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Abstract. A new mathematical model for turbulent bursts in the three-dimensional 
flow between concentric, rotating cylinders (Couette-Taylor flow) is presented. Within 
a certain flow regime, if the parameters are held fixed, the flow oscillates in time between 
a spatially laminar phase (temporally chaotic Interpenetrating Spiral Vortex flow) and 
a turbulent phase. Our mathematical model is based on our previously published [I] 
fully-resolved, direct numerical simulation (i.e., using the Navier-Stokes equation with 
no turbulence modeling). From these simulations we developed a physical model [Z] 
that breaks up the cycle into four physical processes: (1) the flow sets up a laminar 
equilibrium of vortices (Interpenetrating Spiral Vortex flow); (2) the equilibrium be- 
comes unstable to a linear Floquet mode which grows exponentially frorn random, small 
initial conditions; (3) this mode acts as a finite-amplitude trigger for a shear-driven 
instability which results in large-amplitude, space-filling turbulence; and (4) after the 
turbulence exhausts the energy stored in the mean azimuthal component of the flow, 
dissipation causes it to collapse and the cycle repeats. Here, we derive a mathematical 
model from the Navier-Stokes equations using approximations based on the physical 
model. We show how well the model agrees with the numerically computed velocities, 
how it explains correlations and other properties of the numerically computed fields, 
and how it makes predictions that could be tested in future experiments. 

1 Introduction 

We present a new mathematical model for cyclic turbulent bursts in a fluid flow. 
Our mathematical model is based on direct numerical simulations of Couette- 
Taylor flows, i.e., those between two independently rotating, concentric cylinders, 
and a physical model we developed for these flows [I, 21. In Couette-Taylor flow 
there is a regime in which, while holding all of the parameters fixed, the flow oscil- 
lates in time between a laminar, spatially coherent phase and a turbulent one. A 
single cycle of transition from laminar flow to turbulence and re-laminarization is 
called a 'burst cycle'. The laminar flow has coherent structures with long length 
scales (of order the system size) and long time scales; whereas the turbulence 
has no easily recognizable structure and has short length and time scales ( N  0.1 
the laminar scales). 

Turbulent bursts in Couette-Taylor flow were experimentally observed by 
Swinney and co-workers [2] who found persistent burst cycles that were ap- 
proximately periodic in time. Numerical simulations of this flow and a physical 
model for it were presented by Coughlin & Marcus [I] and Coughlin et  al. [ 2 ] .  
The latter paper also contains a description of the laboratory experiments and 
their comparison with the numerical simulations and our physical model. 
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This paper is organized as follows: first we review the phenomenology and 
observations of the burst cycles. We then summarize the simulations and physical 
model, including the model's verification and its predictions. We then introduce 
our new mathematical model, describe its characteristics and its predictions that 
are testable by laboratory experiments and numerical simulation. 

2 Review of Turbulent Burst Cycles in the 
Couet te-Taylor System 

The radius and aspect ratios of the Couette-Taylor system are q = a/b and 
r = H1/(b - a), where HI, a ,  and b are the height and inner and outer radii 
of the cylinders. The control parameters are the ratio of the angular velocities 
of the outer and inner cylinders p Rb/R, and the Reynolds number R G 

(b - a)lbRb - aRa( /v  where v is the kinematic viscosity. We choose the unit of 
density to be the constant density of the fluid, length to be (b-a), and velocity to 
be a 1 R, I. For R < Rc the base flow of the system is Circular Couette flow, Vcc (r) 
which in the limit of infinite r is only in the azimuthal direction. The laboratory 
expctriments in which bursts were observed had r 2 26, q = 0.799, and p z 
-2.797, and we use the latter two values throughout this paper. For r -+ oo, 
V,, is linearly, inviscidly, and centrifugally unstable to the formation of Taylor 
vortices in regions where dL2/dr < 0, where L(r) is the angular momentum per 
unit mass of the fluid. When p < 0, the nodal surface r* is defined such that 
v4(r = r*, 4, Z, t )  = 0 where v4 is the azimuthal velocity. When r < r* (defined 
as the 'inner region'), d ~ ~ / d r  < 0, and the flow is centrifugally unstable; when 
r > r* (the 'outer region'), dL2/dr > 0, and the flow is stable. The primary 
bifurcation in this system is from Vcc to a flow that contains spiral Taylor 
vortices that are confined to r < r* . 

In the numerical simulations when R is increased above the critical value Rc, 
Vcc goes unstable to eigenmodes of the form f(r)ei(2"zlHm(4-ct)) + c.c., where 
X > 0 and C.C. means 'complex conjugate'. For p < 0, the critical value for m 
for the bifurcation has m, # 0 and Real{c) # 0. Thus the primary unstable 
eigenmode is a uniformly rotating spiral. Modes with m > 0 (m < 0) are left- 
(right-) handed. Left and right-handed spiral eigenmodes are degenerate with 
the same f(r) ,  growth rates and critical values Rc, A, and Jmcl. For the p and q of 
the laboratory experiments, Rc = 2116.6, A, = 1.0856, lmcl = 4, and Real{c) = 
0.334Ra. For R > Rc, the most unstable eigenmodes have Real{c) E 0.3Ra, 
and Real{c) is approximately independent of m, A,  p and R. The eigenmode 
has its peak value at r t  < r* with IvcC(rt) /r t  1 E Real {c). This implies that the 
modes rotate with the approximate speed of the local azimuthal flow, which for 
r t  < r*, is always in the same direction as the inner cylinder. Spiral eigenmodes 
are supercritical bifurcations of V,,. For R slightly greater than Rc, they evolve 
to fully nonlinear Spiral Vortex flows V,, with form 

