EQTWE and the temperatures in Fig. 1 . This part of the curve is 

extrapolated down to the 950 mbar altitude using the velocity shear values at 220 

and 330 mbar as described in the text. The thick curve is the zonal velocity from 

the Galileo probe at 7.46 °N jovigraphic. The thick dashed lines on either side of the 

thick curve are the dashed lines showing the probe velocity uncertainty in Fig. 2 . 

As described in the text, we are concerned that the “hook” in the Galileo probe ve- 

locity at altitudes above 1 bar may be erroneous. The thin dot-dash line shown at 

altitudes above 1 bar would be the Galileo probe velocity if we replaced the “hook”

with a straight-line extrapolation of the probe velocity at altitudes just below 1 bar. 

Although the zonal velocity at the equator and 7.46 °N at 950 mbar differ, the ver- 

tical shears differ by less than 2%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Schematic of the proposed 2-layer cellular circulation in Jupiter’s tropo- 

sphere implied by the EQTWE. For altitudes above 5 bar (and beneath the 10–

100 mbar height where the equatorial temperature anomaly shifts from being cold 

to warm according Fig. 8 , air rises adiabatically at the equator, locally cooling and 

drying the atmosphere. Dry air then travels pole-ward and descends down to 5 bar. 

At altitudes below 5 bar, this scenario is reversed. The upper layer looks similar to 

Earth’s equatorial Hadley cells. The flows are independent of longitude. This sce- 

nario is based on our application of the EQTWE to Galileo Probe wind shear data, 

assuming horizontal homogeneity in composition. If water vapor is inhomogeneous 

at P > 8 bar, there may be no reversed circulation at depth. 
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is fixed at its value at 1 bar and where we use the temperature

profile given by Seiff et al. (1998) for T ( P )), then the “kink” in

Fig. 8 is replaced by a nearly straight line. 

3.4. Implications of the EQTWE-derived temperatures 

Fig. 8 shows that altitudes between 1 and 5 bar, the equator is

cool compared to the North and South Equatorial Belts, consistent

with the temperatures at 500 mbar shown in panel h in Fig. 1 .

This anomalously cool region in a stably stratified atmosphere 9 is

indicative of up-welling at the equator if the air rises adiabatically

and therefore cools. Because the temperature extrema at the equa-

tor were derived from zonal shears that we assumed were repre-

sentative of the winds at all longitudes, we envision that this up-

welling is nearly axisymmetric around the planet and not confined

to a compact location and that the up-welling is part of a larger at-

mospheric circulation that is also nearly axisymmetric around the

planet. The formation of clouds all along the equator is also indica-

tive of an equatorial up-welling along a moist adiabat that circum-

scribes the planet. On Jupiter, clouds are expected to form at least

three decks: a water cloud at 5–7 bar, NH 4 SH clouds at 1.5–2.5 bar,

and ammonia clouds above 1 bar ( Lewis, 1969; Atreya and Romani,

1985; Wong et al., 2015 ). In this picture of cloud formation, after

up-welling at the equator, the air, now depleted of its condensibles,

travels pole-ward and sinks, adiabatically warming. This picture of

equatorial up-welling and cooling is also consistent with pictures

of the Jovian zone-belt system dating back to at least 1969: rising

motion at the central latitude of each nearly axisymmetric zone

that extends all the way around the planet, and sinking motion at

the central latitude of each belt ( Ingersoll and Cuzzi, 1969; Bar-

cilon and Gierasch, 1970 ). This picture, as shown schematically by

the upper two cells in Fig. 10 , applies to Jupiter’s equator, which

has anticyclonic vorticity for | θ | < 10 °, and is therefore a zone with

the equator as its central latitude. This upper layer of cells looks
9 We argue that the atmosphere at these altitudes is stably stratified, based, in 

part, by the findings of Magalhães et al. (2002) . 

g  

t  

o  

E  
imilar to Earth’s equatorial Hadley cells. This picture of rising gas

n the equatorial zone (EZ) and sinking in the north equatorial belt

NEB) was recently given credence by microwave maps constructed

sing the Very Large Array ( de Pater et al., 2016 ), which showed

ands, encircling the entire planet, of ammonia rising from deep

evels (altitudes below ∼ 8 bar) up to cloud condensation levels

altitudes between 0.7 and 2.5 bar) in the EZ, a few degrees north

f the equator, accompanied by descending ammonia-depleted air

n the belts, in particular the NEB. Recent Juno observations of an

mmonia plume ( Li et al., 2017 ) just north of the equator dur-

ng perijove passes PJ1 and PJ3 are consistent with our model in

ig. 10 as discussed below in Section 3.5 . 

At altitudes between 5 bar and 13 bar, the temperature anoma-

ies in Fig. 8 show that the equator is relatively warm with respect

o the surrounding air and therefore implies a circulation that is

pposite to the one at altitudes above 5 bar and is illustrated by

he lower layer of cells in Fig. 10 . A 2-layer cellular circulation like

he one in Fig. 10 was proposed earlier by Ingersoll et al. (20 0 0) .

howman and de Pater (2005) also suggested a similar scenario

o explain the overall ammonia abundance depletion at altitudes

bove ∼ 2 bar and between belts and zones. 

Our meridional temperature gradient has strong quantita-

ive similarities to one case considered in Showman and Inger-

oll (1998) . That work attempted to use a more general, gradient-

ind balance, producing estimates of the meridional tempera-

ure gradient at the Probe entry site based on the probe wind

ata. Gradient wind balance includes a centripetal force that de-

ends on the curvature of the flow, R . For zonal flow, (i.e., R → ∞ ),

howman and Ingersoll (1998) found the equator to be cooler

han the probe site at altitudes above 5 bar, and warmer than the

robe site at deeper levels near 10 bar. Magnitudes of the merid-

onal temperature gradients for their zero-curvature flow case are

ery similar to the gradients in our Fig. 8 , although we find

he strongest gradient near 300 mbar and Showman and Inger-

oll (1998) found the strongest gradient closer to 1.5 bar. 

A final note about our use of the EQTWE in this section is that

e assume that the Jovian atmosphere has a horizontally homo-

eneous molecular weight. By doing so, we ignore the effects of

he density variations of ammonia, hydrogen sulfide, water and,

ther trace gases in the atmosphere, which lead to departures from

q. (2) and the EQTWE. The density variation of an atmosphere
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Fig. 11. Mixing ratio profiles of ammonia gas at the equator (solid black) and NEB 

(dashed black) based on radiative transfer models that fit VLA observations. The 

figure shows that the gases are sufficiently small that compositional effects are not 

important in the EQTWE, and virtual temperatures do not need to be used. The 

curves of water (solid blue) and hydrogen sulfide (solid red) are derived from ther- 

mochemical models assuming both are 4.5 times enhanced above solar O and S 

at P > 8 bar ( de Pater et al., 2016 ). The dashed blue line shows the water abun- 

dance profile in a hot spot as derived by Bjoraker et al. (2015) , based upon infrared 

measurements that are sensitive down to the 7–8 bar level. The molecular weight 

is affected mostly by ammonia at P < 5 bar, and mostly by water at P > 5 bar, de- 

pending on the exact mixing ratio profiles. Note that at present there is no accurate 

measurement for water at P > 8 bar. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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ue to a tracer with non-spatially uniform mixing ratio, and its

ontribution to the vertical wind shear are accounted for by the

econd term on the right side of Eq. (142) in Appendix C . This term

an have a large effect on the vertical wind shear. For example,

ollefson et al. (2018) found in some applications to Neptune’s at-

osphere that the sign of the wind shear predicted by the TWE

nd EQTWE changes when compositional anomalies are properly

ccounted for. However, we believe that the compositional struc-

ure of Neptune differs from that of Jupiter with the latter hav-

ng much smaller volatile mixing ratios so that the compositional

ffect on the vertical wind shear of Jupiter is at most a few per-

ent of the thermal effect. To see this, note that we assume that

he spatial non-uniformity of the mixing ratios of the trace gases

re indicated by the difference between the mixing ratios at the

EB and at the equator in Fig. 11 , which shows that the differ-

nce is important only for ammonia and potentially water at P > 8

ar. 10 The ratio of the compositional contribution to the EQTWE

i.e., the second term in Eq. (142) , to the thermal contribution (i.e.,

he first term in Eq. (142) ) is approximately 
m / 
T , if the charac-

eristic meridional length scales of mirror-symmetric components

f T and m are similar at the equator. Here, 
m is defined like 
T ,

he normalized difference between its value at the equator and at

.5 ° jovigraphic; 
m ≡ m (θ = 0) − m (θ = 7 . 5 ◦) . From Figs. 8 and

1 , 
m / 
T is on the order of up to 10%, so the vertical zonal shear

s given by the EQTWE with a fractional error of only a few percent

ue to ignoring compositional effects. Note that the above is only

alid at P < 8 bar where we have observation constraints for NH ,
3 

10 The ammonia mixing ratios are determined from radiative transfer models that 

t VLA data, but the water and H 2 S abundances are theoretically derived from ther- 

ochemical calculations, assuming deep abundances for both ( de Pater et al., 2016 ). 

t is clear, though, from these models and other data (including the Galileo probe 

ata – Wong et al. (2004) , that the H 2 S mixing ratio is much smaller than the NH 3 

alue, and hence will not effect the ratio 
m / 
T at altitudes above the water cloud 

y more than a factor of 2. 

t  

l  

w  

5  

F  

t

 

s  
 2 S, and H 2 O (see Fig. 11, de Pater et al., 2016 , and Bjoraker et al.,

015 ). An accurate measurement of water at P > 8 bar is needed to

valuate its compositional contribution on the EQTWE. 

.5. Comparison with Juno results 

Is there a relation between the ammonia plume observed by

uno near 3.5 °N jovicentric as shown in Fig. 12 and the as-

ending and descending motions at the equator that we inferred

rom the EQTWE and the Galileo probe observations as shown in

ig. 10 ? 

The ammonia plume shown in Fig. 12 upwells from below 8 bar

also see de Pater et al., 2016 ) to 800 mbar ( n.b. ammonia con-

ensation is believed to occur between 0.7 and 2.5 bar in the EZ)

nd is presumed to be anomalously cool due to adiabatic cooling.

he term “plume” is somewhat misleading because the Juno re-

ults and de Pater et al. (2016) suggest that this ammonia “plume”

xtends around the entire planet with not much variation in longi-

ude. de Pater et al. (2016) distinguish between the rising ammo-

ia gas in the equatorial zone that circumscribes the planet, inde-

endent of longitude (referred to as “plume” above), and bonafide

lumes of ammonia gas signifying the counterpart of the Rossby

ave causing the well-known 5 μm hot spots. If we assume that

he TWE is valid qualitatively near the plume (which is not un-

easonable because Flasar et al., 2004 used the TWE at 5 ° to suc-

essfully obtain qualitative information about the equatorial strato-

pheric jet), then the TWE implies that on the northern or polar

ide [southern or equatorial side] of the cool ammonia plume that

he temperature increases [decreases] with increasing latitude, and

he zonal velocity decreases [increases] with increasing altitude.

he latitude of the entry of the Galileo probe is 6.53 °N jovicen-

ric. Assuming that the plume is cool and applying the TWE to

he Galileo entry site where v φ decreases [weakly increases] with

ncreasing altitude between 770 mbar and 5 bar [between 5 and

3 bar], the ammonia plume would need to be south of the en-

ry site at altitudes between 770 mbar and 5 bar but be north

f the entry side between 5 and 13 bar. Despite some meander-

ng of the plume’s central latitude with altitude, this amount of

ariation is not supported by Fig. 12 . Thus, application of the tra-

itional TWE to the plume is inconsistent with the Galileo probe

easurements. 

