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ABSTRACT

With the exception of the Great Red Spot, Jupiter’s long-lived vortices are not isolated, but occur in
east–west rows. Each row is centered about a westward-going jet stream with anticyclones on the poleward
side and cyclones on the equatorial. Vortices are staggered so that like-signed vortices are never longitu-
dinally adjacent. These double rows of vortices, called here Jovian vortex streets (JVSs) are robust. Cal-
culations with no forcing and no dissipation (i.e., Hamiltonian dynamics) allow a continuum of JVS solu-
tions, so they cannot be used to determine the physics that selects the observed values of the areas,
circulations, and locations of Jupiter’s vortices. Constraints imposed by stability put few bounds on these
values. When small amounts of dissipation and forcing are added to the governing equations, there is no
longer a continuum of solutions; an initial JVS that was a solution of the Hamiltonian equations is now out
of equilibrium and evolves to an attractor. For fixed forcing, all initial JVS evolve to the same attractor, so
that the area of the vortices in the late-time JVS is selected uniquely as is the separation width in latitude
between the row of cyclones and row of anticyclones. The separation width of the attracting JVS is nearly
independent of the forcing, but the areas of the vortices in the attracting JVS depend strongly on the
strength of the forcing, which is a measure of the ambient Jovian turbulence. Results are compared with
observations.

1. Introduction and motivation

The Jovian weather layer (containing the visible
clouds) is characterized by vortices and a zonal system
of jet streams (Fig. 1). Assuming the jet streams are
indicated by Jupiter’s multicolored bands, they have
persisted for at least 340 years (Hook 1665). Their av-
eraged east–west velocity v(y) as a function of latitude
y was nearly unchanged from 1979 (Limaye 1986),
through the early 1990s (Simon and Beebe 1996) to
2006 (P. S. Marcus et al. 2006, unpublished manuscript).
Vortices appear at almost all latitudes more than 15°
from the equator. However, with the exception of the
Great Red Spot (GRS), they are not isolated, but
rather occur in east–west rows that straddle one of the
westward-going jet streams with anticyclones (cy-

clones) on the poleward (equatorial) side of the jet
stream (Fig. 1). Cyclones are interspersed in longitude
between anticyclones, so that like-signed vortices are
never longitudinally adjacent (Marcus 2004). In this
configuration, which we call a Jovian vortex street
(JVS), the centers of the anticyclones (cyclones) are
embedded in an average zonal shear !(y) " #dv/dy
that is also anticyclonic (cyclonic). This is in accord with
theory (Marcus 1988, 1990; Dritschel 1990) and experi-
ment (Sommeria et al. 1989): vortices thrive when the
sign of the vortex and ambient shear are the same, but
torn apart otherwise. Although cyclones and anticy-
clones in a JVS can be centered at nearly the same
latitude (cf. the vortices near 40°S in Fig. 2), the west-
ward jet stream is displaced so that it meanders be-
tween them (Fig. 3b), keeping cyclones on one side and
anticyclones on the other.

We argued previously that without forcing and dissi-
pation there is a continuum of stable JVSs (Marcus
1993). Mathematically, the vortices in a JVS can have
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wide ranges of areas, potential vorticities and locations
in latitude. Some additional physics must therefore se-
lect the observed Jovian values, and this paper explores
them. If vortices do not merge and if there were no

dissipation and no forcing, those quantities remain
fixed at their initial values. Considering the extreme
ages of the Jovian vortices and the forcing and dissipa-
tion in the Jovian atmosphere, it does not seem plau-

FIG. 1. Voyager mosaic (Limaye 1986). The superposed white line is the averaged zonal velocity v(y).
Rows of cyclones and anticyclones straddle each of the westward-going jet streams with the cyclones
(anticyclones) on the equatorial (poleward) sides. The clouds of the anticyclones are elliptical, compact,
and bright, whereas those of the cyclones are tangled, wispy filaments.

FIG. 2. (a) Velocity of the azimuthally averaged zonal flow v as a function of latitude $ (from Fig. 1),
with the locations of the maximum eastward-going jet streams shown as solid lines at $ % 28°, 36° and
44°S and the maximum westward-going jet streams as broken lines at $ % 33° and 40°S. (Latitudes in this
article are planetographic.) (b) A Voyager mosaic showing one anticyclone and two cyclones straddling
the jet stream at 33°S and three anticyclone/cyclone pairs straddling the jet at 40°S. The centers of the
cyclones (anticyclones) are shown with a C (A). The vortices are so large that the cyclones and anticy-
clones in the same JVS overlap in latitude.
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sible that their current properties reflect initial condi-
tions. In fact, large changes in areas and latitudes of the
three White Oval anticyclones (that made up half of the
JVS at 33°S) are well documented from their birth in
1939–41 (Rogers 1995) to their demise, beginning in
1998. We consider Jovian vortex streets, rather than
individual vortices, to be the fundamental coherent fea-
tures of the Jovian atmosphere. Other than our own
nearly dissipation-less studies of JVSs (Marcus 1993;
Youssef and Marcus 2003; Marcus 2004), we know of
no other studies of their dynamics. The goal of this
paper is to determine whether a simplified, but physi-
cally motivated, model of forcing and dissipation drives
the JVS, regardless of initial conditions, to a unique,
late-time solution and thereby determines its late-time
properties. We are interested in isolating the mecha-
nisms that evolve a JVS toward its attractor. Since this
is the first study of the long-term behavior of a JVS, and
since there is much uncertainty in determining the ar-
eas, potential vorticities and, in some cases, even the
number of vortices in Jupiter’s vortex streets, our strat-
egy is to be as general as possible rather than to try to
model precise Jovian conditions. For example, within
each vortex street the absolute values of the potential

vorticities of Jupiter’s cyclones and anticyclones differ,
but here for simplicity, we usually make them equal.
Therefore, we shall generally make only qualitative
comparisons between our results and Jovian observa-
tions.

In section 2 we review the differences among the
dynamics of a few isolated patches of vorticity, of a
vortex embedded in a shear flow, and of vortices in a
JVS. Most studies of vortex dynamics (Dritschel 1986;
Pullin 1998; Saffman 1992; Chorin 1997) were carried
out with isolated patches of vorticity, and the intuition
based on those dynamics is often misleading when ap-
plied to a JVS. In section 3, we review the governing
equations. In section 4, we compute steady and time-
dependent JVSs with no forcing or dissipation. All ini-
tial-value calculations of Jovian vortices with no forcing
and no dissipation (Ingersoll and Cuong 1981; Dowling
and Ingersoll 1988; Marcus 1988; Cho and Polvani 1996;
Williams and Yamagata 1984), have “rigged” initial
conditions, chosen so that the values of the conserved
quantities, such as circulation and energy, of the initial
conditions match those of the desired late-time vorti-
ces. Therefore, in section 5, we introduce forcing and
dissipation and show that vortices evolve to attractors
with unique values of area and locations in latitude.
The section begins by demonstrating that standard nu-
merical methods cannot be used for evolving a JVS
with forcing and dissipation for the required &5000 vor-
tex turn-around times. A model using a numerical
method that can be evolved that long is introduced. In
section 6 we carry out numerical experiments to explain
the physics of our results. Our conclusions and their
relations to Jovian observations are in section 7.