03 

V,, (r, 27rz/X + m($ - d)) = C ~ , ( r ) e ~ " [ ~ " ~ / ~ ~ ~ ( ~ - ~ ~ ) l .  
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The sign of the helicity of the equilibrium flow depends on initial conditions, and, 
once established, a spiral of one helicity is stable to perturbations of the opposite 
helicity. At R = 1.04Rc the eigenmodes of Vcc with Iml # 4 are stable, but all 
eigenmodes with 1.34 > X 2 0.820 and Iml = 4 are unstable. The degeneracy in 
X does not lead to mode competition; numerical experiments (which are forced 
to have axial periodicity H = 4Xc) initialized with a sum of left- and right- 
handed eigenmodes with axial wavelengths of H/2, H/3, H/4 and H/5  converge 
to Spiral Vortex flow with a single helicity as in equation (1). The final Spiral 
Vortex flow has m = 4 (or m = -4, but not both) and X = H/4. Spiral Vortex 
flow consists of a pair of counter-rotating vortices localized in the centrifugally 
unstable inner region. The circulation due to the vortices mixes the fluid in the 
inner region and reduces the gradient of the mean velocity v ( r )  

In the outer region, the flow remains almost two-dimensional and similar to 
Vcc ( r ) .  In the numerical experiments at R > 1.04RC, Vsv becomes unstable to a 
flow with turbulent burst cycles. During the laminar phase of the cycle the flow 
strongly resembles Interpenetrating Spiral Vortex flow Visv. A pure Visv flow is 
a chaotic equilibrium first observed in a different parameter regime by Andereck 
et al. [3]. It contains multiple spiral vortices with different helicities, (i.e., in 
numerical calculations Visv flow has multiple values of m and X in equation (I)) ,  
making it temporally chaotic but spatially laminar. During the turbulent phase 
of the burst cycle the turbulence is space-filling, and the flow has no recognizable 
structure. 

Although our numerical simulations resolve the flow and are direct (i.e., they 
are solutions to the Navier-Stokes equation with no turbulence modeling terms), 
they do use an important approximation. The no-slip boundary conditions of 
the axial end plates are replaced by an assumption of axial periodicity H .  This 
leads to some differences, which we argued [I, 21 are unimportant for the study 
of turbulent bursts, but which we now describe for completeness. In the labo- 
ratory flow with finite r, the primary bifurcation from Vcc is different than it 
is in the numerical simulations. The flow goes unstable directly to a flow with 
turbulent bursts rather than to Vsv. The laminar phase of the cycle is similar 
to the Interpenetrating Spiral Vortex flow of the numerical simulations, but the 
turbulent phase of the cycle has its turbulence spatially confined to localized 
'spots'. As R increases the turbulent 'spots' become larger, and at  R > R,", the 
turbulent phase of the burst cycle is space-filling as in the numerical simulations. 
The burst cycles are almost periodic in time with mean duration T. Both T and 
its standard deviation decrease with increasing R. Coughlin & Marcus [I] and 
Coughlin et al. [2] discuss in detail the consequences of the differences, but con- 
clude that the flows with space-filling turbulent burst cycles in the simulations 
and in the laboratory experiments are essentially the same. There is good quan- 
titative agreement between the two (e.g., the periods and standard deviations of 
the burst cycles at selected values of R). Moreover, two predictions made from 
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the numerical simulations (described in the next section) were subsequently ver- 
ified in the laboratory experiments. Not only did these strongly suggest that the 
numerical simulations capture the underlying physics of the laboratory flow, but 
also the predictions provide the basis for our physical model of the burst cycle. 

3 Physical Model 

The main ideas and assumptions underlying our physical model are outlined in 
this section. In particular, Couette-Taylor flow with counter-rotating cylinders 
acts as if it contains two coupled dynamical systems. One, the 'inner region' with 
a 5 r < r*, is centrifugally unstable, and its dynamics are well-understood by 
linear theory. The second system, or 'outer region', is centrifugally stable but 
finite-amplitude unstable to shear instabilities, which are nonlinear and create 
the turbulence in the burst cycle. The second main idea of the model is that the 
flow would remain indefinitely in its laminar phase as an Interpenetrating Spiral 
Vortex flow concentrated in the inner region if Visv were not linearly unstable. 
Its instability is a linear eigenmode, which acts as a weak 'trigger' that sets off 
the finite-amplitude instability in the outer region, which in turn creates the 
space-filling turbulent burst. 

The analysis of the laminar phase is complicated due to the fact that In- 
terpenetrating Spiral Vortex flow is chaotic. Hence in Coughlin & Marcus and 
Coughlin et al. [I, 21 we asked whether the chaos was essential to the burst cycle, 
or an extraneous complication. We concluded the latter, based on several nu- 
merical experiments (though it is easy to imagine different scenarios of turbulent 
burst cycles that require the laminar phase to be chaotic). Therefore to simplify 
our presentation here, we proceed as if the laminar phase were a V,, flow rather 
than an Interpenetrating Spiral Vortex flow. This is reasonable because Inter- 
penetrating Spiral Vortex flow is always energetically dominated by a flow with 
only one helicity and at any instant in time always looks similar to a V,, flow. 