Now consider what the EQTWE implies about the cool ammo-

ia plume and the Galileo probe velocity measurements. Model the

emperature anomaly of the plume as a Gaussian, so that its local

ongitudinally-averaged temperature is 

 ( ln P, θ ) ≡ T̄ ( ln P ) + c e −(θ−a ) 2 / (2 χ2 ) , (23)

here T̄ ( ln P ) is the average temperature as a function of depth,

 < 0 is the strength of the temperature anomaly (which is likely

o be in the range of -2 to -8 K), a is the central latitude of

he plume (in degrees latitude and can vary as a function of al-

itude, but meanders around 3.5 °), and χ is the width of the ris-

ng plume (also in degrees latitude and a function of altitude). The

QTWE in Eq. (18) depends on T M = T̄ ( ln P ) + 

c 
2 [ e −(θ−a ) 2 / (2 χ2 ) +

 

−(−θ−a ) 2 / (2 χ2 ) ] , rather than T , and although T has a local mini-

um near the equator, T M can have a local minimum (if a < χ ) or

 local maximum (if a > χ ) at the equator. Using this T M and the

rguments in Section 3.3 that the vertical wind shear measured by

he Galileo probe is the same as it is at the equator, the vertical ve-

ocity shears deduced from the EQTWE are qualitatively consistent

ith the Galileo observations only if a < χ between 770 mbar and

 bar and a is slightly larger than χ between 5 and 13 bar. From

ig. 12 , this dependence of a and χ is possible, but the observa-

ions are not good enough to provide a definitive answer. 

However, the latitudinal thickness of the plume may be too

mall to allow the application of either the TWE or the EQTWE.
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Fig. 12. Ammonia plume near the Jovian equator from Li et al. (2017) . The colored contours show the ammonia concentration measured by Juno in parts per million. The 

vertical broken line is at the entry latitude of the Galileo Probe. The central latitude of the plume a would need to be south [north] of the dashed line at altitudes above 

[below] 5 bar to be consistent with the TWE. The latitudinal thickness χ of the plume would need to greater than [less than] a at altitudes above [below] 5 bar to be 

co-consistent with the EQTWE. The thinness of the plume may invalidate the use of both the TWE and the EQTWE. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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11 This observations is true for ammonia, but for water and other volatiles, fu- 

ture observations or new radiative transfer models might show that water or other 

volatiles might be important. 
To see this, note that neither equation is valid unless the non-

linear advection terms involving the velocity and its derivatives

are small compared to the pressure and Coriolis terms in Euler’s

equation (or equivalently, that the nonlinear advection terms in

Eq. (36) are small compared to the pressure and Coriolis terms).

The nonlinear terms are created by different velocities at differ-

ent length scales, and the uncertainties in the EQTWE that we

listed in expression (4) come about by requiring the main con-

tribution to the nonlinear terms are due to large velocities of or-

der V θ and V φ (or greater) at the large length scales of L φ and

L θ (or greater). However, in any intermittent, turbulent fluid such

as the atmosphere of Jupiter, there are bound to be small features

such as vortices and plumes, where locally a nonlinear advection

term becomes large due to the large velocity derivatives (i.e., small

length scales) of the features. These local, but spatially compact,

large magnitudes of the nonlinear advection terms usually do not

invalidate either the TWE or the EQTWE as long as the equations

are not applied directly to the regions containing these features. (In

some sense, one should think of the TWE and the EQTWE as being

used with temperature and velocity fields that have been averaged

over lengths L φ and L θ ). Because the ammonia plume’s latitudi-

nal thickness is approximately 2500 km, which is much less than

L θ , it might not be valid to use either the TWE or EQTWE with

the plume. One interpretation of the Galileo probe and Juno plume

measurements is that the longitudinally-averaged temperature at

| θ | ≤ 10 ° has two components. One is a spatially large-scale, nearly

parabolic (in θ ) flow, approximately symmetric about the equator.

Between 770 mbar and 5 bar [between 5 and 13 bar], this temper-

ature has a minimum [maximum] at the equator. Superposed on

this large-scale component, there is a small-scale, cool anomaly as-

sociated with the ammonia plume near 3.5 °N jovicentric. However,

this small-scale temperature anomaly associated with the plume

has no effect on the large-scale temperatures and velocities in the

EQTWE. 
. Conclusion and discussion 

.1. Summary of findings 

We have derived a thermal wind equation valid at the equa-

or, the EQTWE, that relates the vertical zonal wind shear to the

econd derivative of the temperature (or density) with respect to

atitude. The EQTWE was derived to be valid at the equator, but

t is also accurate at latitudes up to 18 ° away from the equator

ith only a 10 % error. We used the EQTWE to determine temper-

ture profiles at altitudes below 500 mbar using wind shear mea-

urements from the Galileo Doppler Wind Experiment Probe and

ound that the equator is cool with respect to surrounding lati-

udes by ∼ 5 K for altitudes above 5 bar. There appears to be no

reviously published measurement or inference of Jovian temper-

tures at altitudes below 500 mbar, other than those found with

 general circulation model. Below 5 bar, down to ∼ 13 bar, the

quator is warmer than the surrounding latitudes by ∼ 2 K. Be-

ow ∼ 13 bar, the Galileo probe did not measure values of the wind

hear greater than their uncertainties. We argued that our results

upport a 2-layer model of global circulation with the top layer

imilar to the Hadley cells on Earth and the lower layer with cells

ith the opposite rotation. The 2-layer model was first introduced

y Ingersoll et al. (20 0 0) and later re-proposed by Showman and

e Pater (2005) . We also argued that, unlike Neptune, composi-

ional anomalies such as ammonia and other volatiles 11 do not

ave an important role compared to thermal anomalies in af-

ecting Jupiter’s vertical wind shear. We showed that at altitudes

bove 680 mbar (the highest altitude where we have reported

alileo probe wind speeds), the strong vertical wind shear con-
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13 We noted in our Introduction that an equatorial thermal wind equation was 

derived by Andrews et al. (1987) (their Eq. (8.2.2)). Their derivation is effectively as 

follows. They start with the TWE in Eq. (15) : 

sin θ f 0 
∂v φ
∂r 

= − g 

rT 

∂T 

∂θ

∣∣∣∣
P 

+ small terms, (24) 

where by “small terms”, we mean all of the terms that were discarded in the 

derivation of the textbook TWE because they were judged to be small either 

due to slow timescales or a small local Rossby number. The “small terms” are 

typically not small near the equator. Andrews et al. (1987) then note that the 

term on the left side of Eq. (24) goes to zero at the equator, and that the 

right side of Eq. (24) also goes to zero at the equator if T is mirror-symmetric 

about the equator. Therefore, they Taylor-expand both terms in θ about θ = 0 , 

retain only the leading non-zero term from each expansion (which is equivalent 

to applying l’Hôpital’s rule), and drop the “small terms” to obtain our EQTWE 

in Eq. (3) . In general, dropping the “small terms” is not valid because if the 

“small terms” are not identically zero at the equator, then those “small terms”

are much larger than the two terms that were Taylor-expanded, which are iden- 

tically zero at the equator. In some sense, the bulk of our derivation of the EQTWE 

in the Appendices is spent showing that if T, ρ , and the velocity are mirror- 

symmetric about the equator, then the “small terms” (i.e., the terms labeled A 

– N in Section A.2 ) are also also identically zero at the equator, and when the 

“small terms” are Taylor-expanded, the leading non-zero terms are small com- 

pared to f 0 ∂ v φ / ∂ r and g/ (rT )(∂ 2 T /∂θ2 ) 

∣∣∣
P 

. It appears that Andrews et al. (1987) did 

not believe that their equatorial thermal wind equation was generally appli- 

cable because if T were not exactly symmetric with respect to the equa- 

tor, then at the equator sin θ f 0 ∂ v φ / ∂ r ≡ 0, but g/ (rT )(∂ T /∂ θ ) 

∣∣∣
P 

would not be 

zero. Therefore, if one Taylor-expands g/ (rT )(∂ T /∂ θ ) 

∣∣∣
P 

as [ g/ (rT )(∂ T /∂ θ )] 

∣∣∣
P,θ=0 

−

θ [ g/ (rT 2 )(∂ T /∂ θ ) 2 ] 

∣∣∣
P,θ=0 

+ θ [ g/ (rT )(∂ T 2 /∂ θ2 )] 

∣∣∣
P,θ=0 

, one cannot discard the first 

two terms of this expansion because (∂ T /∂ θ ) 

∣∣∣
P,θ=0 

is not equal to zero. However, 

Andrews et al. (1987) were too cautious. Their EQTWE differs from our EQTWE in 

Eq. (10) because the latter only relates the mirror-symmetric components of the ve- 

locity and temperature. For most planetary flows, replacing T with T M and v φ with 
inues up to 200 mbar, decreases, and then changes sign in the

ower stratosphere near 80 mbar, and then changes sign again near

 mbar. Our result for the wind shear at altitudes between 300 and

00 mbar obtained with EQTWE contradicts those obtained ear-

ier with TWE because the TWE is ill-conditioned at low latitudes

ecause the Coriolis parameter goes to zero near the equator. At

 mbar we found an equatorial stratospheric jet with velocities of

05 ± 15 m/s, 65 m/s faster than had been previously obtained us-

ng the TWE ( Flasar et al., 2004 ) near the equator. To determine

he zonal velocities above ∼ 1 bar using the zonal velocity vertical

hear obtained from the EQTWE, it was necessary to integrate the

hear. To do the integration, it was necessary to determine the alti-

ude of the “cloud level” at which zonal velocity profiles have been

omputed using cloud displacements (c.f., Tollefson et al., 2017 ).

e found a “cloud level” of 950 ± 250 mbar, higher than the more

ommonly cited value of 500 mbar, but agreeing with results from

atcheva et al. (2005) . The difference in the zonal velocity v φ be-

ween the equator (with a velocity of 77 m/s) and the latitude of

he entry of the Galileo probe, 7.46 °N jovigraphic, is 24 m/s, or

ore than 30%. However, the difference in the vertical zonal shear

t cloud level between these latitudes is less than 2% and is ap-

roximately 44 m/s per ln P or −1.9 (m/s)/km. The only altitudes

t which we can make a direct comparison of the shears at the

quator and 7.46 ° are within a small band around 950 mbar. At al-

itudes between 1 bar and 680 mbar (the highest altitude where

e have reported Galileo probe wind speeds) there is a “hook” in

he shear of the probe’s measured speeds; a linear extrapolation

f the shear from lower altitudes is, however, within the probe’s

rror bars, and hence we cannot be certain this hook is real. 