2. Review of Jovian vortex streets—Theory and
observations

a. Vortices embedded in a shearing zonal flow

Jovian vortices are embedded in a zonal shearing
flow v(y), and its shear !(y) significantly modifies vor-
tex behavior (Marcus 1988, 1990; Dritschel 1990). One
modification is that an unembedded vortex with sharp
boundaries (especially when approximated as a piece-
wise constant patch of vorticity and computed with con-
tour dynamics) continually sheds thin filaments of vor-
ticity (Dritschel 1988), while an embedded vortex only
creates filaments when it encounters stagnation points.
Another is that the shape of an unembedded vortex,
and therefore its self-energy, is strongly affected by
nearby vortices [cf. V states (Deem and Zabusky
1978)]. In contrast, the shape, and in particular the as-
pect ratio, of an embedded vortex is largely determined
by the ratio of its ambient shear !(y) to its own poten-

FIG. 3. Numerical calculation of JVSs. JVSs are classified as
type I, II, or III, in accord with the number of stagnation points on
the OCS around each vortex (see section 4 for details and param-
eter values). Vortices are shaded and all have A % 1.1 ' 107 km2.
Because the JVSs in the reference frame of this figure are steady,
the vortex boundaries are also streamlines. Each OCS (thick
curve) is a separatrix that divides the fluid into a region where
fluid circulates around the planet and regions where the fluid is
trapped on closed streamlines in or near a vortex. OCSs cross at
stagnation points. (a) Type I (W % 1400 km). Type I and III JVSs
appear to have no westward-going jet stream, but an azimuthal-
average (as in Fig. 1) of the east–west velocity shows a westward-
going jet stream. (b) Type II (W % 2600 km). The westward-going
jet streamlines meander between large vortices. (c) Type III (W !
1860 km). The unique westward-going jet streamline is punctu-
ated with stagnation points.
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tial vorticity [cf. the family of vortices found by Moore
and Saffman (1971)]. As embedded vortices evolve,
their shapes are nearly rigid and elliptical except when
they have close encounters with each other or with stag-
nation points. The boundaries of embedded vortices
are usually sharp, characterized by steep gradients of
the potential vorticity. Numerical simulations and ex-
periments (Sommeria et al. 1989) show that the shear-
ing zonal flow exterior to a collection of interacting
vortices mixes and homogenizes the exterior zonal po-
tential vorticity; similarly, the potential vorticity within
each vortex homogenizes, so that the overall flow can
be approximated as having piecewise-constant poten-
tial vorticity. This same piecewise-constant approxima-
tion has also been noted for Jupiter’s zonal velocity
(Read et al. 2006) and has been used for modeling it
and other planetary zonal flows and vortices (Polvani et
al. 1990; Cho et al. 2001). The best-observed JVS was at
33°S, containing the three White Ovals. Youssef and
Marcus (2003) studied the mergers of the White Ovals
and found good agreement with the observations, in-
cluding the vortex shapes, by modeling the anticyclones
as nearly uniform patches of potential vorticity of mag-
nitude 1.1 ' 10#4 s#1, each with area 4.5 ' 107 km2 and
cyclones with potential vorticity #4.7 ' 10#5 s#1.
Treating the anticyclones in the JVS at 40°S as patches
of uniform potential vorticity of strength 6 ' 10#5 s#1

reproduces their shapes well.

b. Small north–south displacements create large
east–west velocities

Jovian vortices advect with the ambient velocity (see
section 3). They drift primarily east and west, rather
than north or south, because v( y) dominates the
weather layer. [In the special case that v(y) has uniform
potential vorticity, the drift speed of an isolated vortex
is equal to v(y0), where y0 is the latitude of the center
of potential vorticity of the vortex (Marcus 1993).]
However when the separation between vortices be-
comes less than approximately the Rossby deformation
radius LR (defined in section 3), the circumferential
velocity around each vortex influences its neighbors as
much as v. Neighboring vortices then move north or
south, changing their latitude by (y. [At distances
greater than LR, the velocity created from an isolated
patch of potential vorticity falls exponentially fast
(Marcus 1993).] Although (y is small, the large shear
!(y) creates a large change in a vortex’s east–west drift
velocity:

!v ! #"!y. )1*

c. Repulsion between opposite-signed vortices in a
JVS

Inevitably, vortices near the same latitude that are
embedded in a zonal shear ! + 0 approach each other
due to the differential east–west velocities. In numeri-
cal simulations, regardless of whether they are two-
dimensional (Marcus 1988; Dowling and Ingersoll 1988,
1989; Marcus 1990) or three-dimensional (Morales-
Juberias et al. 2003; Barranco and Marcus 2005), when
like-signed, vortices at about the same latitude come
within a few LR, they merge on an advective time scale.
In contrast, opposite-signed, embedded vortices at ap-
proximately the same latitude that straddle a westward
jet stream repel (Marcus 1993; Youssef and Marcus
2003; Marcus 2004); it is this repulsion that makes a JVS
stable. To understand the repulsion, consider a clock-
wise-rotating vortex approaching the western side of a
counterclockwise vortex as in Fig. 4a. The circumferen-
tial rotation around the vortices displaces both south-
ward, so both have displacements (y , 0 as in Fig. 4b.
Because the westward jet passes between the two op-
posite-signed vortices, the ambient shear of the coun-
terclockwise (clockwise) vortex is positive (negative).

FIG. 4. Calculation of a time-dependent, oscillating JVS at 4
times during the elongated orbit of a vortex. Parameter values are
as in section 4 with W % 2000 km and A % 1.1 ' 107 km2 (a type
II JVS). Straight arrows indicate the mean motion of the vortices
at those times and show why opposite-signed vortices repel. If the
amplitudes of the oscillations were infinitesimal this would be the
primary eigenmode, and the flow would be periodic in time. Vor-
tices orbit around the locations of the vortex centers of the steady-
state or reference JVS (defined in section 4b), and the dotted lines
indicate the latitudes of those centers. The distance between the
dotted lines is the width W of the reference JVS. To a first ap-
proximation, the zonal flow between the dotted lines is to the
west, and outside the lines to the east. Therefore when a vortex
lies between the dotted lines, it advects to the west; when outside
the lines, to the east. In the upper (lower) half of each subfigure
the shear ! ( y) is negative (positive).

APRIL 2007 H U M P H R E Y S A N D M A R C U S 1321



With Eq. (1), the change in east–west drift velocity (v
of the counterclockwise (clockwise) vortex is positive
(negative) and toward the east (west) as in Fig. 4c. The
repulsion is similar when a clockwise vortex approaches
the eastern side of a counterclockwise vortex as in Fig.
4d. The repulsion in Fig. 4 was seen in many Voyager
observations in which anticyclones reverse directions.
MacLow and Ingersoll (1986) describe one observation
as follows: “Event III involves an anticyclonic spot
[clockwise vortex in Fig. 4a] in the northern hemisphere
that approaches from the west and encounters a cy-
clonic FR (filamentary region) [counter-clockwise vor-
tex in Fig. 4a], which is at slightly lower latitude than
the spot. The spot moves equatorward [south], passing
to the west of the cyclonic region [as in Fig. 4b] before
retreating back to the west at a lower latitude [as in Fig.
4c].”

d. Eigenmodes and time-dependent, oscillating JVS

A vortex street made of N point vortices with infinite
deformation radius LR that is not embedded in a zonal
flow v is unstable for all but a single value of the ratio
of its vortex spacings (i.e., separation in streetwise di-
rection x to separation in street-width direction y;
Lamb 1945). With finite LR, there is a small range of
spacings where JVSs are not unstable (Masuda and
Miki 1995). In contrast, all N/2 of a JVS eigenmodes are
neutrally stable (i.e., are neither growing nor decaying)
and temporally periodic when the JVS is made of point
vortices embedded in a zonal flow with a westward-
going jet between the two rows (see section 3 for de-
tails), regardless of the spacing (except when the zonal
shear ! is very weak). The eigenmodes consist of the
point vortices orbiting about their steady-state equilib-
rium locations. The eigenmodes of a JVS with finite-
area vortices are similar to those with point vortices and
are also similar to the finite-amplitude orbits shown in
Fig. 4. The orbits that the vortices follow are highly
elongated in the streetwise, or east–west, direction even
for small amplitudes, so in most cases the vortices ap-
pear only to oscillate in longitude. Even a weakly non-
linear orbit has an east–west diameter that is close to
the maximum value of &2-RJ/N (&50 000 km for the
White Ovals), where 2-RJ is the local latitudinal cir-
cumference of the planet and N is the number of vor-
tices in the JVS. In contrast, the north–south orbital
diameter 2.y is much smaller [&1000 km for the White
Ovals (Rogers 1995)].