The linear instabilities of V,, occur at R 2 R,' and are Floquet eigenmodes 
of the form 

eim' (4-c't) ei2nz/~' g (r, 2 ? i t / ~  + m(4  - c t ) )  . 
(3) 

Numerically, we find their azimuthal phase speeds c' are --0.4Ra, approxi- 
mately independent of the parameters rn, m', H, X and A'. The critical R for 
onset of this Floquet mode is less than 1.04Rc. The bifurcation is supercritical. 
(This is determined numerically by imposing a symmetry on the calculation that 
allows the Floquet modes to come to their nonlinear equilibria but disallows the 
flow to go unstable to turbulent bursts). The Floquet mode generically leads to 
a quasi-periodic, nonlinear, equilibrium flow (which could be stable or unstable) 
with form 
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Comparing equations (1) and (4), it is seen that the unstable Vsv which super- 
critically bifurcates to the V,, in equation (4) is 

The difference (V,, - V,,), defined as the modulation of Vsv by V,,, is domi- 
nated by 

eiml (4-clt) e i2~~/A1 C a,,l (r)e"[2''I'fm(4-~t)I 
(6)  

which is approximately the Floquet mode in (3). Although the anTo(r),  i.e., the 
Vsv component of V,,, are radially localized in the 'inner region', (as are the 
Interpenetrating Spiral vortices); the Floquet eigenmode an,l (r),  and associated 
modulation have large amplitudes near r = r* and are thus able to act as 
finite-amplitude perturbations to the flow in the 'outer region'. Based on this 
observation we argued in [I,  21 that this modulation was the trigger for the 
turbulent burst. We proposed that this modulation would always be present in 
the laboratory experiments and numerical simulations just prior to each burst 
(and at no other times.) This was easy to verify because the frequencies of the 
modulations and the radial locations of their amplitude maxima were computed 
numerically and looked for in the laboratory power spectra. Not only did the 
laboratory spectra display these frequencies, but they appeared just prior to 
each burst and at no other times. Direct numerical simulation shows that the 
flow never settles into a stable V,, state for R > R:, where R: is only slightly 
greater than Rk. The V,, flow whose amplitude is small and proportional to 
(R - R:)'l2 triggers the burst. We know this because if its amplitude near the 
outer region is kept artificially suppressed in the numerical calculations, then 
bursts do not occur, and the flow remains a laminar V,, flow. 

Once triggered, the onset of the turbulent burst is abrupt and causes O(1) 
changes in the velocity. Plots show the flow bursts everywhere into turbulence 
almost simultaneously. Large fluctuations occur on scales much smaller than the 
radii of the Interpenetrating Spiral Vortices and on time scales much less than 
the inner cylinder period. Figure 1 shows the numerically computed rates of 
the viscous dissipation of energy per unit mass EdiSs and the energy input rates 
into the flow per unit mass from the motors at the inner and outer cylinders 
E~ :, Fa Oa and Eb G -rbOb. In dimensionless variables 

and 
E~ = 2pq-3(p - q)2 (1 - v2)-l R-ld(v/r) /dr  (8) 

where v ( r ,  t) is the azimuthally and axially averaged value of the azimuthal 
velocity, Fa and rb are the torques per unit mass on the fluid due to the walls, 
and where the derivatives in equations (7) and (8) are evaluated at the respective 
boundaries. 
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The small scales of the turbulent burst are efficient at viscously dissipating 
energy, and the contributions to EdiSs(t) are dominated by them; thus, Ediss is 
a good signature of the turbulent phase of the burst cycle. In figure 1 it rises 
at onset, peaks when the turbulence is near its maximum, and drops when the 
turbulence collapses. One measure of the intensity of the turbulence is the ratio 
of the average value of Ediss during the turbulent phase of the burst cycle to 
the rate during the laminar phase. At R = 1.18RC, the ratio is 1.35, and at 
R = 1.38RC it is 1.60. Although the small spatial scales dissipate most of the 
energy, all of the energy into the flow comes from the torques at the cylinders 
and goes into the mean velocity 9 .  The component of energy due to is always 
much greater than that due to the fluctuation -3. (v - V). The + derives its 
energies from nonlinear interactions with V. The total rate of change of energy 
of the flow is (Ea + Eb - -diss). Figure 1 shows that Eb and Ea lag -diss. The 
rate of energy into the flow does not begin to rise significantly until after the 
turbulent burst collapses. During the turbulent phase, (Ea + Eb) < Ediss, SO the 
flow loses energy. During the turbulent phase, the energy of -3. grows by a factor 
of 20 by drawing energy from V. After the collapse of the turbulence, the total 
flow increases its energy by decreasing Ediss and increasing Ea and Eb.  

We had previously argued that the flow in the 'outer region' was finite- 
amplitude unstable [I, 21, and this argument is bolstered by the fact that when 
our initial-value calculations begin with a pure V,, flow superposed with small 
amplitude noise, the flow immediately produces a turbulent burst. (Except for 
this experiment, noise was never introduced into our numerical simulations of the 
Navier-Stokes equation; the computed bursts are turbulent, but deterministic.) 
Moreover, because rl -- 1 the flow in the 'outer region' looks similar to a plane- 
parallel shear flow. Kim et al. [4] argued that any type of plane-parallel shear 
flow is finite-amplitude unstable when its local Reynolds number (based on the 
flow's cross-stream width, v and shear at outer wall) is greater than -100. The 
flow in the 'outer region' meets this criterion. 