Our results on the wind shear above 500 mbar illustrate the im-

ortance of the EQTWE because another analysis ( Li et al., 2006 )

hat used the TWE came to an opposite conclusion and showed

hat the wind shear was approximately zero between 315 and

99 mbar. One of several problems that Li et al. encountered was

hat they had to use the TWE at latitudes as low as 3 ° where

he traditional Rossby number is of order unity. 12 Although it is

ossible by using the mirror-symmetric component of T to em-

loy the TWE this close to the equator (see section 4.2 ), it requires

reat care because it requires taking the ratio of two small num-

ers (which is ill-conditioned): the meridional derivative of T and

in θ , where the former has a large observational uncertainty (see

he error bars in the temperature data near the equator in Fig. 1 ).

 second problem encountered by Li et al. in using the TWE is

hat they were required to find the value of the wind shear at the

quator by extrapolating the values of the wind shear at these low

atitudes to the equator, and extrapolation (in contrast to interpo-

ation) of noisy data is ill-conditioned. In contrast to the use of the

WE at or near the equator, the EQTWE is well-conditioned and, in

he case examined here, the sign and magnitude of the wind shear

an be determined qualitatively just by inspection of the thermal

bservations. 

de la Torre Juárez et al. (2002) developed a modified thermal

ind equation (their Eq. (12)) for the vertical wind shear of a

geostrophic velocity” in terms of a geopotential that is valid at

he equator. However, their horizontal “geostrophic velocity” (de-

ned in the un-numbered equation before their Eq. (12)) is iden-

ically zero at the equator, and their modified TWE shows that
12 This value is based on the traditional Rossby number, Ro ≡ V φ / fL , where we take 

 φ to be the characteristic zonal velocity, which we set to 170 m/s using Fig. 2 ; 

f = f 0 sin θ ; and θ = 3 ◦ . The value of L is the characteristic length of the velocity in 

he meridional direction, which in the context of how Ro is used with respect to the 

ractional errors of the TWE is the characteristic value of r v φ /( ∂v φ / ∂θ ). From Fig. 2 

n Asay-Davis et al. (2011) , the approximate half-wavelength of v φ at the equator is 

pproximately 17 ° or 21,0 0 0 km. For a sinusoidal function, the characteristic value 

f the function divided by its derivative is the half-wavelength divided by π , so L = 

,600 km. With these values, Ro = 1 . 4 

v
E

H

t

a

T

i

c

s

he vertical shear of this velocity is proportional to sin θ , so no

nformation is provided by this equation at the equator. Unfortu-

ately, due to the manner in which their modified TWE is writ-

en, it cannot be Taylor-expanded about the equator to obtain a

seful relationship for the velocity shear as θ → 0. In fact, their

ig. 4 for the zonal geostrophic velocity shear obtained with their

odified thermal wind equation using observed temperatures at

0 0 and 40 0 mbar shows that the vertical shear is nearly zero

with | ∂ v M 

φ
/∂ ( ln P ) | < 0 . 5 m/s) at the equator and up to latitudes

ith ± 20 °. This finding strongly disagrees (by a factor of 100)

ith the results obtained by Flasar et al. (2004) for the full velocity

nd our results ( Fig. 6 ) for the mirror-symmetric component of the

onal velocity at those altitudes. The results of de la Torre Juárez

t al. (2002) also disagree with the velocity shear measurements

btained by the Galileo probe for the full velocity at lower alti-

udes. 

.2. Applicability of the textbook TWE near the equator 

We noted in our Introduction that Allen and Sher-

ood (2008) observed that the TWE appears to apply very

ell to zonal flows on Earth at low latitudes, and we can now

xplain the circumstances when the TWE will work. 13 First note
 

M 
φ

in an equatorial thermal wind would make only a minor numerical change. The 

QTWE we derived in Eq. (20) does not require any restrictions on the symmetry. 

owever, the EQTWE that we derived in Eq. (10) has the symmetry requirement 

hat ([ T A ]/[ T M ]) 2 � 1. This inequality puts a constraint on how large ( ∂ T / ∂ θ ) can be 

t the equator: by a Taylor series expansion at the equator, [ T A ] � θ (∂ T /∂ θ ) 

∣∣∣
θ=0 

. 

hus, the previous inequality requires that 

{
(∂ T /∂ θ ) 

∣∣∣
θ=0 

}2 

� { [ T M ] / ̄θ} 2 , where θ̄

s the characteristic distance from the equator where the EQTWE is applied. This 

onstraint is not strong, and for | θ | ≤ 10 °, the temperatures in Fig. 1 satisfy the con- 

traint by better than 1 part in 10 5 . 
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14 As we showed in Section 3.2 , one large source in the uncertainty in our mea- 

surement of the stratospheric jet wind speed from wind shears obtained by the 

EQTWE is the uncertainty in reference altitude for the “cloud level” velocities, 

which we determined was 950 ± 250 mbar. Flasar et al. (2004) , using a refer- 

ence altitude of 500 mbar determined the jet velocity is 140 m/s. If we had used 

the same reference altitude with our EQTWE analysis, we would have obtained a 

maximum jet velocity of 235 m/s. 
that the EQTWE in Eq. (10) at pg. 17 states 

f 0 
∂v M 

φ

∂r 
= − g ′ 

rT M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

, (25)

where T M and v M 

φ
are the mirror-symmetric components of the

temperature and zonal velocity. Now, Taylor expand ∂ T M / ∂ θ
around the equator to obtain its value at latitude θ̄

∂T M 

∂θ

∣∣∣∣
θ= ̄θ

= 

∂T M 

∂θ

∣∣∣∣
θ=0 

+ θ̄
∂ 2 T M 

∂θ2 

∣∣∣∣
θ=0 

+ 

θ̄2 

2 

∂ 3 T M 

∂θ3 

∣∣∣∣
θ=0 

+ 

θ̄3 

6 

∂ 4 T M 

∂θ4 

∣∣∣∣
θ=0 

+ · · · . (26)

Noting that 

∂T M 

∂θ

∣∣∣∣
θ=0 

= 

∂ 3 T M 

∂θ3 

∣∣∣∣
θ=0 

≡ 0 , (27)

we see that 

∂ 2 T M 

∂θ2 

∣∣∣∣
θ=0 

= 

1 

θ̄

∂T M 

∂θ

∣∣∣∣
θ= ̄θ

[
1 + O ( ̄θ2 ) 

]
(28)

= 

1 

sin θ̄

∂T M 

∂θ

∣∣∣∣
θ= ̄θ

[
1 + O ( ̄θ2 ) 

]
. (29)

Substituting Eq. (29) into Eq. (25) gives 

( sin θ̄ ) f 0 
∂v M 

φ

∂r 

∣∣∣∣
θ=0 

= − g ′ 
rT M 

∂T M 

∂θ

∣∣∣∣
P,θ= ̄θ

[
1 + O ( ̄θ2 ) 

]
, (30)

which is the textbook TWE, with the exceptions that Eq. (30) is

only the zonal component of the TWE and that the equation uses

only the mirror-symmetric components of T and v φ and that the

derivative of the zonal velocity is at the equator rather than θ = θ̄ .

Given the zonal shear, the meridional derivative of T M can

be determined at low latitudes, very close to the equator with

Eq. (30) . However given the meridional derivative of T M , Eq. (30) is

ill-conditioned to find the wind shear because it requires comput-

ing the ratio of two small quantities: the meridional derivative of

T M and sin θ̄ . In contrast, the EQTWE is well-conditioned for find-

ing the wind shear given the temperature profile and vice versa. 

In some cases, such as the measurement of the Jovian strato-

spheric equatorial jet ( Flasar et al., 2004 ) and the Earth’s equato-

rial zonal wind from radiosonde measurements ( Allen and Sher-

wood, 2008 ), luck combined with caution might allow the TWE to

be used near the equator to determine the zonal velocity shear.

Luck requires that the flow is sufficiently mirror-symmetric about

the equator so that 

∣∣∣ ∂T M 

∂θ

∣∣∣ �
∣∣∣ ∂T A 

∂θ

∣∣∣; otherwise, the needed value of

∂T M 

∂θ
is likely to be difficult to extract from the observed value of

∂T 
∂θ

. Caution requires being able to evaluate ∂T M 

∂θ
accurately enough

from observational or numerical data that its division by sin θ does

not create too large a fractional error. Consider the stratospheric

equatorial jet. In Section 3.2 , we argued that the uncertainties in

the CIRS temperature are the principal uncertainties in determin-

ing ∂ 2 T / ∂θ2 . We believe that the temperature uncertainties are

also the main source of uncertainty in ∂ T / ∂ θ , and therefore the un-

certainties in ∂ 2 T / ∂θ2 and ∂T / ∂θ near the equator are of the same

order. However, Eq. (29) shows the value of ∂ T / ∂ θ is approximately

14 times smaller than the value of ∂ 2 T / ∂θ2 because 1 / ̄θ � 14 at

the latitudes where the TWE is applied by Flasar et al. (2004) . Thus

the fractional error of (1 / sin θ ) (∂ T /∂ θ ) and of the zonal shear de-

duced from the TWE are of order unity, which is why it is not
urprising that the velocity of the stratospheric equatorial jet found

y Flasar et al. (2004) differs from our value by ∼ 50%. 14 

The stratospheric jet near 5 ° latitude has a Rossby number

reater than unity, so the textbook TWE does not apply to it and

herefore cannot be used to compute the zonal shear from the

eridional temperature gradient. Eq. (30) does apply, but requires

sing the meridional gradient of the mirror-symmetric component

f the temperature, ∂T M 

∂θ
, rather than the gradient of the full tem-

erature, ∂T 
∂θ

. If the meridional gradient of the non-mirror symmet-

ic component of the temperature had happened to be significant

t the altitude of the stratospheric jet, then even if 1 
sin θ

∂T 
∂θ

were

ccurately determined, the TWE would give an incorrect velocity

hear. 

.3. Future work 

Our application of the EQTWE in the Jovian tropics, resulting in

ig. 8 , supports that scenario of a 2-layer cellular global circulation

chematically shown in Fig. 10 with the boundary between the two

ayers near 5 bar (which is identical to the altitude in Fig. 2 where

he wind shear changes sign near ∼ 5 bar). This altitude is also the

ocation of the proposed Jovian water cloud ( Atreya and Romani,

985; de Pater et al., 2005 ), which begs the question of whether

he locations of the boundary and of the water cloud are a coin-

idence or whether they are dynamically linked, i.e., it is possible

hat the upward and downward motions at the layers’ boundary

reates the water cloud or vice versa. Computational methods and

vailability of resources have advanced sufficiently that a 2-layer

odel can be simulated numerically. A numerical model of the

lobal circulation can show whether the terminations of the up-

elling and down-welling motions at the boundary between the

wo layers promotes the formation of water clouds. A simulation

ould also test whether an ab initio water cloud placed at 5 bar

ould cause a Hadley cell circulation in the upper troposphere to

orm a lower boundary at the location of the water cloud. A simu-

ation could also be used to determine whether a circulation simi-

ar to a Hadley cell circulation, but with the opposite sense of rota-

ion, in the troposphere below 5 bar would form an upper bound-

ry at the location of the water cloud. This type of numerical sim-

lation might also explain why the equatorial jet near 3 mbar is

o intense and whether it is steady in time or part of a 4–5 year

uasi-biennial oscillation. It will be interesting to see if the global

irculation model agrees with our surprising finding here that the

ertical zonal wind shear at the equator and at 7.46 °N are nearly

dentical despite the fact that the zonal velocities at these latitudes

iffer by more than 30%. It is important to know how big the dif-

erences are between the winds shear at various pairs of latitudes

nd how dependent those differences are as a function of altitude.

ow these differences vary with respect to latitude and altitude

an distinguish between different models of the zone/belt system.

sing a fully dynamic set of equations, that includes the trans-

ort of energy and momentum due to waves (c.f., Rossby waves

iu and Schneider, 2010 and internal gravity waves Holton, 1983 )

nd due to the anomalous heating/cooling of the clouds (from ab-

orbed/emitted radiation and due to the phase transitions within

hem), rather than the kinematic approximations used in the TWE

nd EQTWE, could provide an explanation of the Galileo probe
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elocity measurements that differs from the Hadley cell explana-

ion in Fig. 10 . 