e. Definition of vortex and uncertainties in Jovian
observations

The definition of a Jovian vortex is ambiguous in the
literature. Since the Jovian vortices are embedded in a

background zonal flow that has shear and vorticity al-
most everywhere, we define a vortex as a compact re-
gion of potential vorticity that is very different or
anomalous to the background potential vorticity of v.
As a counter example to our definition, the Southern
Equatorial Belt (SEB) is a cyclonic region of closed
streamlines just north of the GRS that might be con-
sidered a long-lived vortex. However, consider the
thought experiment of a fluid consisting of a set of al-
ternating zonal flows that is periodic in the east–west
direction (cf. the Jovian jet streams) and place an anti-
cyclone (cf. the GRS) in one of the anticyclonic bands.
The north–south velocity of the anticyclone alters the
streamlines of the surrounding cyclonic belts. In par-
ticular, the formerly parallel streamlines in the cyclonic
region north of the anticyclone change to closed
streamlines (cf. the SEB). However those streamlines,
by construction, are not those of an anomalous patch of
potential vorticity. For these reasons we do not con-
sider the SEB to be a vortex. To prove directly that the
SEB is not an anomalous vorticity patch is difficult be-
cause it requires the differentiation of noisy velocity
measurements. However if the SEB did have an
anomalous potential vorticity, then it and the GRS
would oscillate back-and-forth in longitude due to their
mutual repulsion as in Fig. 4, and this has not been
observed. A detailed study of the SEB concluded that it
was “not dynamically tied to any anticyclone vortex”
(Morales-Juberias et al. 2002). Another problem with
identifying Jovian vortices is that some vortices have
been labeled as ephemeral, in contrast to long-lived,
based on the morphologies of their associated clouds.
This has led to controversy over whether long-lived Jo-
vian cyclones exist. We have argued that they do be-
cause the long-lived Jovian anticyclones would have
merged together unless they were part of a JVS, which
requires cyclones (Marcus 1993), and we showed by
simulating Jovian clouds that classifying a vortex as
long-lived or ephemeral based on its cloud’s morphol-
ogy can be deceiving (Marcus 2004). There are large
uncertainties in measuring the areas and potential vor-
ticities of Jovian vortices. To find directly the potential
vorticity requires differentiating velocity, which ampli-
fies the uncertainties in the data. The area of a Jovian
vortex is the area of its anomalous potential vorticity,
which is the area circumscribed by the vortex’s closed
streamline with maximum velocity, and that is also dif-
ficult to measure. We argued (Marcus 2004) that for
anticyclones, but not for cyclones, an indirect measure
of the upper bound of the area of a Jovian vortex is the
area of its associated cloud cover and that the aspect
ratio of a vortex’s north–south to east–west axes is the
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best indicator of the ratio of its potential vorticity to its
ambient zonal shear (Marcus 1993). However, in our
opinion, all of these measurements have too much un-
certainty to catalog quantitatively the areas and poten-
tial vorticities of the Jovian vortices. For this reason we
focus on the qualitative features of JVSs and use the
simplest equations and models.

f. No JVS contains the Great Red Spot

We view JVS as the fundamental configuration of
long-lived Jovian vortices, with the GRS as the excep-
tion that proves the rule. We believe that no vortices lie
within /15° of the equator, so anticyclones at the lati-
tude of the GRS (whose northern edge is &15°S) have
no companion cyclones on their northern sides to block
their mergers with the GRS. Thus, only the GRS re-
mains at its latitude. Presumably, the lack of long-lived
vortices near the equator is because the Coriolis param-
eter is weak there, and a large Coriolis parameter is
needed to make the flow approximately two-
dimensional. (Vortices thrive in two dimensions but are
quickly destroyed in three.)

3. Equations and approximations

Following Ingersoll and Cuong (1981), we model the
Jovian weather layer with a one-and-a-half layer quasi-
geostrophic (QG) model with no dissipation or forcing:

Dq
Dt

" " #

#t
0 )v · !⊥*#q)x, y, t* % 0, )2*

where the potential vorticity q is

q " $⊥
2 % #

%

LR
2 0 &y, )3*

with streamfunction 1, two-dimensional velocity v "
ẑ ' !⊥1, two-dimensional gradient !⊥, vertical vorticity
2 " 32

⊥1, north–south gradient of the Coriolis param-
eter 4, local vertical unit vector ẑ, and local Cartesian
east–west and north–south coordinates x and y, respec-
tively. To simplify further the analyses, we let the time-
and meridionally averaged zonal velocity v(y) over the
latitudes of a JVS have uniform potential vorticity; that
is, d21(y)/dy2 # 1(y)/L2

R 0 4y is constant, where 1 is
the streamfunction of v. Without loss of generality the
value of this potential vorticity can be set to zero (i.e.,
q " 0). The assumption that the potential vorticity of v
is uniform is consistent with the discussion in section 2a
and with others who modeled the potential vorticity of
planetary zonal flows as piecewise constant (Polvani et

al. 1990; Cho et al. 2001). With this assumption, we
model the local zonal velocity of a JVS (centered at a
westward jet) as

v)y* % "V0 cosh$ y
LR

% # &LR
2 #x̂, )4*

where V0 is an integration constant, and y % 0 is the
latitude of the maximum of the westward jet stream. If
a bottom topography were included (cf. Dowling and
Ingersoll 1988) in the definition of potential vorticity in
Eq. (3), then any zonal flow v(y), including the one in
Fig. 1, could have uniform potential vorticity if the cor-
rect bottom topography were used. In any case, our
main numerical results are insensitive to the bottom
topography, so we set it to zero in this paper. The west-
ward jet at 40°S is well approximated by modeling v(y)
in Eq. (4) with V0 % 8.0 m s#1 and LR % 1400 km. This
value of LR is corroborated by the well-measured value,
LR % 2250 / 500 km at 23°S (Marcus 1993) and the
assumption that LR 5 1/ |sin$ | , where $ is latitude.

Equation (2) conserves energy, which up to a con-
stant (and using q " 0) is

E " #&&q )% # %* '2 dx dy # &&q % dx dy

% #&&q )% 0 %* '2 dx dy, )5*

where the integrals are over the entire domain. This
energy and all other energies discussed in this paper are
per unit mass surface density. To apply the energies to
the Jovian weather layer they need to be multiplied by
the product of the average mass density of the layer and
its vertical scale height. Also conserved are the momen-
tum in the x direction, which up to a constant is P "
66 yq dx dy, and the infinite moments of the enstrophy,
Mn " 66 qn dx dy, for nonnegative integers n. In addi-
tion to our assumption that the JVSs have piecewise-
constant potential vorticity, we further simplify our
model by assuming that there are N/2 anticyclones with
potential vorticity q on the southern side of the west-
ward jet stream and N/2 cyclones with potential vortic-
ity #q on the northern side (adopting the point of view
of the Southern Hemisphere and q 7 0.) With this
model JVS, Eq. (2) conserves the value of the potential
vorticity /q and the areas of each vortex, Ak, k % 1,
2, . . . , N, making the conservation of the moments of
the potential vorticity Mn trivial. To compare calculations
to observations, we work with the conserved quantity
W, the width of the JVS (see Fig. 4), which is defined as
the average distance between the latitude of the centers
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of the anticyclones and the latitude of the centers of the
cyclones. In terms of P,

W " #2P' |q | 8
k%1

N

Ak % #2 8
k%1

N

ykwkek, )6*

where ek is 1 for an anticyclone and #1 for a cyclone,
yk " 66ky dx dy/Ak is the average latitude of the kth
vortex, and wk " Ak /8N

k9%1 Ak9 is the kth weighting
function (and where the integrals defining wk and yk are
taken over the area of the kth vortex). For example, if
all vortices in a JVS have the same area, then wk is
equal to 1/N for all k. If, in addition, each cyclone’s
average latitude were yC and each anticyclone’s were
yA, then the width W is equal to (yC # yA).