Although it empirically appears that the 'outer region' is sub-critically unsta- 
ble and that a finite-amplitude perturbation drives the flow to a turbulent state, 
we freely admit our model provides no physical explanation for finite-amplitude 
instability. However there appears to be no universally accepted physical ex- 
planation for finite-amplitude instabilities in shear flows, including the classic 
channel and pipe flows. (Models based on non-normal eigenmodes can explain 
why a low-dimensional transient can obtain a large amplitude before it decays, 
but they do not explain how the transient excites high-dimensional turbulence 
[5]. It should also be noted that the eigenmodes of Vcc are normal and complete. 
Models of finite-amplitude instability based on placing trip wires in a flow to 
create streamwise vortices, or on numerically freezing certain modes or coherent 
structures are also controversial.) 

In our model the reason why the turbulence decays, and the cycle begins 
anew is the following. The small scales excited during the turbulent phase of the 
burst cycle increase Ediss, but the energy input rate into the flow remains low, 
so the total flow loses energy. During the turbulent burst part of the cycle, the 
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turbulent component of the flow draws its energy from v ( r )  which acts as an 
energy reservoir. To see how this happens, note that during the laminar phase of 
the cycle v ( r ,  t )  = V,,(r), and v ( r ,  t) has a large amount of differential rotation. 
Turbulence tends to mix and homogenize angular momentum, driving the mean 
flow v ( r ,  t) towards a state with IdLldrl -t 0 (far from the radial boundaries) 
and therefore towards one with much less differential rotation and therefore with 
much less energy than V,,(r) [2]. The energy difference between these two mean 
flows is the reservoir from which the turbulent burst draws its energy. Once the 
turbulence has extracted the available energy from v, dissipation takes over, 
the turbulence collapses, and the flow re-laminarizes. Then the flow returns to 
a state similar to V,,, (dL/drl increases, ~b and da increase, and the cycle 
repeats. 

Quantitative laboratory support for our physical model comes from the fact 
that it predicts how the burst cycles scale with R in our direct numerical simula- 
tions of Navier-Stokes equations and in the laboratory experiments. The model 
predicts the mean lengths of the laminar TL, and turbulent TB phases of the burst 
cycle scale independently. According to our physical model, if the turbulent burst 
is triggered when the Floquet mode reaches a critical amplitude a,, and if the 
Floquet mode has growth rate P, then TL = l/P((log ac /ao)) ,  where the initial 
amplitude of the eigenmode a0 is assumed to be a random variable independent 
of RL, where R', is the critical R for onset of the Floquet mode. Double angle 
brackets indicate ensemble averaging over ao. Generically P - (R - R',) and a, 
is independent of (R - R,'), so TL - (R - R,')-'. On the other hand, there is 
no reason why the time it takes for the turbulence of the burst to exhaust the 
energy stored in v should depend on (R - R,'), so TB should be independent of 
(R - R,'). Both of these predictions have been confirmed in the laboratory (1, 

21. 

4 The Mathematical Model 

In summary, the physical model ascribes four parts to the burst cycle: (1) the 
flow sets up a laminar equilibrium of vortices (either V,, or Interpenetrating 
Spiral Vortex flow); (2) the equilibrium becomes unstable to a linear Floquet 
mode which grows exponentially from random, small initial conditions; (3) via 
unknown (at least, to us) physics the Floquet mode triggers a finite-amplitude 
instability in the shear flow in the 'outer region', resulting in space-filling tur- 
bulence; and (4) after exhausting the energy stored in v, small-scale dissipation 
causes the turbulence to collapse and the cycle repeats. 

To make further progress and new predictions, it is useful to translate the 
physical model into a mathematical one. Our model will have three, coupled 
or dinar y-different ial equations. This appears to violate our underlying belief that 
the third step of the cycle, the finite-amplitude instability, is not understood. 
It also appears to violate our belief that turbulent bursts are inherently high 
dimensional and cannot be described by low-order mathematics. These points 
are reconciled below. 
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4.1 Derivation of Model  Equations 

The dynamical variables of our model are E ,  E and E which are, respectively, the 
energies per unit mass of the mean flow v ( r ,  t ) ,  the turbulent component of the 
flow (which consists of many Fourier modes) and the energy of the Floquet trigger 
mode. By multiplying the Navier-Stokes equation by v (r, t) and integrating over 
the spatial domain we obtain (for clarity we revert to using dimensional variables 
unless specified otherwise): 

where 

D is the rate at which energy is viscously dissipated from E :  

6 is the unit vector in the azimuthal direction, (Ea + E ~ )  is the energy input rate 
from the motors given by equations (7)-(B), and x is the rate at which energy 
is transferred nonlinearly from E to the other modes: 

x G - [ rdr dm lH dr i-6 [(v V)v]/rH(b2 - a2) (12) 

Note that the motors only drive energy into the mean flow; all other modes 
obtain their energy from the mean flow via the x term. The velocity that makes 
up the turbulent phase is almost equal to G. (The modes that make up the 
Interpenetrating Spiral Vortices and the Floquet mode are part of neither v ( r ,  t) 
nor the turbulent phase.) However during the turbulent phase, E is much greater 
than the energy of the spiral modes and trigger, so dE/dt is well-approximated 
by multiplying the Navier-Stokes equation by + and integrating over the spatial 
domain: 

dE/dt = x - D  (14) 

where D is the rate at which energy is viscously dissipated from E, 

D  - v [ rdr i2* dm lH d r V  x G 2 / ~ H ( b 2  - a2).  (15) 

Note that in figure 1 we plotted the rate of energy dissipation. This obeys EdiSs = 
D + D .  

