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FIGURE 1. The kinetic energy for the Z = 1 mode EM a function of radius calculated with 
= 1 (solid line) and Z,, = 12 (broken line). The higher kinetic energy in the single- 

mode calculation allows more kinetic energy to be viscously dissipated and compensates for the 
inability of the single-mode calculation to lose energy by cascading. Re = los. 
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FIGURE 2. Same aa Sgure 1 with the temperature variance of 
the Z = 1 mode plotted EM a function of radius. 

In figure 2 we have plotted the temperature variance of the Z = 1 mode of the multi- 
mode solution (broken line) and the single-mode solution (solid line). As in figure 1, 
the two curves have the same function form, but, in general, the single-mode thermal 
variance is greater than the multi-mode variance. The greater thermal variance allows 
the single mode to increase its rate of thermal dissipation. The rates at which the 
temperature variance is dissipated from the Z = 1 components of the single- and multi- 
mode solutions are 0-293 and 0.231 respectively. 

4, the solutions are steady-state and show 
truncation effects similar to those found for Rs = lo4. For Zcutoft = 4, the temperature 
spectrum is inverted with Q(Z+ 1, 0.5) > Q(Z, 0.5). The kinetic energy spectrum is not 
inverted. In  figure 3 we have plotted C = E(2 = 2, r = 0*6)/E(Z = 3, r = 0.3) as a 
function of Zcutoff. C is a measure of the upward curl of the kinetic energy spectrum at 

For all solutions computed with Zeutoff 
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FIQURE 3. C = E ( l =  2, r = 0.5)/E(l  = 3, r = 0.5) as a function of lcdoff. Truncation causes 
the high-wavenumber modes of the kinetic energy spectrum to become anomalously large. By 
extrapolation, it appears that, when lcutofi = 3, C < 1, meaning that the kinetic energy spectrum 
has become inverted. 
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FIGURE 4. The kinetic energy calculated with lmtou = 3 at r = 0-5 for the 1 = 1, 2 and 3 modes 
as a periodic function of time. At t = 0.0603 kinetic energy inverts so that 

E(Z = 1, r 0.5) < E ( I =  3, T = 0.5). 

-, 1 = 1 ; -- -, 1 = 2; -.-, 1 = 3. 

1 = 3. If there were no truncation effects, we would expect C always to be greater 
than 1. If C becomes less than 1,  it means that the kinetic energy spectrum is inverted, 
i.e. E(1 = 3, r = 0.5) > E(1 = 2, r = 0-5) .  Figure 3 shows that C is greater than 1 but 
decreases as lcutotf decreases. By extrapolating the points in figure 3, we may expect 
that C is less than 1 for lcutoff = 3. For lcuto,f = 3 the solution is no longer steady-state 
but is periodic in time. The kinetic energy calculated with l c u t o ~ ~  = 3 at r = 0.5 as a 
function of wavelength, 1, and as a function of time is plotted in figure 4 for one period 
of the fluid's oscillation. 
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We have arbitrarily labelled the left-hand axis of figure 4 as t = 0 but, in fact, it 
takes many iterations for the transients in the fluid to settle down and for the motions 
to become periodic. At t = 0, the kinetic energies of the I = 1, 2 and 3 wavelengths are 
similar in value to the stationary values obtained with lcutoff = 12. As time increases, 
the kinetic energy of 1 = 2 and 1 = 3 modes increases; they are unable to dissipate their 
kinetic energy as fast as it  cascades into (or is produced in) the modes. At t = 0.0467 
the kinetic energy of the 1 = 1 mode becomes less than that of the 1 = 2 mode, and at 
t = 0.0603 the kinetic energy of the 1 = 1 and 1 = 3 modes cross. At this point in time, the 
kinetic energy spectrum changes quickly and re-establishes the 1 = 1 mode the one 
with the largest amount of kinetic energy. By t = 0.152, the solution settles down from 
its rapid oscillations. The period of the energy spectrum is tp = 0.1528; however, the 
period of temperature and velocity is 24,. We have found that p(t + t p )  = - p(t)  and 
v(t+t,) = -v(t+t,). If we assume that the characteristic velocity of the fluid is 
[2E(Z = 1, r = O*5)lt=o]*, then we can estimate the eddy turnover time, t,, to be 
[2E(Z = 1, r = 0-5)1,=,]-* or 0.022. The period of the spectrum, t p ,  is 6.95t,. We have 
repeated the calculation with Zcutotf = 3 and with the viscosity of the 1 = 3 mode (but 
not the 1 = 1 or 2 modes) increased by 10 yo. With the enhanced viscosity the solution 
is steady-state. When we increased the thermal diffusivity of the 1 = 3 mode by 10 yo, 
the solution remained periodic in time. When lcutoff = 2, the solution is aperiodic in 
time. The time-dependent behaviour is somewhat reminiscent of the strange attractor 
solution of the Lorenz model in the following sense. The kinetic energies of the 1 = 1 and 
I = 2 modes vary nearly periodically in time with E(1 = 1) R los and E(1 = 2) z 10. 
The small amplitudes of the nearly periodic oscillation slowly increase until a time when 
the flow quickly changes character and the kinetic energy spectrum becomes inverted 
with E(1 = 1) w lo4 and E(l = 2) x loa. The energies again vary almost periodically, 
with their oscillations growing in amplitude until the flow suddenly changes back to the 
original flow with E(l = 1) w los and E(1 = 2) w 10. We have followed several of these 
changes from the E(l = 1) x lo4 state to the E(l = 1) R 10 state and the flow never 
exactly repeats itself. We have not attempted to determine the fixed points of the 
flow nor have we calculated a Landau expansion to determine whether there might be 
an inverted bifurcation as there is with the Lorenz model. 