In summary, the equations of motion conserve (N 0
4) independent quantities in our idealized JVS: energy
E, width W, potential vorticity q, number of vortices N,
and vortex areas Ak, k % 1, 2, . . . , N.

4. Equilibrium Jovian vortex streets with no
forcing and no dissipation

For the remainder of this paper, unless otherwise
stated, all numerical calculations and figures use pa-
rameter values appropriate to the westward jet near
40°S., so the zonal flow v(y) in Eq. (4) has V0 % 8.0
m s#1 and LR % 1400 km (see section 3). As stated in
the introduction, we are not trying to model the details
of the Jovian vortices, so in the calculations that follow
we generically set their potential vorticities to /7 '
10#6 s#1, which underestimates the strengths of the an-
ticyclones near 40°S (see section 2a). The calculations
use an east–west domain length of 288 000 km and
N % 24.

a. Steady JVS

Here we compute families of steady JVSs such that
all of the vortex areas are the same; that is, Ak % A for
all k. For fixed zonal velocity v and east–west or street-
wise domain size, each steady JVS is uniquely deter-
mined by four quantities: its area A, width W, N and
potential vorticity strength /q. (Although energy E is
an independently conserved quantity, once A, W, N,
and q are chosen, the E of the steady state is uniquely
determined.) Therefore each steady state is uniquely
characterized by L the domain size in x, the two pa-
rameters V0 and LR of the zonal flow v, and four pa-
rameters of the vortex street. In dimensionless units,
the equilibria are uniquely determined by L/LR, A/L2

R,
W/LR, qLR /V0, and N. Note that even though the cal-
culations are on a 4 plane, the value of 4 never enters—

see below. To compute the steady JVSs and their eigen-
modes, we use the exponentially accurate, contour-
dynamics method of Van Buskirk and Marcus (1994),
which computes the locations of the vortex boundaries
using a continuation method, which not only produces
equilibria but also determines bifurcations so we can
determine stability. The method is much more eco-
nomical than traditional second- or third-order accu-
rate contour dynamics methods that are based on ap-
proximating sections of the boundary with low-order
polynomials. Typically, our steady-state calculations
use 64 spectral basis functions to represent the vortex
boundary and our time-dependent calculations use
1024. The computational domain is unbounded in y and
periodic in x.

Our goal is to determine the quasigeostrophic physics
that sets W and A (since we believe that the values of q
and V0 are determined by ageostrophic forcing and are
therefore beyond the scope of this paper.) Therefore,
we hold qLR /V0, N, and L/LR fixed (at their observed
Jovian values, given in the first paragraph of this sec-
tion), and compute steady solutions to Eq. (2) as func-
tions of A/L2

R and W/LR. Because the areas of all the
vortices are the same, without loss of generality in a
steady-state calculation, we can set N % 2 rather than
24, and use 1/12 the streetwise or east–west domain L to
compute the steady vortex streets. We can do this be-
cause each cyclonic/anticyclonic pair of vortices is iden-
tical and they are equally spaced, so the flow has peri-
odicity length L/12. Solutions that translate uniformly
in x are considered steady. Results are presented in the
rest frame of the vortices. The value of 4 only affects
the value of the translation velocity, so it is irrelevant.
Figure 5 shows the values of A/L2

R and W/LR for which
there are steady solutions. We classify JVS solutions
according to their streamlines. In Fig. 3 each vortex has
nested closed streamlines both within it and immedi-
ately surrounding it. The closed streamline farthest
from the vortex is labeled the outermost closed stream-
line (OCS). Each OCS has one, two or three stagnation
points lying on it. We classify JVSs as type I, II, and III
in accord with the number of stagnation points on their
OCS. Type III JVSs occupy only a line in A–W param-
eter space and separate type I’s from type II’s. Type II
JVSs have westward-going jet streamlines that travel
around the whole planet and separate the cyclones
from the anticyclones. The unique westward jet stream-
line in type III is pinched off by stagnation points. Al-
though a type I JVS does not have a set of uninter-
rupted, westward-going streamlines, the azimuthal-
average (similar to the averaging-method used to create
Fig. 1) of its east–west flow shows a strong westward jet
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stream at the midlatitudes of the JVS. Figure 5 shows
that steady JVS solutions have a finite range in A as a
function of W, with 0 ( A ( Amax(W). The vortices at
the boundary A % Amax(W) fill their OCS. The physics
that determines the value of Amax(W) for small W (type
I) is the fact that vortices (whose centroids always lie in
regions where the ambient shear has the same sign as
the potential vorticity of the vortex) cannot extend far
into regions where the shear has the opposite sign. This
means that a vortex’s boundary cannot extend very far
across the latitude y % 0. Therefore vortices in a street
with small W must have small areas, and their maxi-
mum size increases with W, so Amax(W) increases with
W. For large W (type II), the physics that determines
the maximum size of the vortex is the fact that a vortex
cannot extend very far into regions where the shear
has the same sign as the potential vorticity, but with
much greater magnitude. (When the shear becomes
large it stretches the vortex too much for it to have
an equilibrium.) For large W streets, as W increases
the magnitude of the ambient shear of the side of the
OCS that is farthest from y % 0 increases exponentially
with W. Therefore for type II vortices as W increases,
the maximum size of the vortex decreases, and
Amax(W) decreases with W. Type II and III steady
JVSs are neutrally stable. Type I’s are neutrally stable

except1 for a small region of instability where A ) 0.95
Amax(W).

b. Time-dependent, oscillating JVS

A steady-state JVS has N/2 eigenmodes, but we are
interested in the primary mode, defined here to be the
mode where the orbits of the centroids (here, centroid
is defined as the center of the potential vorticity) of the
cyclones are all in phase and 180° out of phase with
those of the anticyclones. A finite-amplitude extension
of this eigenmode is shown in Fig. 4. It can be created
by displacing all of the vortices in a steady JVS north by
a distance .y. When thus initialized, each vortex ex-
ecutes an elongated orbit about its original, unper-
turbed location with a north–south semidiameter or
amplitude equal to .y. This time-dependent JVS and
the steady JVS from which it was perturbed, hereafter
defined to be its reference JVS, have the same values of
N, q, A, and W because the perturbation, regardless of
the size of .y, conserves them exactly. A cyclone and
anticyclone in a JVS at latitudes (yC 0 .y) and (yA 0
.y) (and several LR away from each other) will ap-
proach each other with a collisional east–west velocity

|VCol | " |v)yC 0 *y* # v)yA 0 *y* | ! 2"AC*y, )7*

where yA and yC are the latitudes of the vortices in the
reference JVS, where we used the fact that [v(yC) #
v(yA)] % 0 because the reference JVS is steady, and
where !AC " |!(yA) # !(yC) | /2, which is the average
absolute value of the shear at the centers of all of the
vortices in the reference JVS. The approximate tempo-
ral period of the primary mode is a function of |VCol |
and of the east–west diameter of its orbit (which for a
vortex street on Jupiter consisting of N vortices is
&2-RJ/N). We define the period