We now approximate the terms in equations (9)-(15). We want to write 
them in terms of E ,  & R, p and q. In dimensionless form equations (11) and (15) 
become 

D = CIE/R (16) 
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V = C2E/R (1 7) 

where Cl = (q - p) /qL: and C2 (q - p) IqL;, and where the definitions of the 
dimensionless lengths L1 and L2 are defined: 

l/(l-7l) / rdr (18) 
v/(l-v) 

and 

Hl(b-a)  1/(1-a) 
L : ~ l ~ ( ~ - ~ ) r d r l ~ ~ d ~ l  d z ( V ~ 6 ) ~ _ E l ) n ( H / ( b -  

a ) )  /,/,l-.,) 
rdr. 

v/(l-7l) 
(19) 

That is, L1 and L2 are the characteristic lengths over which v and 6 change. 
From plots of v ( r )  as functions of r [I], it appears that L1 2: 0.36 (-113 the gap 
width) which gives Cl = 34. A better value, determined from the full numerical 
simulations of the Navier-Stokes equation, agrees with this value of Cl to within 
10% (see 54.4). A reasonable estimate for L2 based on the observed size of the 
small scales during the turbulent phase is L2 z 0.1. A better value inferred from 
the full numerical simulations is L2 2: 0.078, which gives C2 = 745. (See 5 4.4.) 
None of the qualitative features of the model depends strongly on the exact 
values of C1 or C2 and neither appear to be strongly dependent on R, E or E. 
(Note, the turbulent burst is not of sufficient duration for the turbulence to be 
fully developed such that D cc E ~ / ~ . )  

A casual examination of equation (13) suggests that x should scale as E1I2E, 
but instead we argue (in dimensionless form) 

(We show below that if x x Ell2&, then the dynamics predicted by the model 
are qualitatively dissimilar to those found from the direct numerical simulations 
of the Navier-Stokes equations. Furthermore the direct simulations qualitatively 
confirm equation (20) .) We heuristically 'derive' equation (20) from angular mo- 
mentum conservation where the angular momentum per unit volume in a shell 
at radius r is J p-9, and its radial flux is F: 

The component of F due to advection is 

where c is the correlation between 6,  and 64. Angle brackets indicate an rms- 
average over 6 and z. There is a second contribution to F from diffusion which 
is O(v). Multiplying equation (21) by Jlp2r2, integrating over the volume, and 
dividing by the volume, we obtain 
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where we identify the right-hand side of equation (23) (excluding the contri- 
bution from the O ( v )  terms which represent the energy input from the motors 
and the dissipation terms) as the change in E due to the advective term or -x. 
Integrating equation (23) by parts we obtain 

where we use the fact that FA = 0 at the radial boundaries. We now define the 
mixing length A: 

To this point in the derivation of equation (20) we have made no approximations 
other than define the mixing length. 

We now approximate J ( r ,  t) as a Taylor expansion about r* and use the fact 
that J ( r* ,  t )  E 0: 

J(r, t)  N ps(t)(r - r*). (26) 

Equation (26) fits the numerical simulations reasonably well except near the 
radial boundaries [I]. Due to the fact that the radial gap is small, equation (26) 
implies 

d ( ~ / r ~ ) / d r  N ps(t)/r2 

Equations (24) - (27) yield 
x cc (6, ) As2 (t ) 

where the proportionality constant is positive and depends only on the geometry 
of the Couette apparatus (and not on R or other flow parameters if we assume 
that r* is approximately constant). The value of E is determined by integrating 
J/r over the domain, so using equation (26) it is easy to show that s2 cc E 
(the errors due to the poor approximation of J at  the boundaries is negligible), 
and the proportionality constant is positive and depends only on the Couette 
apparatus geometry. The full numerical simulations also show that there is a 
nearly equi-partition of energy among the components of G and therefore that 
(6,) cc Using s2 cc E and (6,) cc &'i2 in equation (28) yields equation (20). 
For the parameter values of p and 7 used in this paper and the value of r* from 
Vcc we can calculate the geometric factors and obtain 

C3 N 9A/(b - a). (29) 

Basing A on the lengths of the energy-bearing modes during the turbulent phase 
(and assuming they are nearly constant during that phase) we set C3 = 0.03. 

To approximate (Ea + Eb) from equations (7) and (8) we need to approximate 
a ( o / r ) a r  at  the boundaries. Assuming that equation (26) is valid in the interior 
of the flow and that there are boundary layers with thicknesses La and Lb, 
implies at r = a: 
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with a similar expression at r = b. Assuming that La/a << 1, using equations (7), 
(8), and (30), and approximating r*  with its value in V,, , gives (in dimensionless 
form) 

Ea + Eb = (C5 - ~4 @)/R (31) 

where Cq and C5 are dimensionless constants that depend on the values of La and 
Lb. It is more useful to define a new constant Eo such that C4&+ CIEo - C5 
and use Eo rather than C5 as a parameter in our model, 

Based on the numerical simulations [I], we expect La N Lb N 0.16(b - a) (which 
we treat as constants, independent of R, E and I). A better estimate of their 
values and direct measurements of the values of Eo and C4 can be made using 
the methods described in 54.4. However those estimates and measurements are 
consistent with our choices for La and Lb and give values Eo E 1.67 and C4 N 

211. Combining equations (9), (14), (16), (17) (20) and (32) we obtain our model: 

4.2 Finite-Amplitude Effects 

Clearly, one of the two fixed points of these two equations is E = Eo and & = 0. 
The parameter Eo is the value of E during the laminar phase, which is easily 
determined from simulations (see 54.4). This fixed point in equations (33) - (34) 
is linearly unstable. The other fixed point has values of E f  and Ef, is a solution 
of a fourth-order equation, and (even without knowing the solution in closed 
form) it can be shown that it is linearly stable and has E f  < Eo. It can also be 
shown that E f  decreases with increasing R,  while Ef increases. 