Future observations with ALMA with different spectral lines,

uch as HCN and CO that probe different depths in the stratosphere

e.g., Lellouch et al., 2006 ), could be used to determine zonal wind

peeds as a function of latitude at multiple altitudes. Using mid-

nfrared data as in Fig. 1 , one could then test the EQTWE for

elf-consistency. These measurements and values could be used to

uide the construction of a numerical general circulation model

hat extends from the troposphere into the stratosphere. 

The simulation could also be used to analyze the recent Juno

icrowave Radiometer data that suggest a minimum in the am-

onia abundance near the 6 bar level at latitudes | θ | ≤ 40 °, except

or the equator ( Bolton et al., 2017; Li et al., 2017 ). This observa-

ional finding seems counter-intuitive to the 2-layer cellular circu-

ation scenario, where one might expect a condensible gas to de-

rease with altitude (due c.f., to cloud formation), but never in-

rease. Showman and de Pater (2005) postulated latitudinal (hor-

zontal) transport from belts to zones at all altitudes in the up-

er cell to deplete the ammonia abundance also in the zones. If,

n contrast, gas and clouds are transported in the upper cell from

ones to belts, cloud particles should evaporate during descent in

he belt and thereby enhance the ammonia concentration in the

elts in the upper layer as observed by Juno . Detailed numerical

imulations of future VLA and Juno observations could either con-

rm the 2-layer cellular circulation model or reject it and perhaps

eplace it with a new circulation model that is consistent with all

f the observations and with the results of the EQTWE analysis

resented in this paper. 
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ppendix A 

To derive our EQTWE is straight-forward but tedious. In

ection A.1 , we take the curl of the governing Euler’s equation (in

he rotating frame of the planet) to obtain the vorticity equation,

nd using the mathematical identities in Appendix B , we simplify

t. This simplification is the starting point of the derivation of both

he TWE and the EQTWE. In Section A.2 we show that all of the

erms in the vorticity equation for an equatorially-symmetric flow

eld go to zero at the equator not just the Coriolis term . Thus, to

btain useful information at the equator, we take the limit of ev-

ry term as θ → 0 by Taylor expanding all of the terms there – a

ethod that is a generalization of l’Hôpital’s rule. In Section A.3 we

how that in this limit that all of the nonlinear advection terms are

mall compared to the Coriolis and pressure terms. The balance
etween the limits of the Coriolis and pressure terms yields the

QTWE. The nonlinear advection terms are small when the flow is

ominated by large velocities of order V θ and V φ (or greater) at

he large length scales of L φ and L θ (or greater). This requirement

s what leads to our obtaining fractional errors that depend on V θ ,

 φ , L φ , and L θ . In Section A.4 we relax the requirement that the

ow field be exactly mirror-symmetric with respect to the equa-

or. Relaxing this requirement shows that new fractional errors of

rder ([ T A ]/[ T M ]) 2 , ([ ρA ]/[ ρM ]) 2 , and ([ v A ]/[ v M ]) 2 are introduced. 

1. Governing equation for the azimuthal component of the vorticity 

Starting with Euler’s equation we now derive the EQTWE. Eu-

er’s equation in spherical coordinates rotating around the z -axis

ith angular velocity �0 is: 

∂v 

∂t 
= −(v · ∇) v − ∇P 

ρ
+ f 0 v × ˆ z − g ̂ r + ∇(�2 

0 r 
2 cos 2 θ ) / 2 , (31) 

= (v × ω ) − ∇P 

ρ
− ∇| v | 2 / 2 + f 0 v × ˆ z − g ̂ r + ∇(�2 

0 r 
2 cos 2 θ ) / 2 , 

(32) 

here gravity is in the ˆ r direction. 

The curl of Eq. (32) gives the vorticity ω equation. 

∂ ω 

∂t 
+ (v · ∇) ω − ( ω · ∇) v + (∇ · v ) ω = 

∇ρ × ∇P 

ρ2 

+ f 0 [( ̂ z · ∇) v − (∇ · v ) ˆ z ] , (33) 

here the gravity term, which is a potential force, vanishes exactly

ecause it is a perfect gradient (even when g is not constant), and

here we used the following vector identity twice: 

 × (A × B ) ≡ (∇ · B ) A − (∇ · A ) B + (B · ∇) A − (A · ∇) B . (34)

Taking the dot product of Eq. (33) with 

ˆ φ and using the identity

see Batchelor, 20 0 0 , Appendix 2) 

ˆ · [ (A · ∇) B ) ] ≡ (A · ∇) B φ + A φ(B r − B θ tan θ ) /r, (35)

e obtain: 

∂ω φ

∂t 
+ (v · ∇) ω φ + v φ(ω r − ω θ tan θ ) /r 

− ( ω · ∇) v φ − ω φ(v r − v θ tan θ ) /r 

+ (∇ · v ) ω φ

= 

ˆ φ · ∇ ρ × ∇ P 

ρ2 
+ f 0 

∂v φ
∂z 

, (36) 

f Eq. (2) is valid, then we could replace ∇ ρ×∇ P 

ρ2 with −∇ T ×∇ P 
T ρ . 

As a crude approximation, ∇P in Eq. (36) could be replaced

ith the hydrostatic equation, i.e., ∇P � −gρˆ r , so that ∇ρ ×∇p

ould be replaced with gρˆ r × ∇ρ, and so that the azimuthal com-

onent of ∇ ρ ×∇ p could be approximated as − gρ
r 

∂ρ
∂θ

. Eq. (124) in

ppendix B , which we repeat here for convenience, gives the exact

orm of this approximation including its fractional errors: 

ˆ · (∇ρ × ∇P ) = 

g ′ ρ
r 

∂ρ

∂θ

∣∣∣∣
P 

×
[

1 + O 

(
DV 

2 
φ

g ′ L 2 
φ

, 
DV 

2 
θ

g ′ L 2 
θ

, 
DV φV θ

g ′ L φL θ
, 

f 0 V φ

g ′ , 
V 

2 
φ

g ′ r 0 

)]
, (37) 

ith the large square brackets meaning that the equation has frac-

ional errors of O 

(
DV 2 

φ

g ′ L 2 
φ

, 
DV 2 

θ

g ′ L 2 
θ

, 
DV φV θ
g ′ L φL θ

, 
f 0 V φ

g ′ , 
V 2 
φ

g ′ r 0 

)
. Note that the par-

ial derivative of the density in Eq. (37) holds P , rather than z ,

onstant. Here, we define the effective gravity as in Section 4.1 ,

 

′ ≡ g − ( f 2 0 r 0 cos θ ) / 4 (i.e., g ′ is g minus the centrifugal accelera-

ion in the radial direction). 

https://doi.org/10.13039/100000001


216 P.S. Marcus et al. / Icarus 324 (2019) 198–223 

 

 

 

 

 

 

 

 

 

 

 

) 

 

 

 

 

 

 

 

 

 

−

 

T  

p  

i  

E  

u

A

 

s  

i  

a  

T  

a  

s  

i  

p  

m  

c  

n  

i

 

s  

m  

i

s  

m

v  

v  

v  

v  

H  

s

v  

v  

t

i  

c  

m  
For the giant gas planets, these fractional error terms are small

because the vertical scale height D is much smaller than the extent

of the horizontal flow. Therefore, we shall drop these fractional er-

rors from the remainder of our derivation below, but note that we

have included these fractional errors in the enumerated list of frac-

tional errors listed in Section 4.1 , expression ( 4 ), and Section A.3 . 

Using Eqs. (36) and (37) without the fractional error terms, we

obtain 

∂ω φ

∂t 
+ (v · ∇) ω φ + v φ(ω r − ω θ tan θ ) /r 

− ( ω · ∇) v φ − ω φ(v r − v θ tan θ ) /r 

+ (∇ · v ) ω φ

= − g ′ 
rρ

∂ρ

∂θ

∣∣∣∣
P 

+ f 0 
∂v φ
∂z 

. (38)

If Eq. (2) is valid, we could replace − g ′ 
rρ

∂ρ
∂θ

∣∣∣
P 

with 

g ′ 
rT 

∂T 
∂θ

∣∣∣
P 

in the

above equation and in all of the following equations wherever

g ′ 
rρ

∂ρ
∂θ

∣∣∣
P 

appears. 

Noting that

∂ 

∂z 
≡ sin θ

∂ 

∂r 
+ 

cos θ

r 

∂ 

∂θ
, (39)

and assuming that changes in the flow are slow in time so that∣∣∣∣∂ ω φ/∂ t 

∣∣∣∣ �
∣∣∣∣[ g ′ / (ρr 0 )](∂ ρ/∂ θ ) 

∣∣∣
P 

∣∣∣∣, Eq. (38) becomes 

− f 0 
cos θ

r 

∂v φ
∂θ

+ (v · ∇) ω φ + v φ(ω r − ω θ tan θ ) /r 

− ( ω · ∇) v φ − ω φ(v r − v θ tan θ ) /r + (∇ · v ) ω φ

= − g ′ 
rρ

∂ρ

∂θ

∣∣∣∣
P 

+ f 0 sin θ
∂v φ
∂r 

. (40

Two of the largest contributions to the term ( ω · ∇) v φ, which ap-

pears on the left side of Eq. (40) cancel, but to see this we need to

exploit some identities. 

( ω · ∇) v φ ≡ ω φ

r cos θ

∂v φ
∂φ

+ ω r 

∂v φ
∂r 

+ 

ω θ

r 

∂v φ
∂θ

(41)

ω r ≡ 1 

r cos θ

[
− cos θ

∂v φ
∂θ

+ sin θ v φ + 

∂v θ
∂φ

]
(42)

ω θ ≡ −1 

r 

[
1 

cos θ

∂v r 
∂φ

− v φ − r 
∂v φ
∂r 

]
(43)

ω φ ≡ 1 

r 

[
−r 

∂v θ
∂r 

− v θ + 

∂v r 
∂θ

]
(44)

Substituting these identities and canceling: 15 

( ω · ∇) v φ = 

1 

r 2 cos θ

[
−r 

∂v θ
∂r 

− v θ + 

∂v r 
∂θ

]
∂v φ
∂φ

(45)

+
1

r cos θ

[
�����− cos θ

∂vφ
∂θ
+ sin θ vφ +

∂vθ
∂φ

]
∂vφ
∂r

(46)

− 1
r2

[
1

cos θ
∂vr

∂φ
− vφ

�
�
��− r
∂vφ
∂r

]
∂vφ
∂θ

(47)
15 We postpone to a footnote in Section A.3 our discussion of how large these 

canceled terms are and why, without their cancellation, they would invalidate the 

EQTWE. 

a  

t  

n  

t  

s  
Eq. (40) becomes 

f 0 
cos θ

r 

∂v φ
∂θ

+ (v · ∇) ω φ + v φ(ω r − ω θ tan θ ) /r 

− ω φ

r cos θ

∂v φ
∂φ

− ω φ(v r − v θ tan θ ) /r 

− v φ tan θ

r 

∂v φ
∂r 

− 1 

r cos θ

∂v φ
∂r 

∂v θ
∂φ

− 1 

r 2 
∂v φ
∂θ

[
v φ − 1 

cos θ

∂v r 
∂φ

]
+ (∇ · v ) ω φ

= − g ′ 
rρ

∂ρ

∂θ

∣∣∣∣
P 

+ f 0 sin θ
∂v φ
∂r 

. (48)

he textbook TWE can be derived from the equation above by re-

lacing − g ′ 
rρ

∂ρ
∂θ

∣∣∣
P 

with 

g 
rT 

∂T 
∂θ

∣∣∣
P 

, and showing that there is a dom-

nant balance between the two terms on the right-hand side of

q. (48) . The derivation of the EQTWE Eq. (3) arises similarly but

ses a Taylor series expansion around the equator. 