+ " 4,RJ 'N |VCol | ! 2,RJ 'N"AC*y. )8*

1 For fixed W/LR, the primary family of steady JVS solutions
begins at A % 0 and terminates at A % Amax(W ). For a JVS with
A % Amax, the vortex boundaries have cusps (because they lie on
an OCS containing a stagnation point). For most values of W/LR

in Fig. 5, there are no secondary branches of steady JVS solutions
that intersect the primary branch. However, for some small range
of W/LR (corresponding to the location in phase space where
there are nonneutral instabilities), the type I JVS primary branch
of solutions has a forward pitchfork bifurcation for values of A
greater than 0.95 Amax(W ), which causes the primary branch to
become unstable. Despite the mathematical curiosities associated
with vortices with cusps, the secondary branch of JVS solutions,
and the instabilities, these phenomena are not relevant to Jovian
vortices (whose photographs may show filamentation, but never
cusps). As shown in section 6, the ambient turbulence prevents
the vortex areas from getting close to Amax(W ).

FIG. 5. Region in A–W space where JVSs exist. Parameter val-
ues are as in section 4. Steady solutions exist only between the
horizontal axis with A % 0 and the upper curve Amax(W ). The
two-parameter families of type I (small W ) JVS solutions and of
type II (large W ) solutions are separated by the type III solutions.
The latter occupy a one-dimensional (dotted) line rather than an
area. Almost all JVSs have neutral linear stability. The values of
W for the type III JVS are much less than 5 ' 103 km, which is the
distance between the eastward jet stream at 44°S and the west-
ward jet stream at 40°S, which bound the anticyclones in the JVS
in the southern part of Fig. 2.
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This estimate of the period : as a function of north–
south oscillation amplitude .y and shear !, as well as
the relations among these quantities and the east–west
orbital velocity VCol, given by Eqs. (1) and (7) agree
well with our numerically computed JVS and are also
consistent with observations of the White Ovals (Rog-
ers and Herbert 1991; also see Rogers 1995, his Figs.
11.9–11.11, p. 225). Although :, VCol, and .y are useful
observational measures for Jovian vortex streets, a
more useful theoretical measure is the difference in en-
ergy .E between a JVS and its reference JVS. The |.E |
for a JVS (per cyclone/anticyclone pair, so a street on
Jupiter with 12 pairs of vortices would have 12 times
this energy) is related to .y by

|*E | ! qA"AC)*y*2 % qA)VCol*
2'4"AC

% 4,2qA)RJ*
2'N2+2"AC . )9*

Equation (9) follows from Eq. (5), by noting that when
every vortex of a steady JVS is displaced by .y, the
term 66 q(1 # 1)/2 dx dy in Eq. (5) is unchanged2 and
that for a vortex centered at latitude yi, 66 q 1 dx dy !
qA1(yi), so .E ! #qA{[1(yA 0 .y) # 1(yA)] #
[1(yC 0 .y) # 1(yC)]}. Taylor expanding 1 in this last
expression3 and using [v(yC) # v(yA)] " 0 and !(yC) %
#!(yA) % !AC, gives Eq. (9).

Thus to characterize a time-dependent JVS (that ei-
ther has N % 2 or only has only its primary mode ex-
cited) we need to not only specify its area A, number of
vortices N, width W, and potential vorticity q, but also
any one of the following: the north–south amplitude of
its oscillation .y, the east–west velocity of its elongated
orbit VCol, its period :, or its energy difference .E with
respect to its reference JVS. (The cyclones and anticy-
clones in Jupiter’s vortex streets have areas and abso-
lute values of their potential vorticities that are not the
same. However Eqs. (7)–(9) are still valid, if q, A, and
.y are defined as the potential vorticities, areas, and
north–south oscillation amplitudes of the elongated
orbits of the anticyclones, and if we define !AC "
[!(yA) # !(yC)(A/AC) |q/qC | ]/2, where AC and qC are
the areas and potential vorticities of the cyclones. The
amplitude of the north–south oscillations of the cy-
clones is (A/AC) |q/qC |.y, so momentum and width W
are conserved.

5. New model of forcing and dissipation

a. Traditional models and their inadequacies

Because JVSs are neutrally stable for a wide range of
A and W, existence or stability cannot select the values
of A and W on Jupiter. For this reason, we consider
forcing and dissipation. In geophysical fluid dynamics,
dissipation is traditionally modeled with a hyperviscos-
ity, which damps the smallest spatial scales (Pouquet et
al. 1975). Hyperviscosity works well for studies of vor-
tex dynamics in part because the time scale of vortex
interactions is the vortex turn-around time. Typical
simulations require at most a few hundred turn-around
times, and for these durations the amount of dissipation
in the physically important spatial scales is not signifi-
cant. Hyperviscosity also works well for simulations
which focus on producing large-scale structures, such as
zonal flows, via inverse energy cascades from small-
scale forcing (Vallis and Maltrud 1993; Panetta 1993;
Danilov and Gryanik 2004). Although these simula-
tions often run for several thousand turn-around times,
hyperviscosity can be used because most of the late-
time energy resides in the nearly dissipationless large
scales, and the details of the small scales are unimpor-
tant. In 2D calculations, the forcing effects from the
unresolved or uncalculated ageostrophic and 3D mo-
tions such as plumes rising from lower layers or baro-
clinic instabilities are often modeled by forcing the ver-
tical component of vorticity either in wavenumber
space or physical space. Figure 6 illustrates the prob-
lems of using hyperviscosity in this study of JVSs,
which, as we show in section 6, requires the faithful
simulation of the small scales in the vortex filaments
and boundaries over several thousand vortex turn-
around times. The evolution of the White Ovals took
place over 60 yr, or &3000 turn-around times, which is
comparable to the number of turn-around times
(&5000) that the JVS in Fig. 6 required to come to a
statistically steady state. Figure 6 shows two calcula-
tions in which a JVSs is evolved with hyperviscosity
and forcing. (See caption for computational details.)
Although the initial JVSs in the two calculations
are different, at late times they are nearly the same.
Both calculations have N % 2 and have the same val-
ues of q, LR, and v(y), and the same forcing and dissi-
pation. Figure 6 shows that the width W of each JVS
evolves in time, with the small W increasing and the
large W decreasing. Figure 7 shows the evolution of
these two JVS in the A–W plane. They appear to have
a common attractor. This suggests that our forcing and
dissipation models select a unique A and W. However,
over these long time scales’ hyperviscosity washes out
the filaments, as well as the sharp gradients of po-

2 Here, (1 # 1) is the streamfunction due to the vortices only,
so is invariant under translation of the ensemble of vortices in any
direction; similarly, q is invariant when q % 0.