Equations (33) and (34) are not yet complete because they fail to incorporate 
the unknown physics of the finite-amplitude instability of the shear flow. Our 
main assumption about the finite-amplitude instability is that when E o r  E 
exceed their critical values E, and I,, the nonlinear energy transfer term x is 
'on', otherwise it is 'off' (i.e., x G 0). This is consistent with the numerical 
simulations which show that the term is only 'on' during part of the turbulent 
burst phase. This idea can be incorporated into equations (33) and (34) by 
replacing C3 with C3 multiplied by 3C 

where 3-1 = 1 if either E > Ec or if E > E,; otherwise 3-1 = 0. We write an equation 
for ~ ( t )  by noting that when the flow is close to V,, flow, the Floquet mode is 
unstable and e grows exponentially with e-folding time 1/2/3. When the flow 
is turbulent and far from V,, flow, the growth should stop, and the Floquet 
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mode should decay with its viscous time scale which is approximately RIG1. 
(We used C1 because the characteristic length scales of the Floquet mode and 

are similar.) If we assume that the flow is far from Vsv when E < yEo, where 
0 < y < 1, then 

where h ( E  - yEo) is the Heaviside function equal to 0 for negative arguments 
and 1 for positive arguments. Note that in our model E is never greater than 
Eo - see below. We have found that our model is fairly insensitive to the value 
of y, and y = 0.9 works well. Also note that we add a small, positive, random 
amplitude a0 << E, to E at the beginning of each burst cycle (i.e., everytime 
the Heaviside function h switches from 0 to 1). This has the effect of making 
the 'initial condition' of the trigger stochastic for each burst cycle; otherwise, all 
burst cycles would be identical. 

When 3C = 0, equations (35) and (36) have only one fixed point: E = Eo 
and E = 0. It is linearly stable (and, in fact, globally attracting). Note that if 
Ef > Ec, the turbulence is self-sustaining and the burst cycles stop. 

Although the use of 3C in equations (35) - (36) is a crude way of parame- 
terizing our ignorance of the physics of the finite-amplitude instability, we now 
show that the equations are nonetheless useful in explaining a large number of 
the properties of the burst cycles. 

4.3 Properties of the Model 

A single burst cycle computed with equations (35) - (37) with y = 0.999 and 
no noise in equation (37) is shown in figure 2 for parameter values similar to 
those discussed above. The cycle begins with x 'off' or 3C = 0 near the stable 
laminar fixed point with E = Eo and E = 0 labeled a in figures 1 and 2. This 
point corresponds to Vsv flow which has an unstable Floquet trigger mode whose 
energy E grows from its initial value as e2Pt. While the flow is near this fixed 
point (or any fixed point) EdiSs E (Ea + Eb),  which is illustrated in figure 1 as 
locations where the dashed and solid curves cross. 

Henceforth we shall define and label as a all points that correspond to a 
crossing of the two curves in figure 1 that occur with low values of EdiSs and 
label with c those crossings that occur with high values of EdiSs. 

When E > E,, x switches 'on', the fixed point at a becomes unstable and the 
solution in figure 2 moves from a to b ,  increasing E and decreasing E .  During 
this time Ediss and E increase rapidly while (Ea + Eb) (which depends only on 
the square root of E )  increases only slowly, so EdiSs > (Ea + Ebb) in figure 1. 
At some point along the path from a to b ,  the flow becomes sufficiently far 
from E = Eo that it no longer looks like a Vsv flow. Thus the base flow for 
the Floquet trigger no longer exists and E decays to zero. The x term remains 
'on' because E > E,. Ediss reaches its maximum value E$:: at b .  Henceforth 
points b are defined as the locations of the maxima of EdiSs. For large values of 
E, Ediss 2 C2E/R and is independent of E; thus b is very close to the point in 
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t 

FIGURE 1 - Energy dissipation EdiSs (shown with a solid curve) by viscosity and 
the energy input rate from the torques at  the two radial boundaries (Eb + E ~ )  
(broken curve) as functions of time. The values are computed for the parameter 
values discussed in the text using the direct numerical simulation not the model 
equations. For each cycle the maxima and minima of the solid curve are defined 
as b and d respectively. The locations where the two curves cross with low values 
of kdiss are defined as a and where they cross at large values of E~~~~ are defined 
as c. These locations are shown for two contiguous cycles. 

figure 2 where E reaches its maximum value. (The model predicts that & reaches 
its maximum value just after b.) From this point to c, both E and E decrease. 
The latter causes (Ea + Eb) (which from equation (32) is a function only of E) 
to continue to increase. During this time not only is EdiSs > ( E ~  + Ebb), but 
also E dissipates energy faster than it receives it from E, i.e., C2E/R > X .  The 
solution approaches the fixed point (Ef ,Ef) labeled c in figure 2, but in this 
calculation we have set &, to be slightly greater than Ef. Thus x turns 'off' just 
before the solution reaches c .  It is then attracted back to the other fixed point 
at a. Note that the fixed point c in figure 2 is where E has its minimum value 
and therefore where (Ea + Eb) has its maximum. This explains (if our model is 
correct) why the numerical simulations in figure 1 show that during each burst 
cycle the points labeled c correspond to both the locations where the broken and 
solid curves cross (indicative of a fixed point if Ec = Ef) and the (approximate) 
locations where ( E ~  + Ebb) have maxima. 