2. Taylor series expansion 

Starting with Eq. (48) we derive the EQTWE in Eq. (3) in two

tages. In the first stage, presented in this section, we make the

dealized assumption that the velocity and thermodynamic vari-

bles are mirror-symmetric about the equator, i.e., we assume that

, ρ , v φ , and v r are symmetric about the equator and that v θ is

nti-symmetric. In practice, this is too unrealistic an assumption,

o in the second stage of our derivation of the EQTWE, presented

n Section A.4 , we drop this ideal assumption . We have chosen to

resent our derivation in these stages because we believe it is

uch easier to explain and understand this way. However, before

ontinuing with the derivation, we need to emphasize that the fi-

al derivation does not depend on mirror-symmetry of the veloc-

ty. 

Our temporary assumption is that the flow is mirror-symmetric;

pecifically, each velocity component v r , v θ and v φ , like the ther-

odynamic variables ρ , P , and T , is decomposed, as in Section 4.1 ,

nto a component that is mirror-symmetric (denoted with an “M”

uperscript) about the equator and a component that is anti-

irror-symmetric (denoted with a “A” superscript). For v φ and v r : 

 

M 

φ (r, θ, φ) ≡ [ v φ(r, θ, φ) + v φ(r, −θ, φ)] / 2 (49)

 

A 
φ(r, θ, φ) ≡ [ v φ(r, θ, φ) − v φ(r, −θ, φ)] / 2 (50)

 

M 

r (r, θ, φ) ≡ [ v r (r, θ, φ) + v r (r, −θ, φ)] / 2 (51)

 

A 
r (r, θ, φ) ≡ [ v r (r, θ, φ) − v r (r, −θ, φ)] / 2 (52)

owever, for v θ the symmetries are defined with the opposite

igns: 

 

M 

θ (r, θ, φ) ≡ [ v θ (r, θ, φ) − v θ (r, −θ, φ)] / 2 (53)

 

A 
θ (r, θ, φ) ≡ [ v θ (r, θ, φ) + v θ (r, −θ, φ)] / 2 , (54)

hat is, v M 

θ
is anti-symmetric with respect to the equator, while v A 

θ
s symmetric with respect to the equator. The mirror-symmetric

omponent of the velocity vector v M is made up of the three

irror-symmetric components defined in Eqs. (49) , (51) , and (53) ;

nd the anti-mirror-symmetric component of the velocity vec-

or v A is made up of the three anti-mirror-symmetric compo-

ents. It is possible to have solutions to the equations of mo-

ion in which the flow is mirror-symmetric with no anti-mirror-

ymmetric components defined in Eqs. (50) , (52) , and (54) . (i.e.,
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ith ρA ≡ T A ≡ P A ≡ v A ≡ 0). We assume in this section that the flow

s mirror-symmetric. 

A mirror-symmetric flow has an ω r and ω φ that are anti-

ymmetric with respect to the equator, while ω θ and ( ∇ · v ) are

ymmetric with respect to the equator. With a mirror-symmetric

ow, all of the terms in Eq. (48) are anti-symmetric with respect to

he equator. This means that every term in the equation vanishes

t the equator, not just the Coriolis terms . This fact does not mean

hat the equation provides no information at the equator. On the

ontrary, by Taylor-expanding each term about θ = 0 , each term

ecomes a power series in the odd powers of θ . If we replace each

f the terms in Eq. (48) with its power series expansion in θ , then

rop all terms that are of order θ3 and higher, and then divide

oth sides of the equation by θ , we obtain an equation that is ex-

ct at the equator and a good approximation where θ is small. This

s an example of an asymptotic expansion and is the method that

as used in evaluating quotients with l’Hôpital’s rule. Finally, we

hall make an estimate in terms of the usual dimensionless con-

tants of each of the terms in Eq. (48) and show that all of the

erms on the left side of Eq. (48) are small compared to those on

he right side to yield the EQTWE in Eq. (3) . 

Before continuing with the derivation, we wish to make several

mportant comments. So far we have been rigorous. We started

ith Euler’s equation and differentiated it once to obtain the vor-

icity equation. Our two approximations so far (assumption of a

ear steady flow, and the use of Eq. (37) ) end up allowing us to

iscard terms. However, these approximations were all made after

he last differentiation. This is important because even though a

erm is small compared to other terms, the derivative of that term

ay be of order or larger than the derivative of the other terms.

urthermore, none of our approximations become invalid at the

quator. In addition, we have not ignored any components of the

oriolis force. Finally, there are no (sin θ ) terms in any denomina-

ors, which would become infinite at the equator. 

There is an important difference in carrying out Taylor se-

ies expansions of functions that are symmetric or anti-symmetric

bout the equator. For a mirror-symmetric velocity field, v φ is

ymmetric about θ = 0 such that v φ(r, θ, φ) = v φ(r, −θ, φ) , and

e Taylor-expand v φ in even powers of θ , with v φ = [ v φ] +
 ∂ 2 v φ/∂θ2 ] θ2 / 2 + · · · , where the quantities in the square brack-

ts are evaluated at θ = 0 . For a mirror-symmetric velocity ve-

ocity field, v θ is anti-symmetric function about θ = 0 such that

 θ (r, θ, φ) = −v θ (r, −θ, φ) , and we Taylor-expand v θ in odd pow-

rs of θ , with v θ = [ ∂ v θ /∂ θ ] θ + [ ∂ 3 v θ /∂ θ3 ] θ3 / 6 + · · · , where

he quantities in the square brackets are evaluated at θ = 0 . This

eans that we Taylor expand ∂ v φ / ∂ θ at the equator in an odd

eries as ∂ v φ/∂ θ = [ ∂ 2 v φ/∂ θ2 ] θ + O (θ3 ) . Similarly, we expand

 v θ / ∂ θ at the equator in an even series as ∂ v θ /∂ θ = [ ∂ v θ /∂ θ ] +
 (θ2 ) . 

The Taylor series expansions in Eq. (48) make use of expan-

ions of the vorticity components and the divergence. Expressed

s a Taylor series in powers of θ , note that ω r and ω φ is an odd

unction of θ , and ω θ is an even function of θ , with: 

 r = 

1 

r 

[
−∂ 2 v φ

∂θ2 
+ v φ + 

∂ 2 v θ
∂ φ ∂ θ

]
θ + O (θ3 ) (55)

 θ = −1 

r 

[
∂v r 
∂φ

− v φ − r 
∂v φ
∂r 

]
+ O (θ2 ) (56)

 φ = 

1 

r 

[
−r 

∂ 2 v θ
∂ r ∂ θ

− ∂v θ
∂θ

+ 

∂ 2 v r 
∂θ2 

]
θ + O (θ3 ) (57)

he divergence of the velocity is an even power series: 

 · v = 

1 

r 

[
r 
∂v r 
∂r 

+ 2 v r + 

∂v θ
∂θ

+ 

∂v φ
∂φ

]
+ O (θ2 ) (58)
Below are the Taylor series expansions of each of the terms

hat appear in Eq. (48) , with a label assigned to each term so that

e can refer to it when estimating its order of magnitude. The

otation that O ( θ3 ) means “terms of order θ3 and higher”, and

ote that all of the quantities and derivatives that have horizontal

races beneath them or in large square brackets should be evalu-

ted at the equator. 

f 0 
cos θ

r 

∂v φ
∂θ

= 

[
f 0 
r 

∂ 2 v φ
∂θ2 

]
︸ ︷︷ ︸ 

A 

θ + O (θ3 ) (59) 

(v · ∇) ω φ

= 

{
v r 

[
− ∂ 3 v θ

∂ r 2 ∂ θ
−1 

r 

∂ 2 v θ
∂ r ∂ θ

+ 

1 

r 2 
∂v θ
∂θ

+ 

1 

r 

∂ 3 v r 
∂ r ∂ θ2 

− 1 

r 2 
∂ 2 v r 
∂θ2 

]
︸ ︷︷ ︸ 

B 

(60) 

+ 

1 

r 2 
∂v θ
∂θ

[
−r 

∂ 2 v θ
∂ r ∂ θ

− ∂v θ
∂θ

+ 

∂ 2 v r 
∂θ2 

]
︸ ︷︷ ︸ 

C 

(61) 

+ 

v φ
r 2 

[
−r 

∂ 3 v θ
∂ r ∂ θ ∂ φ

− ∂ 2 v θ
∂ θ ∂ φ

+ 

∂ 3 v r 
∂ θ2 ∂ φ

]}
︸ ︷︷ ︸ 

D 

θ + O (θ3 ) (62) 

(v φω r ) /r = 

v φ
r 2 

[
−∂ 2 v φ

∂θ2 
+ v φ + 

∂ 2 v θ
∂ φ ∂ θ

]
︸ ︷︷ ︸ 

E 

θ + O ( θ3 ) (63)

(v φω θ tan θ ) /r = −v φ
r 2 

[
∂v r 
∂φ

− v φ − r 
∂v φ
∂r 

]
︸ ︷︷ ︸ 

F 

θ + O (θ3 ) (64)

ω φ

r cos θ

∂v φ
∂φ

= 

1 

r 2 
∂v φ
∂φ

[
−r 

∂ 2 v θ
∂ r ∂ θ

− ∂v θ
∂θ

+ 

∂ 2 v r 
∂θ2 

]
︸ ︷︷ ︸ 

G 

θ + O (θ3 ) 

(65) 

(ω φv r ) /r = 

v r 
r 2 

[
−r 

∂ 2 v θ
∂ r ∂ θ

− ∂v θ
∂θ

+ 

∂ 2 v r 
∂θ2 

]
︸ ︷︷ ︸ 

H 

θ + O ( θ3 ) (66)

(ω φv θ tan θ ) /r = 0 ︸︷︷︸ 
I 

+ O (θ3 ) (67)

ote that the Taylor series for the above expression starts with the
3 term. 

v φ tan θ

r 

∂v φ
∂r 

= 

[
v φ
r 

∂v φ
∂r 

]
︸ ︷︷ ︸ 

J 

θ + O (θ3 ) (68) 