3 The first three terms in the Taylor expansion of 1( yC 0 .y)
are 1( yC) 0 (.y)d1/dy | yC

0 [(.y)2/2]d21/dy2 | yC
% 1( yC) #

(.y)v( yC) 0 [(.y)2/2]! ( yC).
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tential vorticity at the vortex boundaries, making the
existence of an attractor uncertain and, in any case,
making it impossible to deduce the physics that drives
the flow to its late-time state.

b. New model

1) DISSIPATION

Because our model of forcing and dissipation is
novel, we want the effects of the model on the late-time
JVS to depend only on the model’s physically moti-
vated rules and not on the numerical contrivances
needed to compute them such as the vagaries of a
poorly understood numerical grid-viscosity, hypervis-
cosity or underresolved spatial discretization. We re-
quire a numerical method that preserves sharp vortex
boundaries (because that is a property of vortices em-
bedded in a shear) and resolves filamentation (because
Voyager movies show frequent filamentations, and
simulations in section 5a suggest they are important).
For these reasons we choose a model that can be com-
puted with contour dynamics, which, by using the spec-
tral implementation of Van Buskirk and Marcus (1994),
has effectively no numerical dissipation. Unlike unem-
bedded vortices that continually filament and require
the highly dissipative numerical artifact of contour sur-

gery, vortices embedded in a JVS shed filaments only
when they encounter stagnation points (section 2a),
minimizing the need for contour surgery. Like
Dritschel (1989), we found that the flow is insensitive to

FIG. 7. Evolution in the A–W plane of the two JVSs in Fig. 6. (a)
Two initial conditions (open circles) evolve toward their common
attractor near the locus of type III JVSs (dotted line). (b) Blow-up
showing the details within the rectangular box in (a) and illustrat-
ing the late-time attracting JVS where the two evolutionary tracks
cross (arrow).

FIG. 6. Calculation with traditional forcing and hyperviscous dissipation of two initially different JVSs.
Parameter values are as in section 4. (top left) A grayscale shows the potential vorticity of an initial
N % 2 JVS (the two large vortices with /q). Initially, A/L2

R % 7.2 and the width W is small, W/LR % 0.99.
The flow is forced by adding opposite-signed pairs of small vortices randomly in space and periodically
in time (approximately two pairs per turn-around time of a large vortex). The small vortices have the
same strength potential vorticities as the initial vortices in the JVS, and their areas are &0.03 times that
of the initial large vortices. The solid horizontal lines in each panel are the latitudes of the centroids of
the large vortices. (top right) The same flow after being forced and dissipated for &5000 turn-around
times. Although W has increased, the details of the vortex structures, e.g., its filaments, have been
washed out. (bottom) Similar to (top) but showing an initial JVS with a A/L2

R % 6.7 and a larger W,
W/LR % 2.1. W decreases in time. The doubly periodic spectral calculations have 256 ' 512 collocation
points. A fourfold increase in spatial resolution postpones the time at which the boundaries and fila-
ments first become poorly resolved, but, nonetheless, they are always washed out by the time the JVS
approaches its attractor.
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the choice of the thinness criterion for removing the
filament. Dissipation via contour surgery conserves the
potential vorticities q and N of a JVS but changes its
width W, area A, and energy. When a filament with
centroid at latitude yf and area a is removed from a
vortex, the momentum P changes by (P ! #qayf and
width W changes by

!W % /2ayf'$8
k%1

N

Ak%, )10*

where the sign is positive (negative) for anticyclones
(cyclones).

2) FORCING

Repeatedly adding small vortices to the flow and
computing their mergers as we did in the traditional
forcing calculations in Fig. 6 quickly becomes intrac-
table with a contour dynamics calculation. Therefore,
instead of computing mergers, we model their effects.
We self-similarly expand the area of each large vortex
in the JVS, keeping its shape, centroid (and therefore
its latitude yk) and potential vorticity q unchanged.
Therefore the width W of the JVS is unchanged. We
keep q unchanged because we assume, as in section 5a,
that the small vortices of the forcing have potential
vorticities /q. Our motivation for keeping the cen-
troids constant is that we found that it was approxi-
mately true in the simulations in section 5a because the
small vortices appended themselves to the larges vorti-
ces at approximately random locations along their
boundaries. In testing our forcing model, we varied the
rate at which the forcing increased the areas of the
vortices and found that the rate had little effect on the
properties of the attracting JVS, but did determine how
fast the flow evolved to it. For the remainder of the
paper we use a rate of increase of 0.028L2

R per average
oscillation period : as defined in Eq. (8). To get a physi-
cal understanding of this rate, note that if a Jovian an-
ticyclone at 41°S expanded at this rate (and never fila-
mented), its area would increase by &0.7% per :. With
this forcing, the vortices shed filaments as they encoun-
ter stagnation points, but the amplitudes of the oscilla-
tions in their elongated orbits run down; the east–west
velocity VCol of the oscillation, its north–south ampli-
tude .y, and the energy difference |.E | between the
JVS and its reference JVS decrease to zero. Each JVS
evolves toward the Amax(W) curve in Fig. 5 and then
moves along or near the Amax(W) curve until it come to
the region near the type III JVS where it remains. This
behavior is inconsistent both with our simulations using
traditional forcing and dissipation (Fig. 7) and with Ju-
piter where the oscillations of the JVS do not run down.

The inconsistency is due to the fact that the small vor-
tices used in traditional forcing bump and displace the
large vortices as they merge, preventing .y, |.E | , and
VCol from decaying to zero. Our calculations with tra-
ditional forcing suggest (but not definitively, due to hy-
perviscosity) that .E remains approximately constant
as the flow evolves. To model this effect of the atmo-
spheric turbulence, we added a second component to
the forcing to maintain a constant value of .E by con-
tinually adding very small random displacements to the
individual vortices (subject to the constraint that the
momentum, or equivalently W, was unchanged). Nu-
merical experiments showed that all of the different
types of displacements we tried led to the same result.
Therefore for simplicity, we did the following: at fixed
phases in the JVS oscillation we shifted the latitudes of
all the vortices in the JVS by the same amount while
keeping their longitudes constant. This shift conserves
A, W, q, and N, and changes .E in accord with Eq. (9).
The magnitude of the shift was chosen to keep |.E |
constant throughout the calculation. By shifting the
latitudes of the vortices, we put energy into the system
and cause the vortices to oscillate about the equilibrium
(reference JVS). Shifting the latitudes of all of the vor-
tices corresponds to changing the energy of the primary
eigenmode of the JVS (see section 2d and Fig. 4). The
shifts in latitude are so small that the cumulative shift in
a calculation from start to finish is always much smaller
than either the width W of the JVS or the diameters of
the vortices. The power supplied by our forcing is also
small; it is less than 0.1% of the power equal to the
product of the flux of the Jovian internal heat flux
(&5.4 W m#2) and the area of an anticyclone in the
JVS. A practical calculational advantage of shifting the
latitudes of all of the vortices simultaneously, is that we
can limit our study4 to JVS with N % 2. Thus for the
remainder of the article we set N % 2. The value of .E
can be thought of as a parameterization of the strength
of the ambient turbulence. In summary, our forcing
model consists of two parts. The first is an increase in
area of all the vortices, while holding width W, potential
vorticity q and N fixed, and a second part that maintains
a constant value of .E fixed while holding area A,
width W, potential vorticity q, and N fixed.