After x turns off, E rapidly decays along the path c -+ d with time scale 
C2/R.  The time scale for E to return to its value of Eo is longer. The reason 
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FIGURE 2 - A burst cycle computed with the model equations with the locations 
a ,  b ,  c and d labeled as in figure 1. The maximum value of E occurs on the part 
of the cycle b --+ c, close to b. The arrows in the figure indicate the direction of 
the cycle. The solid curve is computed with x 'on7 and the broken curve with x 
'off7. In this cycle the E, is almost equal to (but slightly larger than) Ef. 

that Ediss has a minimum value (labeled and defined as d) prior to reaching the 
fixed point at  a is due to the fact that 1 21 0 at both d and a, but E at d is less 
than Eo; thus E~~~~ (which is approximately equal to C I E  for small values of E) 
is lower at d than at a .  As the solution travels along the path from d to a, the 
flow reaches its maximum value of E and minimum value of (Ea + E ~ )  near the 
fixed point at Eo. Thus the crossing of the curves in figure 1 at a corresponds 
to a minimum of ( E ~  + Eb). As the flow gets close to a, it begins to again look 
like V,,, the trigger grows exponentially, and the cycle begins anew. 

Notice that if we had not used equation (20) to determine X, but instead 
used x = c ~ E ' I ~ E  where C j  is a constant, figure 2 (and our model) change 
qualitatively. Then, equation (34) would be replaced with 

which has the property that dE/dt = 0 whenever E = (C2/RCA)2. This would 
make the value of E at the fixed point c equal to the value of E that occurs 
when E has its maximum value, since in both cases dE/dt = 0. This is certainly 
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not observed in our direct numerical simulations of the Navier-Stokes equation 
and lends credence to  our use of equation (34). 

4.4 Choice of Parameters 

The reason that all of the burst cycles in figure 1 are not identical (and that 
the points labeled as a in figure 1 do not exactly correspond to  the crossing 
of the two curves and the minimum of the broken curve) is that the turbulence 
introduces stochasticity in the initial amplitude a 0  of the Floquet mode (see $3). 
For cycles with small a o ,  the solution in figure 2 moving from d to  a along the 
broken curve gets close to a before x turns 'on' and the turbulent phase begins. 
When a0 is large, x turns 'on' before the solution reaches a. When that happens 
the solution traverses a closed path near, but completely inside, the path shown 
in figure 2. This implies that in figure 1, when a0 is large, the intersection of the 
EdiSs and (Ea + Eb)  curves (at low E d i s s  and labeled a) occur a t  values larger 
than their nominal ones. (We define a cycle to be 'nominal' when a0 21 0 and 
the cycle in figure 2 where the cycle gets very close to the fixed points at  E = Eo 
and & = 0 and at  E = Ef , E = If .) The same logic shows that when a0 is large, 
the intersection of the solid and broken curves in figure 1 at  high E d i S s  labeled c 
occurs at  a smaller value than its nominal one with a0 21 0. Similarly for large 
a 0  the maximum values of Ediss in figure 1 and & in figure 2 are smaller than 
their nominal values, and the minimum values of ~~i~~ in figure 1 and E in figure 
2 are larger than their nominal values. 

There is also stochasticity in the values of La and Lb (during the turbulent 
phase of the cycle). That stochasticity could adjust the values of E and & at  b 
and c up or down, but not affect the values at  a or d. Thus Eo corresponds to the 
minimum value of all of the points labeled a in figure 1 (which corresponds to the 
cycle with the minimum value of ao) ,  and this is how we empirically set the value 
of Eo in our model. The values of C1 and C2 are best set by evaluating the viscous 
dissipation of E and E from the numerical simulations and multiplying them by 
R / E  and R/& respectively. We set the values of C3 (which by stochasticity 
can have slightly different values for each burst cycle and, in fact, vary slightly 
between the turbulent and laminar phases of the same cycle) by first determining 
the values of Ef and &f a t  c (assuming E, E I f ) .  Then C3 during the turbulent 
phase of the burst cycle is determined from equation (36) at  c with d&/dt r 0. 
This value of C3 agrees well with computing x from the numerical simulations 
via equation (12) and then solving for C3 from equation (20). The value of C4 
is determined (using the values of C1, C2 and C3) from equation (35) at c with 
a E / d t  0. The values of C4 can also be computed by calculating ( E ~  + Eb) 
directly from the numerical simulations using equations (7) and (8) and then 
using equation (32) to find C4. This value of C4 agrees within 10% of the value 
found by the former method. We note that during the burst cycle C4 (as found 
by the latter method) changes by less than 15% during a cycle. 
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4.5 Tests of the Model 

Several features predicted by the model agree remarkably well with the numerical 
simulations. Most of the model's qualitative features are insensitive to the values 
of the parameters and are not due to 'parameter fitting7. 

The following properties of our model are independent of order-unity changes 
in the parameter values (if they change by several orders of magnitude, the cycle 
in figure 2 will change qualitatively, i.e., E will not obtain a local maximum 
value on the path a + c). In the absence of stochasticity, (and if the model were 
accurate), the full numerical simulations of the Navier-Stokes equation would 
also have these properties. As far as we know the full set of the properties below 
is not shared by other mathematical models of bursts, though, of course, some 
of the other models have some of the properties, [5], [6], [7]. 