1 

r cos θ

∂v φ
∂r 

∂v θ
∂φ

= 

[
1 

r 

∂v φ
∂r 

∂ 2 v θ
∂ φ ∂ θ

]
︸ ︷︷ ︸ 

K 

θ + O (θ3 ) (69) 

1 

r 2 
∂v φ
∂θ

v φ = 

[
1 

r 2 
∂ 2 v φ
∂θ2 

v φ

]
︸ ︷︷ ︸ 

L 

θ + O (θ3 ) (70)

1 

r 2 
∂v φ
∂θ

1 

cos θ

∂v r 
∂φ

= 

[
1 

r 2 
∂ 2 v φ
∂θ2 

∂v r 
∂φ

]
︸ ︷︷ ︸ 

M 

θ + O (θ3 ) (71) 
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w  

h  

E  

D  
ω φ (∇ · v ) 

= 

1 

r 2 

[
r 
∂v r 
∂r 

+ 2 v r + 

∂v θ
∂θ

+ 

∂v φ
∂φ

] [
−r 

∂ 2 v θ
∂ r ∂ θ

− ∂v θ
∂θ

+ 

∂ 2 v r 
∂θ2 

]
︸ ︷︷ ︸ 

N 

θ + O (θ3 ) (72)

g ′ 
rT 

∂T 

∂θ

∣∣∣∣
P 

= 

[
g ′ 
rT 

∂ 2 T 

∂θ2 

∣∣∣∣
P 

]
θ + O (θ3 ) (73)

f 0 sin θ
∂v φ
∂r 

= 

[
f 0 

∂v φ
∂r 

]
︸ ︷︷ ︸ 

P 

θ + O (θ3 ) (74)

A3. Estimates of the magnitudes of the terms in the Taylor expansion 

Now we need to estimate the magnitude of all of the terms in

expressions (59) –(74) . Recalling that L φ , L θ , and D are the charac-

teristic lengths in the east-west, north-south, and vertical (i.e., ra-

dial) directions over which the time-averaged velocity changes at

the equator; and that V φ and V r are the characteristic velocities of

the east-west and vertical components of the time-averaged veloc-

ity at the equator; we define V θ such that the characteristic value

of the time-averaged ∂ v θ / ∂ θ at the equator is r 0 V θ / L θ , where r 0 is

the characteristic value of r in the atmosphere where we are carry-

ing out this analysis. To estimate the magnitude of each term, we

replace ∂ / ∂ θ with r 0 / L θ ; ∂ / ∂ φ with r 0 / L φ ; and ∂ / ∂ r with 1/ D . 

Non-dimensionalizing each of the labeled expressions in (59) –

(74) by expressing it in units of D /( f 0 V φ), their magnitudes are: 16 

A = O 

(
Dr 0 

L 2 
θ

)
(75)

B = Ro O 

(
r 0 
D 

V r V θ

V 

2 
φ

, 
V r V θ

V 

2 
φ

, 
D 

r 0 

V r V θ

V 

2 
φ

, 
r 0 
L θ

V 

2 
r 

V 

2 
φ

, 
D 

L θ

V 

2 
r 

V 

2 
φ

)
(76)

C = Ro O 

(
r 0 
L θ

V 

2 
θ

V 

2 
φ

, 
D 

L θ

V 

2 
θ

V 

2 
φ

, 
Dr 0 

L 2 
θ

V r V θ

V 

2 
φ

)
(77)

D = Ro O 

(
r 0 
L φ

V θ

V φ
, 

D 

L φ

V θ

V φ
, 

Dr 0 
L θ L φ

V r 

V φ

)
(78)

E = Ro O 

(
D 

L θ
, 

DL θ

r 2 
0 

, 
D 

L φ

V θ

V φ

)
(79)

F = Ro O 

(
DL θ
r 0 L φ

V r 

V φ
, 

DL θ

r 2 
0 

, 
L θ
r 0 

)
(80)

G = Ro O 

(
r 0 
L φ

V θ

V φ
, 

D 

L φ

V θ

V φ
, 

Dr 0 
L θ L φ

V r 

V φ

)
(81)

H = Ro O 

(
V r V θ

V 

2 
φ

, 
D 

r 0 

V r V θ

V 

2 
φ

, 
D 

L θ

V 

2 
r 

V 

2 
φ

)
(82)

I = 0 (83)
16 In making our estimates of magnitudes, we make the assumption that T, ρ , and 

v have only one magnitude and one length scale associated with each of the three 

spatial dimensions. This is, of course, not true, and although an intermittent tur- 

bulent flow filled with vortices and waves may be dominated by a large-scale flow 

with temperatures, densities and velocities with characteristic lengths of L θ , L φ , and 

D , the velocity field is likely to be filled with small, intense vortices whose values 

of ∇ × v at some specific locations with small volume that are much greater than 

V φ / L θ , etc. These small vortices do not invalidate our estimate of the magnitudes 

as long as they do not significantly affect the longitudinally-averaged, quasi-steady 

flow. We could quantify the previous statement by returning to Eq. (32) , and aver- 

aging it in θ and φ over length scales of size L θ and L φ , respectively. 

m

t

i

b

t

t

b

r

 = Ro O 

(
L θ
r 0 

)
(84)

 = Ro O 

(
r 0 
L φ

V θ

V φ

)
(85)

 = Ro O 

(
D 

L θ

)
(86)

 = Ro O 

(
Dr 0 
L θ L φ

V r 

V φ

)
(87)

 = 1 , (88)

here Ro ≡ V φ/ ( f 0 L θ ) . Note that the term N comes from

 φ ( ∇ · v ), and the terms B, C, and D come ( v ·∇) ω φ . It should

e obvious that estimating the magnitudes of terms by replacing

 / ∂ θ with r 0 / L θ ; ∂ / ∂ φ with r 0 / L φ ; and ∂ / ∂ r with 1/ D as we did to

btain Eqs. (75) –(87) , will lead to an estimate that the N term is

f the same order as the B, C, and D terms. 17 Using this estimate

or N and the assumptions numbered 2 – 4 in Section 4.1 that

 ≤ O ( r 0 ), D ≤ O ( L θ ), and D ≤ O ( L φ), we see by inspection that all of

he terms B – N are of order 

o O 

(
r 0 
D 

V r V θ

V 

2 
φ

, 
r 0 
L θ

V 

2 
r 

V 

2 
φ

, 
D 

L θ

V 

2 
θ

V 

2 
φ

, 
r 0 
L φ

V θ

V φ
, 

Dr 0 
L θ L φ

V r 

V φ
, 

D 

L θ
, 

DL θ
r 0 L φ

V r 

V φ
, 

L θ
r 0 

)
(89)

r less. 

We can make a further simplification of the fractional errors if

he flow is divergence-free, which implies: 

 r /D ≤ O (V θ /L θ , V φ/L φ ) . (90)

sing this expression 

18 to replace V r / D in expression (89) , and

gain using assumptions numbered 2 – 4 in Section 4.1 shows that

ll of the terms B – N are of order 

 

[˜ Ro , Ro 

(
r 0 
L θ

V 

2 
θ

V 

2 
φ

, 
r 0 
L φ

V θ

V φ
, 

r 0 
L φ

, 
D 

L θ

)]
(91)

r less, where ˜ Ro is another type of Rossby with 

˜ Ro ≡ V φ/ ( f 0 r 0 ) .

f expression (91) is small compared to unity, 19 and if 
Dr 0 
L 2 
θ

is also

mall compared to unity, then terms A – N are small compared

o the P term, and the effect of terms A – N in Eq. (48) can be

ritten as fractional error terms. In particular, Eq. (48) can be re-

ritten: 

g ′ 
rρ

∂ 2 ρ

∂θ2 

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

{
1 + O 

[
Ro 

(
r 0 
L θ

V 

2 
θ

V 

2 
φ

, 
r 0 
L φ

V θ

V φ
, 

r 0 
L φ

, 
D 

L θ

)
, 

DV 

2 
φ

gL 2 
φ

, 
DV 

2 
θ

gL 2 
θ

, 
DV φV θ

gL φL θ
, 

Dr 0 

L 2 
θ

, ̃  Ro 

]}
, (92)

here we have included all of the fractional errors that we

ave made, (including the approximation used in Appendix B in

q. (124) with the exceptions of the very modest approximations:

 ≤ O ( r 0 ), D ≤ O ( L θ ), D ≤ O ( L φ), and that the flow is sufficiently
17 Actually, this estimate for N is very likely to be a large overestimate because 

ost of the flows in planetary atmospheres are nearly divergence-free. This overes- 

imate means that our final estimate of the fraction errors in the EQTWE might be 

nflated. However, this is consistent with all of our estimates of the fractional errors 

ecause we are purposefully taking a conservative approach to error estimation and 

not considering that there are cancellations between large terms. 
18 This is likely to be an overestimate of the magnitude of V r / D when the horizon- 

al divergence of the velocity is small compared to V θ / L θ or V φ / L φ , which is often 

he case in planetary flows. 
19 If the term 

1 
r 

∂v φ
∂r 

∂v θ
∂φ

had not canceled in Eqs. (46) and (47) , then there would 

e an additional fractional error term of Ro (r 0 /L θ ) , which could be very large if 

 0 � L θ . 
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O  
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E

−

T  

m  

W  

o  

s  

a  

 

o  

v  

20 We note that the anti-mirror-symmetric component of g ′ 
rρ

∂ρ
∂θ

∣∣∣
P 

is 

[ 

g ′ 
rρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

− g ′ 
r (ρM ) 2 

(
∂ρA 

∂θ

∣∣∣∣
P 

)2 
] 

θ + O (θ3 ) . (101) 

If we could accurately measure ∂ρA 

∂θ

∣∣∣
P 

, we would have an equatorial density wind 

equation or EQDWE of the form 

g ′ 
rρM 

[ 
∂ 2 ρM 

∂θ2 

∣∣∣
P 

− 1 
ρM 

(
∂ρA 

∂θ

∣∣∣
P 

)2 
] 

= f 0 
∂v M 

φ

∂r 
, and this 

equation would hold without fractional errors involving [ ρA ]/[ ρM ]. A similar expres- 

sion can be found for the EQTWE (see Eq. (20) below) without fractional errors that 

involve [ T A ]/[ T M ]. 
teady in time that the characteristic value of ∂ ω φ / ∂ t at the equa-

or is less than or equal to the characteristic value of v ·∇ω φ at

he equator. If Eq. (2) is valid, then 

g ′ 
rT 

∂ 2 T 

∂θ2 

∣∣∣∣
P 

= − f 0 
∂v φ
∂r 

{
1 + O 

[
Ro 

(
r 0 
L θ

V 

2 
θ

V 

2 
φ

, 
r 0 
L φ

V θ

V φ
, 

r 0 
L φ

, 
D 

L θ

)
, 

DV 

2 
φ

gL 2 
φ

, 
DV 

2 
θ

gL 2 
θ

, 
DV φV θ

gL φL θ
, 

Dr 0 

L 2 
θ

, ̃  Ro 

]}
. (93) 

Eqs. (92) and (93) may be considered to be “overkill” with re-

pect to listing all of the fractional errors. The long expressions

or the fractional errors come about because we have considered

he possibility that the characteristic two horizontal V φ and V θ

ould be very different and that L φ and L θ could be very differ-

nt. Usually (c.f., Pedlosky, 1979 , Chapter 2), the characteristic ve-

ocities would be considered the same. Similarly, the two charac-

eristic horizontal lengths L φ and L θ would also be considered the

ame. 