4 With this forcing, the reference JVS, the damping and forcing
are identical for each cyclone/anticyclone pair, so even though the
computation with N vortices is periodic in the east–west direction
with periodicity length L, the flow has periodicity length 2L/N, so
we can limit the calculation to only one pair of vortices in the
smaller computational domain, provided that the calculations
with N % 2 vortices have no subharmonic instabilities.
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6. Evolution to an attractor with the new model of
forcing and dissipation

The evolutions of the two JVSs in the A–W plane in
Fig. 8 are typical of initial-value runs with the new forc-
ing and dissipation. There is a common attractor for
initial conditions with the same values of N, q, LR, v(y),
and forcing amplitude .E. We now explain why the
attractor in our calculations always has a value of width
W that is approximately equal to that of the steady type
III JVS with the same area A as the attracting solution.
We also show that the width W of the attractor is in-
dependent of the details of the forcing model but that
its area A depends on the forcing amplitude .E.

a. Change in W due to filamentation

The outermost closed streamlines (OCS) determine
how W changes. Figure 9a shows a filament shedding
from an anticyclone on the southern side of a type I
JVS with streamlines similar to Fig. 3a. The portion of
the vortex that overflows the OCS is carried counter-
clockwise around the anticyclone to the stagnation
point to its north. From there it is stretched into a fila-
ment and swept north across the westward-going jet
stream (at y " 0), so the filament’s centroid has yf 7 0.
Before clipping, filamentation conserves momentum
P " 66 yq dx dy, so as the filament moves north, the
body of the vortex recoils south. When the filament is
clipped, the width W increases (i.e., (W 7 0), consistent
with Eq. (10) because yf 7 0 and q 7 0. Due to the
locations of the stagnation points on the OCS, both the
anticyclones and cyclones in a type I JVS, always shed
their filaments on the opposite side of the street (i.e., on
the other side of the westward jet stream) of the vortex
from which they came, causing the JVS to widen. In
contrast, Fig. 9b shows a type II JVS shedding filaments
on the same side of the street, causing the width W to
narrow. A type II JVS has streamlines similar to Fig.
3b. Each vortex has two stagnation points on its OCS
from which it can shed filaments. However, simulations
show that the southern vortex (an anticyclone) in Fig.
9b usually overflows the segment of OCS on its south-
ern side because that segment of OCS is closer to the
vortex than its northern segment. The portion of the
vortex that overflows is carried counterclockwise
around the vortex to the stagnation point on its eastern
side where it is swept south of the JVS, causing the
body of the vortex to recoil north. When the filament is
clipped, yf , 0, which causes the width W to decrease in
accord with Eq. (10). Only rarely does a type II JVS
filament to the opposite side of the street as in Fig. 9c.
When it does, yf and (W are very small and of either
sign. Figures 10 and 11 summarize filamentation. Each

symbol in Fig. 10 was computed by beginning with a
steady JVS with the area A and width W of the symbol’s
position in the A–W plane. We then increased |.E |
from zero (holding A and W constant) by shifting the
JVS north or south, causing the vortices to oscillate. We
increased |.E | to the critical value Ecrit(A, W) where
the vortices first shed filaments. Figure 11 shows con-
tours of constant Ecrit(A, W) in the A–W plane. Each
arrowhead in Fig. 10 points to the direction (wider or
narrower W) that the filamentation drives the JVS.
Open circles indicate a small (W caused usually by a
type II vortex filamenting to the opposite side of the
street as in Fig. 9c. Thus filamentation, not the forcing
model, causes JVSs to be attracted to the region in the
A–W plane between the two broken curves in Fig. 10
(near the type III JVS). This W-attracting region is con-

FIG. 8. Evolution in the A–W plane of an initially narrow and
of an initially wide JVS computed with the new forcing model
with |.E | % 70. Initial locations are shown as open circles. Pa-
rameter values are the same as in section 4. (a) Both flows evolve
to the same late-time JVS (denoted by arrow). The heavy closed
curve is the contour for Ecrit % 70; the evolutionary paths of the
two JVSs are nearly coincident with it. The late-time flow is not
steady, but meanders around a fixed point due to its never-ending
cycle of shedding finite-sized filaments and increasing its area. (b)
Same as (a), but showing the two broken curves bounding W-
attracting region described in Fig. 10 rather than an energy contour.
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sistent with the attractors in initial-value calculations
run either with traditional forcing and dissipation (Fig.
6) or our new model (Fig. 8).

b. Slow evolution along contours of Ecrit(A, W)

Figure 8 shows two JVSs evolving with our forcing
model with |.E | % 70. Both JVSs zig-zag along the
contour Ecrit(A, W) % |.E | % 70. The value of |.E | %
70 is our choice of forcing for this calculation, whereas
Ecrit(A, W) is a property of the JVS and independent of
the forcing intensity. At late times, our simulations al-
ways show that JVSs follow the branches of contours of
Ecrit(A, W) % |.E | with ;Ecrit /;A , 0 [i.e., the large-
area (upper) branch of the closed contour in Fig. 8a].
We refer to this branch as the attracting branch. Once
the JVS enters the W-attracting region, it remains there
indefinitely. Thus, the intensity of the forcing |.E | de-
termines the area A of the attractor. To understand the
slow evolution of a JVS along the attracting branch,
consider the case where the initial JVS lies on the

branch. The first part of our forcing model increases the
area A. However, ;Ecrit /;A , 0, so this increase in area
decreases Ecrit below the imposed .E. Thus, the vorti-
ces shed filaments, decreasing A and changing the
width W in accord with Fig. 10. The decrease in area A
returns the JVS to its attracting branch but with a new
value of W. The cycle of increase in A and filamentation
repeats, and the JVS zig-zags along its attracting branch
until it reaches the W-attracting region. As a JVS
evolves in the A–W plane, so does its reference JVS;
both of their energies change in time, but their energy
difference .E remains approximately constant.

Now consider the evolution of a JVS that is not ini-
tially on its attracting branch and is instead located in
the A–W plane interior to the closed contour with
Ecrit(A, W) % |.E | . Inside the contour, Ecrit(A, W) 7
|.E | , so the JVS cannot shed filaments. Instead, the
forcing increases its area A until it reaches the attract-
ing branch and then evolves as in the previous case. A
JVS with initial values of A and W that lie outside the
closed energy contour with Ecrit(A, W) % |.E | will, in
general have Ecrit(A, W) , |.E | [although Fig. 12 high-
lights a case where this is not true because the contour
with Ecrit(A, W) % |.E | is not unique.] Often these
flows evolve to an attracting branch and end their evo-

FIG. 9. Calculation of filaments shed from vortices near stagna-
tion points. The filament and the body of the vortex from which
it is shed move in opposite directions in latitude, so the width W
of the JVS changes when the filament is clipped. (a) Type I JVS
[with parameter values of the reference JVS (Fig. 3a), but not
steady because the vortices are initially displaced north]. The
streamlines in Figs. 3a and 9a are similar but the latter are time
dependent. The filament is shed and clipped on the opposite side
of the vortex street of the vortex that shed it, thereby increasing
W. (b) Type II JVS. (The initial condition is created by displacing
the reference JVS in Fig. 3b north.) The vortex overflows its
closer, southern segment of OCS. The filament is shed and clipped
on the same side of the vortex street, decreasing W. (c) Type II
JVS (the initial condition is created by displacing a reference JVS
with W % 2000 km and A % 2.4 ' 107 km2 north—see open circle
in Fig. 10). This is the rare case when a vortex overflows the far
segment of its OCS. The shed filament becomes entangled with
the westward jet stream and the southern vortices, causing a (W
of either sign.

FIG. 10. W-attracting region and the change in W due to fila-
mentation. Parameter values are as in section 4. Each symbol
represents a numerical experiment. Each began with the steady
reference JVS for the A and W indicated by the location of the
symbol. |.E | was increased until it reached a critical value Ecrit

and a filament was shed. Arrowheads pointing to the right (left)
indicate that the filamentation increased (decreased) W after the
filament was clipped. Circles represent experiments in which (W
was small. The two broken curves are to guide the eye. They are
our best estimate (based on the circles and arrowheads) of the
bounds of the W-attracting region to which all JVS are drawn due
to filamentation.
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lution at the attractor. However, when |.E | k Ecrit(A,
W), the vortices oscillate with large amplitude, allowing
them to have close encounters with each other that
frequently rip them apart and destroy the JVS. On or
near the curve A % Amax(W) in the A–W plane (where
the vortices could have cusps—see section 4), Ecrit is
nearly zero, so only a very laminar JVS with .E ! 0 can
exist in this region. For flows with finite .E, the vorti-
ces in a JVS with A ! Amax(W) are quickly destroyed.