Our mathematical model retains two properties predicted by our physical 
model: the time in the laminar phase scales as (R - R:)-' and the time in 
the turbulent phase scales independently of (R - R',). The full simulations 
(and laboratory observations) always have these properties. The reason that 
our model has these properties is that all of the coefficients of the model in 
equations (35) -(36) are independent of (R - RL) except R which is nearly 
independent of it. Only equation (37) depends on (R - R',) because P is 
proportional to it. Thus all time scales of the cycle in figure 2 are independent 
of (R - RL) except when the flow is in its laminar phase. 
At points labeled a (defined to be the crossing of the (Ea + E ~ )  and E~~~~ 
curves that have low values of Ediss), the (Ea + fib) curve has local minima. 
The full simulations in figure 1 show that this is a very good approximation. 
At a ,  E is (only approximately if a0 is large) at its local maximum and 
E = 0. The full simulations agree well with this. 
As the flow starts a turbulent burst, EdisS increases faster than (Ea + E ~ ) ,  
and E decreases faster than E increases. This results in EdiSs reaching its 
maximum value ~2:: before (Ea + E ~ )  reaches its maximum. E reaches 
its maximum value EmaX just after EdiSs reaches its maximum (which is 
defined as the location b)  and well before E reaches its minimum. The full 
simulations always agree with this temporal ordering. 
At c (defined as the location where (Ea + Eb) and EdiSs cross with high 
values of fidiss), E has a local minimum, and (fia+ Eb) has a local maximum, 
but neither E nor Ediss are at there maximum values. This agrees well with 
full simulations. If equation (20) for x were not used and replaced with 
x = CAE'/~E, then E would have its maximum value at the fixed point c 
which is in contradiction to what is observed in the full simulations. 
The value of (E/&?) is the same at b and c .  The value is equal to C2 /C3; 
although C3 was determined from the numerical simulations data at c, no fit 
of parameters is used at b ,  so this is an independent test. This agrees very 
well with full simulations. 
After the turbulence collapses, EdiSs does not monotonically decrease from 
c -+ a but has a local minimum (labeled d). This is always true in the 
simulations. 
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At d, E - 0. This is always true in the simulations. 
The time from c -+ d is set by the time scale R/C2. This is always true in 
the simulations. 

Additional confirmation of the model is quantitative. For each cycle, once 
the parameters C3 and C4 are determined, not only do the model's predictions 
of Ediss (t) and ( ~ ~ ( t )  + Eb(t)) agree well with those of the numerical simulations 
over the full cycle, but so do E(t) and E(t). This is a non-trivial result that is 
not pre-determined by parameter fitting. 

The values of C3 and C4 do not have stochastic noise during the laminar 
phase (e.g., points a and d), therefore cycles differ during the laminar phase 
only due to the stochasticity in ao. For cycles with large values of a o ,  EdiSs (and 
(Ea + Eb)) and E at  a and d are larger than their nominal values, while E is 
smaller. This is seen in figure 1: Consider any set of two contiguous cycles. Think 
of the cycles beginning at  d rather than a .  In temporal order the points of the 
two cycles are: (d l ,  a l ,  b l ,  c l ,  d2 ,  a2, b2,  cz).  If EdiSs at  d l  is larger (smaller) 
than it is at  d2 ,  then from the model we infer that a0 is larger (smaller) for 
the first cycle than it is for the second. We would then predict that Ediss at a1 

is larger (smaller) than it is at a2. This is confirmed in figure 1 for all cycles. 
Similarly (if there were no stochasticity in C4 and C3), the EdiSs at  bl  would be 
smaller (larger) than at b2.  While this latter relation is not always true in figure 
1, it often is. For example in figure 1 we infer from the model that the flow at 
0 < t < 300 and 600 < t < 900 where the differences between the maxima at b 
and minima at d in the solid EdiSs curve are large is characterized by low a o ;  the 
flow at 300 < t < 600 where the differences between the maxima and minima 
are small is characterized by large ao. 

Our model makes several new predictions that can be tested by laboratory 
experiments. The most striking prediction is this: when R increases, so does I f .  
We would not expect E, to depend on R. Define Rturb to be the critical value 
at which Ef = I,. We would expect that for R > Rturb, the cycles stop and the 
flow remains in a permanently turbulent state. Laboratory observations confirm 
the existence of Rturb, but the observations are not quantitative. Intuitively, one 
might think that the permanently turbulent state forms because its turbulence 
does not decay. Therefore one might think that for R just greater than Rturb, the 
E of the permanently turbulent state is equal to EmaX (the value at b). Instead, 
our model predicts that E would have the much smaller value of I f .  This would 
be a useful laboratory test. 

Another test is provided by measuring TL and TB as functions of R as R + 
Rturb. There are three ways in which the flow can make the transition from burst 
cycles to a state of permanent turbulence: (i) TL -+ 0 and TB remains finite and 
nearly independent of (Rturb - R); (ii) TL -+ 0 and T' -+ 00; or (iii) TL remains 
finite and nearly independent of (Rturb - R) and TB -+ oo. Our model predicts 
(iii), which could be easily verified in the laboratory. In addition, our model 
predicts that TB scales as ln(Rturb - R) as R -+ Rturb. This scaling would be 
difficult to verify if there were much stochasticity in C3, C4 or ag. 
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