To compare our fractional errors of the EQTWE to the reported

ractional errors in the textbook TWE, we can take a less cautious

pproach to estimating error size by assuming (as many other au-

hors have) that V φ / L φ � V θ / L θ . Using this relationship, the frac-

ional errors in the EQTWE are: 

 

[
Ro 

(
r 0 L θ

L 2 
φ

, 
r 0 
L φ

, 
D 

L θ

)
, 

DV 

2 
φ

gL 2 
φ

, 
Dr 0 

L 2 
θ

, ̃  Ro 

]
. (94) 

f we are even less cautious and adopt the traditional assumption

hat V φ = V θ , then the fractional errors in the EQTWE are: 

 

[
Ro 

r 0 
L φ

, 
DV 

2 
φ

gL 2 
φ

, 
Dr 0 

L 2 
φ

, ̃  Ro 

]
. (95) 

Thus for a mirror-symmetric flow, the EQTWE is: 

g ′ 
rT 

∂ 2 T 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

(96) 

ith fractional errors in Eqs. (93) , (94) , or Eq. (95) . 

If Eq. (2) is not valid (as is the case of Neptune Tollefson et al.,

018 ), then the wind shear is related to the density by the “equa-

orial density wind equation” (EQDWE), which from Eq. (92) is: 

g ′ 
rρ

∂ 2 ρ

∂θ2 

∣∣∣∣
P 

= f 0 
∂v φ
∂r 

(97) 

his equation has the same fractional errors as the EQTWE. It

an be re-written to look like the EQTWE if the kinetic tem-

erature T is replaced with the virtual temperature as done by

ollefson et al. (2018) in applying it to the zonal flows of Neptune.

We close this section with comments about the derivation we

ish to stress. If the assumptions enumerated in Section 4.1 are

rue, Eqs. (96) and (97) are valid at and near the equator. The rea-

on the textbook TWE does not work at the equator is because the

econd term on the right-hand side of Eq. (48) equals zero, mean-

ng that other terms must balance the thermal component. How-

ver, as we have shown all terms in the equation are zero at the

quator. We also point out that the detailed fractional errors in the

extbook TWE can be derived (without assuming that V θ = V φ and

hat L θ = L φ), by re-examining Eq. (48) and using the estimating

echniques employed in Section A.3 to determine the relative im-

ortance of the terms on the left side of the equation to the terms

n the right side. 

4. Extension of the Equatorial Thermal Wind Equation (EQTWE) to 

ows without mirror-symmetry 

In this section we drop the assumption that the flow is mirror-

ymmetric and re-derive the EQTWE along with its fractional er-
ors. We shall show that the only change needed for a non-mirror-

ymmetric flow is that EQTWE now relates the mirror-symmetric

omponents of the temperature or density to the mirror-symmetric

omponent of the azimuthal velocity, such that Eq. (96) becomes 

g ′ 
rT M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v M 

φ

∂r 
, (98) 

nd Eq. (97) becomes 

g ′ 
rρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

= f 0 
∂v M 

φ

∂r 
. (99) 

he only fractional error that these equations have that are in addi-

ion to those already listed in Eqs. (92) or (93) is O {[ ρA ]/[ ρM ]} 2 or

 {[ T A ]/[ T M ]} 2 , respectively. Note that these equations are formally

alid only at the equator. However, we can employ them at small

istances from the equator, e.g., the entry location of the Galileo

elocity probe data, by suitable Taylor expansions. 

We begin by taking the anti-mirror-symmetric component of

q. (48) to obtain. 

f 0 
cos θ

r 

∂v M 

φ

∂θ
+ 

{
(v · ∇) ω φ + v φ(ω r − ω θ tan θ ) /r 

− ω φ

r cos θ

∂v φ
∂φ

− ω φ(v r − v θ tan θ ) /r − v φ tan θ

r 

∂v φ
∂r 

− 1 

r cos θ

∂v φ
∂r 

∂v θ
∂φ

− 1 

r 2 
∂v φ
∂θ

[
v φ − 1 

cos θ

∂v r 
∂φ

]
+ (∇ · v ) ω φ

}A 

= −
(

g ′ 
rρM 

∂ρM 

∂θ

∣∣∣∣
P 

){
1 + O 

[(
ρA 

ρM 

)
2 

]}
+ f 0 sin θ

∂v M 

φ

∂r 
. (100) 

he large brackets with the superscript A , {} A means “take the anti-

irror-symmetric component of the quantity within the brackets”.

e have used the facts that the anti-mirror-symmetric component

f − f 0 
cos θ

r 

∂v φ
∂θ

is exactly − f 0 
cos θ

r 

∂v M 
φ

∂θ
, and that the anti-mirror-

ymmetric component of f 0 sin θ
∂v φ
∂r 

is exactly f 0 sin θ
∂v M 

φ

∂r 
. We

lso used the fact 20 that the anti-mirror-symmetric component of

g ′ 
rρ

∂ρ
∂θ

∣∣∣
P 

is g ′ 
rρM 

∂ρM 

∂θ

∣∣∣
P 

with a fractional error of O 

[
(ρA /ρM ) 2 

]
. 

Following the methodology used in Section A.2 (and the spirit

f l’Hôpital’s Rule), we Taylor-expand each term in Eq. (100) , di-

ide by θ , and retain only the first term. The Taylor expansion of
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C  
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∇  

 

w

 

A

 

C

∇  

U

− f 0 
cos θ

r 

∂v M 
φ

∂θ
is an odd series in θ and is 

−θ
f 0 
r 

[
∂ 2 v M 

φ

∂θ2 

]
+ θ3 

{
f 0 
2 r 

[
∂ 2 v M 

φ

∂θ2 

]
− f 0 

6 r 

[
∂ 4 v M 

φ

∂θ4 

]}
+ O (θ5 ) , 

(102)

where the expressions in large square brackets should be evaluated

at the equator. So, for this term we retain only 

−
[

f 0 
r 

∂ 2 v M 

φ

∂θ2 

]
, (103)

The term in Eq. (103) is similar to the A term in Eq. (59) . As

another example, the Taylor series expansion of f 0 sin θ
∂v M 

φ

∂r 
in

Eq. (100) is also an odd series in θ : 

f 0 θ

[
∂v M 

φ

∂r 

]
+ θ3 f 0 

{[
∂ 3 v M 

φ

∂ r∂ θ2 

]/ 

2 −
[
∂v M 

φ

∂r 

]/ 

6 

}
+ O (θ5 ) 

(104)

So, we retain only [
f 0 

∂v M 

φ

∂r 

]
, (105)

The term in Eq. (105) is similar to the P term in Eq. (74) . The

same estimates that were used in Section A.3 show that the term

in Eq. (103) is smaller than the term in Eq. (105) by a factor of 
Dr 0 
L 2 
θ

.

Therefore, we can drop the term − f 0 
cos θ

r 

∂v M 
φ

∂θ
from Eq. (100) and

account for it by noting that it leads to a fractional error of O 

(
Dr 0 
L 2 
θ

)
. 

After dividing by θ , the first term in the Taylor series expansion

of g ′ 
rρM 

∂ρM 

∂θ

∣∣∣
P 

in Eq. (100) is [
g ′ 

rρM 

∂ 2 ρM 

∂ 2 θ

∣∣∣∣
P 

]
, (106)

where all of the quantities and their derivatives should be evalu-

ated at the equator. 

By definition, the long, multi-term expression in Eq. (100) that

has {} A is anti-mirror-symmetric. Therefore when it is expanded

as a Taylor series about the equator, it is an odd series in θ .

Following the procedure in Section A.2 , we could find the first

non-vanishing term of the Taylor series expansion of each of

these terms, and then estimate their magnitudes following our

method in Section A.3 . However, it is not necessary to do so. In

Section A.3 , we found that the terms surrounded by {} A were all

much smaller 21 than the term in Eq. (105) , and we calculated

the resulting fractional errors in Eq. (48) that would arise if we

dropped them. Our analysis did not depend on the symmetry of

the terms, but only on the estimates of their velocities and lengths.

These estimates still hold, so the analysis in Section A.3 also works

for Eq. (100) as do the estimates of the fractional errors that arise

when the terms surrounded by {} A are dropped from Eq. (100) .

Equating expression (105) to expression (106) , we obtain the equa-

torial density wind equation, EQDWE, or Eq. (99) . If Eq. (2) is valid,

then the EQTWE, or Eq. (10) follows. These two equations have the
fractional errors listed in Section 4.1 . 

21 This is only true if [ v A ] ≤ [ v M ], so we should include this inequality in our list 

of assumptions in Section 4.1 . However, this inequality holds for all of the giant 

gaseous planets. For example, there is no planet in which the zonal component of 

the velocity, v φ , near the equator is mostly anti-symmetric. 

∇  

T

∇  
ppendix B 

Here we prove the identities in spherical coordinates: 

∇ P × ∇ ρ

ρ2 
≡ 1 

ρ2 

∂P 

∂r 
ˆ r × ∇ ⊥ ρ

∣∣∣∣
P 

+ 

∇ ⊥ P × ∇ ⊥ ρ
ρ2 

(107)

≡ − g 

ρ
ˆ r × ∇ ⊥ ρ

∣∣∣
P 

+ 

∇ ⊥ P × ∇ ⊥ ρ
ρ2 

+ 

1 

ρ2 

(
∂P 

∂r 
+ ρg 

)
ˆ r × ∇ ⊥ ρ

∣∣∣∣
P 

, 

(108)

here ∇ ⊥ is the horizontal (i.e., non-radial or θ and φ direc-

ions) component of the gradient operator holding r constant, and

here ∇ ⊥ 
∣∣∣

P 

is the horizontal (i.e., non-pressure coordinate direc-

ion) component of the gradient operator holding P constant. Par-

ial derivatives with respect to r implicitly mean to hold θ and

constant. These identities will allow us to relate the gradients

f the temperature along constant r surfaces ∇ ⊥ T to gradients of

he temperature along constant P surfaces ∇ ⊥ 
∣∣∣

P 

T . Approximations

f these relationships are implicitly used in most textbook deriva-

ions of the thermal wind equation, but for completeness, we de-

ive them here with no approximations. 