Because of the finite size of the zig-zag steps taken by
the JVS as it evolves, its approach to its attractor is
noisy. This allows the flow to sample large regions of
the A–W plane. When multiple attracting branches ex-
ist, the flow generally ends on the one with the largest
area A. For example, two closed contours in Fig. 11
have Ecrit % 30. Figure 12 shows the evolution of two
initially-different JVSs subject to forcing with |.E | %
30. Both initially evolve along the lower attracting
branch, but once inside the W-attracting region, they
jump to the branch with larger area A.

7. Conclusions and comparisons with observations

Filamentation, rather than forcing, determines the
width W of the attracting Jovian vortex street (JVS).
JVSs wider than that width shed filaments to the “same
side of the street” as the vortices that shed them, caus-

ing the streets to narrow; JVSs with narrower widths
shed filaments to the “opposite side of the street,” caus-
ing them to widen. Vortices within a JVS in the W-
attracting region shed filaments to both sides of the
street, thereby keep their JVS within the W-attracting
region. If the streamlines of the oscillating and of the
steady JVS were identical, then the W-attracting region
in Fig. 10 would coincide with the locus of type III JVS
in Fig. 5. When there are large differences between the
streamlines of the steady and oscillating JVS, there are
relatively large deviations between the W-attracting re-
gion and the locus of the type III JVS. This is why the
largest deviation occurs for the values of A and W in
Fig. 11 where Ecrit (and therefore the amplitude of the
nonfilamenting oscillation) is greatest.

The area A of the attracting JVS is determined by the
amplitude .E of the forcing. The attractor’s area A lies
at the intersection of the W-attracting region in Fig. 10
and the large-A (upper) branch of the contour with
energy Ecrit % .E in Fig. 11. Thus, Figs. 10 and 11,
along with the value of .E, determine the A and W of
the attracting JVS. The relation between .E and ob-
servables such as the amplitude of the ambient turbu-

FIG. 11. Ecrit(A, W ) plotted as contours in the A–W plane.
Parameter values are as in section 4. The maximum area of a JVS
Amax(W ) is shown as a heavy curve, and it is nearly coincident
with the contour of Ecrit % 0. On contours with a !, Ecrit is 15; with
a " it is 30, with a # it is 70, and with no large superposed symbol
is 110. Large Ecrit means that large amplitude turbulence |.E | is
needed to cause a JVS to shed filaments. Energies have units of
km4 s#2, so to apply them to Jupiter they must be multiplied by
product of the average density of the weather layer and its vertical
pressure scale height.

FIG. 12. Evolution of two JVSs using a forcing with |.E | % 30.
Initial locations are shown as open circles. Parameter values are
the same as in section 4. (The A and W of the two initial condi-
tions are approximately equal to those in Figs. 6 and 7. They
would be identical, but the plots in Figs. 6 and 7 begin only after
the very early transients, which allow the vortex shapes to adjust
to their local equilibrium values, have ended.) The attracting JVS
is marked with the arrow. The two distinct contours with Ecrit %
30 are shown as thick curves. (See the curve denoted with tri-
angles in Fig. 11 for additional clarity.) Initially the JVSs are
attracted to and follow the lower contour. They evolve along it
with large zig-zag steps, enabling them to sample large regions of
the A–W plane. Once inside the W-attracting region, they jump to
the small, closed contour where the attracting solution is indicated
with an arrow.
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lence could be determined if the functional form of the
turbulent energy spectrum were known, but it is not.
Fortunately, .E can be determined from observations
with Eq. (9) using the period of the elongated orbit of
the vortex (i.e., its oscillation period) :, velocity of the
oscillation VCol, or the north–south amplitude (y of the
elongated vortex orbits, all of which are known for the
JVS containing the White Ovals (Rogers 1995) and all
of which could be measured for other Jovian vortex
streets. (Unfortunately, there are large uncertainties in
the values of the potential vorticities and areas of the
vortices.)

The fact that the intensity of the forcing determines
the area A of the attractor has precedent. Van Buskirk
(1991), in modeling the GRS, showed that the energy of
the ambient turbulence determines the area of an iso-
lated vortex embedded in a zonal flow with alternating
jet streams. Using a continuation method to compute a
family of steady embedded vortices, he found that as
the area of a vortex increased so did the area circum-
scribed by its OCS but not as rapidly; the family of
vortices ended with a maximal area vortex character-
ized by the vortex filling its entire OCS. Using an ini-
tial-value code, he created nearly maximal area vortices
in laminar, but not turbulent, flows. He found that tur-
bulence continually displaced a vortex, and when the
displacements were as large as the distance between the
vortex’s boundary and its OCS, the vortex bumps the
OCS and area is stripped from it. The stronger the
ambient turbulence, the more frequent the bumping
and stripping, and the smaller the area of the surviving
vortex. The oscillation amplitude .E in the forcing
model here, acts in a manner similar to Van Buskirk’s
turbulence by regulating the bumping and thereby de-
termines the area of the attracting vortex.

Many of the key ideas developed here, such as Eqs.
(7)–(9), can be tested against observations because they
are valid for the more general case exemplified by Ju-
piter’s streets in which the absolute values of the po-
tential vorticities in the street are not all equal. Be-
tween 1945 and 1995 the areas and east–west diameters
Lx of the White Ovals in the JVS at 33°S shrank; the
aspect ratio < " Lx/Ly of each White Oval remained
approximately constant (where Ly is the Oval’s north–
south diameter); and the north–south amplitude .y of
the elongated orbits of the White Ovals increased.
Qualitatively, observations show that .y 5 1/Lx [Figs.
11.7, 11.9, 11.11 and 11.15 of Rogers (1995)]. This is not
a relationship that can be explained by a simple decay
of the White Ovals. The aspect ratio of a vortex em-
bedded in an ambient zonal shear is a measure of its
potential vorticity (Marcus 1993), so the observation
that the aspect ratio did not change between 1945 and

1995 suggests that the potential vorticities of the White
Ovals remained constant despite their decrease in area.
Equation (9), along with the fact that the area A of a
White Oval is approximately equal to -LxLy/4 %
-(Lx)2/4<, shows that

*y ! =4- |*E | '),q"AC* 'Lx. )11*

At 34°S, !AC is not a strong function of latitude. There-
fore, if the amplitude of the forcing |.E | remained con-
stant during 1945–95, then Eq. (11) explains the obser-
vation that .y is approximately proportional to (1/Lx).

Figure 2 shows that the average width W of Jupiter’s
vortex street at 40° is &2000 km, in agreement with the
type III JVS and the W-attracting region in Figs. 5 and
7–12, which were computed for the parameters appro-
priate to this JVS with the caveat that we arbitrarily set
the absolute value of the potential vorticities of the
anticyclones to that of the weaker cyclones. In prin-
ciple, we could recompute the streamlines and stagna-
tion points of the W-attracting region with better values
of the potential vorticities and compare them to obser-
vations. However, the estimates of the potential vor-
ticities and observations of the streamlines are fraught
with uncertainties. A more compelling argument that
Jupiter’s vortex streets at 40° and at 33°S (before the
mergers of the White Ovals) evolved to their W-
attracting regions comes from the filamentation pattern
of their vortices. The signature of a JVS in the W-
attracting region, even when the absolute values of the
potential vorticities and areas of the cyclones and anti-
cyclones differ, is that it sheds filaments to both sides of
the street. Assuming that the clouds are tracers of po-
tential vorticity, this signature shedding has been ob-
served for the streets at 40° and 33°S. For example, Fig.
2 shows cyclones shedding filaments to both sides of
their respective streets.
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