We start with the chain rule identity between the ( r, θ , φ) co-

rdinates and the ( P, θ , φ) coordinates: 

∂ρ

∂θ

∣∣∣∣
P,φ

≡ ∂ρ

∂θ

∣∣∣∣
r,φ

+ 

∂ρ

∂r 

∣∣∣∣
θ,φ

∂r 

∂θ

∣∣∣∣
P,φ

, (109)

here we remind the reader that the subscripts of the large ver-

ical bars are the independent variables that remain fixed during

he partial differentiation. A similar chain rule is 

∂ρ

∂φ

∣∣∣∣
P,θ

≡ ∂ρ

∂φ

∣∣∣∣
r,θ

+ 

∂ρ

∂r 

∣∣∣∣
θ,φ

∂r 

∂φ

∣∣∣∣
P,θ

, (110)

ombining Eqs. (109) and (110) gives a “horizontal gradient” chain

ule: 

 ⊥ ρ
∣∣∣

P 

≡ ∇ ⊥ ρ
∣∣∣

r 

+ 

∂ρ

∂r 

∣∣∣∣
θ,φ

∇ ⊥ r 
∣∣∣

P 

. (111)

Using another chain rule identity 

∂P 

∂r 

∣∣∣∣
θ,φ

∂r 

∂θ

∣∣∣∣
P,φ

∂θ

∂P 

∣∣∣∣
r,φ

≡ −1 , (112)

e obtain 

∂r 

∂θ

∣∣∣∣
P,φ

≡ − ∂P 

∂θ

∣∣∣∣
r,φ

/ 

∂P 

∂r 

∣∣∣∣
θ,φ

. (113)

 chain rule similar to Eq. (113) is 

∂r 

∂φ

∣∣∣∣
P,θ

≡ − ∂P 

∂φ

∣∣∣∣
r,θ

/ 

∂P 

∂r 

∣∣∣∣
θ,φ

. (114)

ombining Eqs. (113) and (114) gives 

 ⊥ r 
∣∣∣

P 

≡ −∇ ⊥ P 
/ 

∂P 

∂r 

∣∣∣∣
θ,φ

. (115)

sing Eq. (115) , we eliminate ∇ ⊥ r 
∣∣∣

P 

from Eq. (111) and obtain 

 ⊥ ρ
∣∣∣

P 

≡ ∇ ⊥ ρ −
[(

∂ρ

∂r 

)/ 

(
∂P 

∂r 

)]
∇ ⊥ P (116)

he tautology: 

 P × ∇ ρ ≡ ∂P 

∂r 
ˆ r × ∇ ⊥ ρ − ∂ρ

∂r 
ˆ r × ∇ ⊥ P + ∇ ⊥ P × ∇ ⊥ ρ, (117)
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ombined with Eq. (116) gives 

 P × ∇ ρ ≡ ∂P 

∂r 
ˆ r ×

{
∇ ⊥ ρ −

[(
∂ρ

∂r 

)/ 

(
∂P 

∂r 

)]
∇ ⊥ P 

}
+ ∇ ⊥ P × ∇ ⊥ ρ (118) 

owever using Eq. (116) , we see that the expression in the large

urly brackets in Eq. (118) is equal to ∇ ⊥ ρ
∣∣∣

P 

, so Eq. (118) be-

omes 

 P × ∇ ρ = 

∂P 

∂r 
ˆ r × ∇ ⊥ ρ

∣∣∣∣
P 

+ ∇ ⊥ P × ∇ ⊥ ρ (119) 

= −gρˆ r × ∇ ⊥ ρ
∣∣

P 
+ 

(
∂P 

∂r 
+ ρg 

)
ˆ r × ∇ ⊥ ρ

∣∣∣∣
P 

+ ∇ ⊥ P × ∇ ⊥ ρ

(120) 

ote that we are only interested in the φ component of

 ∇P ×∇ρ): 

ˆ · (∇P × ∇ρ) = 

gρ

r 

∂ρ

∂θ

∣∣∣∣
P 

[
1 −

(
1 

gρ

∂P 

∂r 
+ 1 

)]
(121) 

= 

gρ

r 

∂ρ

∂θ

∣∣∣∣
P 

[
1 + 

1 

g 

(
∂v r 
∂t 

+ (v · ∇) v r − f 0 cos θ (v φ + r f 0 / 4) 

− v 2 φ/r 

)]
(122) 

= 

g ′ ρ
r 

∂ρ

∂θ

∣∣∣∣
P 

[
1 + 

1 

g ′ 

(
∂v r 
∂t 

+ (v · ∇) v r − f 0 cos θ v φ − v 2 φ/r 

)]
(123) 

= 

g ′ ρ
r 

∂ρ

∂θ

∣∣∣∣
P 

[
1 + O 

(
DV 

2 
φ

g ′ L 2 
φ

, 
DV 

2 
θ

g ′ L 2 
θ

, 
DV φV θ

g ′ L φL θ
, 

f 0 V φ

g ′ , 
V 

2 
φ

g ′ r 0 

)]
, (124) 

here we used the radial component of Euler’s equation to go

rom Eq. (121) to Eq. (122) , and we used Eq. (90) and the as-

umption that the characteristic time for v r is sufficiently slow that

 ∂ v r / ∂ t | is less than or equal to one or more of the other terms

ithin the large parentheses to go from Eq. (123) to Eq. (124) . Note

hat the last two fractional errors in Eq. (124) are small compared

o the third fractional error if ˜ Ro ≤ 1 . Table 1 shows that ˜ Ro � 1 

nd that the other fractional errors in Eq. (124) are small, so that

ubject to these small fractional errors, we obtain: 

ˆ · (∇P × ∇ρ) � 

g ′ ρ
r 

∂ρ

∂θ

∣∣∣∣
P 

. (125) 

ote that using the same reasoning as we used above, we can

how that 

∇ P × ∇ T 

T ρ
≡ 1 

T ρ

∂P 

∂r 
ˆ r × ∇ ⊥ T 

∣∣∣∣
P 

+ 

∇ ⊥ P × ∇ ⊥ T 
T ρ

(126) 

≡ − g 

T 
ˆ r × ∇ ⊥ T 

∣∣∣
P 

+ 

∇ ⊥ P × ∇ ⊥ T 
T ρ

+ 

1 

T ρ

(
∂P 

∂r 
+ ρg 

)
ˆ r × ∇ ⊥ T 

∣∣∣∣
P 

, (127) 

nd that 

ˆ · (∇P × ∇ρ) � − g ′ T 
r 

∂T 

∂θ

∣∣∣∣
P 

. (128) 

inally, we note that for the observable layers of the atmospheres

f the giant gas planets, generally the horizontal gradients of the

emperature and density along surfaces of constant pressure are

imilar to their values along surfaces of constant r . To see this, note
hat Eq. (116) shows that when V θ � V φ and L θ � L φ that 

∇ ⊥ ρ
∣∣∣

P 

− ∇ ⊥ ρ

∥∥∥∥/ 

∥∥∥∥∇ ⊥ ρ

∥∥∥∥ � O 

(
V 

2 
θ / (gD ) , (V 

2 
θ sin θ ) / (gD Ro ) 

)
. 

(129) 

n equation similar to Eq. (129) holds for the temperature. 

ppendix C 

We wish to apply the equatorial density wind equation,

QDWE, in Eq. (99) to the Galileo probe wind shear measure-

ents on Jupiter. In this case, it is possible that the EQTWE does

ot apply because the atmosphere is a mixture with more than

ne component, and the mixing ratios of the components may be

unctions of location, so Eq. (2) is not valid. (Neptune has a non-

onstant mixing ratio, so the modification below is required – see

ollefson et al., 2018 ). Here, we re-write the EQDWE in a form that

s easier to apply to the observations. Note that 

≡ ρH −H e + ρX , (130) 

here ρ is the total density, ρH −H e is the density due to the “dry”

ydrogen-helium atmosphere without condensibles, and ρX is the

ensity due to a condensible species X, which could be water or

ethane or ammonia, etc. This equation is exact. Here, we limit

urselves to just one condensible species. 

 = P H −H e + P X , (131)

here P is the total pressure, P H −H e is the partial pressure due to

he “dry” hydrogen-helium atmosphere, and P X is the partial pres-

ure due to species X. This equation is Dalton’s law of partial pres-

ure. We assume that the ideal gas law for a mixture applies: 

 = T (R H −H e ρH −H e + R X ρX ) (132) 

= R̄ T (ρH −H e /μH −H e + ρX /μX ) , (133) 

here R̄ is the universal gas constant (independent of species),

H −H e is the molecular weight of the hydrogen-helium mixture,

X is the molecular weight of species X, R H −H e ≡ R̄ /μH −H e is the

pecific gas constant of the hydrogen-helium mixture, and R X ≡
¯
 /μX is the specific gas constant of species X. 

Along an isobar of pressure P 0 , 

P 0 

R̄ T 
= 

ρH −H e 

μH −H e 

+ 

ρX 

μX 

, (134) 

r equivalently 

H −H e = 

P 0 μH −H e 

R̄ T 
− ρX 

μH −H e 

μX 

(135) 

= ρX 

(
1 − μH −H e 

μX 

)
+ 

P 0 μH −H e 

R̄ 

1 

T 
. (136) 

hus, 

∂ρ

∂θ

∣∣∣∣
P 

= 

(
1 − μH −H e 

μX 

)
∂ρX 

∂θ

∣∣∣∣
P 

−
(

P 0 μH −H e 

R̄ 

)
1 

T 2 
∂T 

∂θ

∣∣∣∣
P 

(137) 

herefore up to fractional errors of O 

{
[ ρA ] 2 / [ ρM ] 2 

}
, at the equa-

or, 

1 

ρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

= 

1 

ρM 

∂ 2 ρM 

X 

∂θ2 

∣∣∣∣
P 

(
1 − μH −H e 

μX 

)
−

(
P M 

0 μH −H e 

R̄ 

)(
1 

ρM (T M ) 2 

)
∂ 2 T M 

∂θ2 

∣∣∣∣
P 

(138) 

Eqs. (131) and (134) show that 

P M 

0 μH −H e 

R̄ 

)
1 

ρM T M 

= 

[
1 − ρM 

X 

ρM 

(
1 − μH −H e 

μX 

)]
. (139) 
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Using Eq. (139) in Eq. (138) , we obtain 

1 

ρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

= − 1 

T M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

[
1 − ρM 

X 

ρM 

(
1 − μH −H e 

μX 

)]
+ 

1 

ρM 

∂ 2 ρM 

X 

∂θ2 

∣∣∣∣
P 

(
1 − μH −H e 

μX 

)
. (140)

Planetary and atmospheric scientists generally use the mixing ratio

m ≡ρx / ρ , and to leading order in m ( Fig. 11 shows that m is order

10 −4 ), Eq. (140) evaluated at the equator is 

1 

ρM 

∂ 2 ρM 

∂θ2 

∣∣∣∣
P 

= − 1 

T M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

[ 
1 − m 

M 

(
1 − μH −H e 

μX 

)] 
+ 

∂ 2 m 

M 

∂θ2 

∣∣∣∣
P 

(
1 − μH −H e 

μX 

)
, (141)

where m 

M is the mirror-symmetric component of m . Using

Eq. (141) in the EQDWE in Eq. (99) , we obtain an equation for the

dimensionless vertical shear 

f 0 r 

g ′ 
∂v M 

φ

∂r 
= − 1 

T M 

∂ 2 T M 

∂θ2 

∣∣∣∣
P 

[ 
1 − m 

M 

(
1 − μH −H e 

μX 

)] 
+ 

∂ 2 m 

M 

∂θ2 

∣∣∣∣
P 

(
1 − μH −H e 

μX 

)
. (142)

The first term on the right side of Eq. (142) is the contribution to

the dimensionless vertical shear due to the temperature. The sec-

ond term on the right side of Eq. (142) is the compositional contri-

bution. 

For planetary flows that do not obey an ideal gas equation, such

as a liquid planetary center or the nearly incompressible hydrogen

core in the deep interior of Jupiter or Saturn, a virtual tempera-

ture and the equation above will not be useful. In these cases, one

should deal directly with the equatorial density wind equation, or

EQDWE, in Eq. (99) . 
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