4. Discussion 
It is tempting to model the equations of motion by using a Galerkin truncation and 

retaining only the gravest modes to describe convection. It is likely that a truncation is 
justified if the dissipative modes as well as those modes responsible for energy pro- 
duction and transport are included. An easy way, of course, to show that all of the 
physically important wavelengths are resolved is to repeat the calculation with an 
increased number of modes and have the solutions remain unchanged. We have 
predicted and numerically confirmed (for a Rayleigh number of lo4 and a Prandtl 
number of 10) that a truncation with an insufficient number of horizontal modes will 
accurately predict the rate of energy production but will: (1) alter the kinetic and 
thermal spectra by increasing the amplitudes of the high-wavenumber modes; (2) make 
the mean temperature gradient more isothermal and thereby lower the central 
temperature; and (3) decrease the rate at which the temperature variance is produced 
in the fluid. We have further shown that, if the truncation is too severe, the thermal 
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variance spectrum will become inverted, with the high-wavenumber dissipation modes 
having more energy than the low-wavenumber production modes. For Rs = lo4, 
cr = 10 the thermal variance inversion does not destroy the time-independent property 
of the fluid. We have also predicted and numerically confirmed that single-mode 
calculation produces artificially thin boundary layers (where the thickness is deter- 
mined by the actual viscosity and not the eddy viscosity). These thin boundary layers 
are needed to dissipate the kinetic energy that is generated from the buoyancy. If the 
dissipative modes had been included in the calculation, the kinetic energy would have 
been lost primarily through a turbulent cascade and not in a viscous boundary 
layer. 

Modal representation can be used to predict transitions to time dependence in con- 
vective flow if sufficient care is taken so that enough modes are included to resolve all 
of the important length scales. Clever & Busse (1974) computed the bifurcation from 
steady-state rolls to time-dependent wavy rolls and have shown that their truncation 
is valid because the amplitudes of the velocity and temperature fluctuations are small. 
On the contrary, the transitions to aperiodicity reported by Curry (1978) and 
McLaughlin & Martin (1975) occur a t  large amplitudes and the Kolmogorov lengths 
are smaller than the limits of resolutions of their truncations. Their sequences of 
transitions would be more credible if more modes had been included. Even with 168 
modes in spherical convection we find that when the flow changes to aperiodic the 
dissipative lengths are no longer resolvable and we cannot be certain that the transition 
is correct. Gollub & Benson (1980) have measured that the bifurcation to aperiodicity 
in plane-parallel convection with a Prandtl number of 2.5 occurs at  a velocity of 
N 0.04 cm s-1. Since the thermal diffusivity is N 1.5 x 10-3 and the horizontal dimen- 
sions of their cells are - 3 x 1.5 cm, the thermal dissipation length is N 0.1 cm. This 
means that we would require 25 x 12 horizontal modes to resolve the dissipative length 
scales. An optimist might argue that although the model calculations do not include 
the dissipative length scales they may still be qualitatively correct despite the fact that 
the bifurcations are not at the exactly predicted Rayleigh number. The pessimist 
might argue that, if a theorist were provided with an experimentally determined 
sequence of bifurcations, he could probably find a set of nonlinear autonomous 
equations that qualitatively reproduced the sequence and then find a set of modes that 
correspond to his set of nonlinear equations. Our final caution is illustrated by con- 
sidering the single-mode equations, which are a function of time and one spatial 
dimension. Although the single-mode equations do not correspond to any physical 
system they are nonlinear and share many of the properties of actual nonlinear 
equations that govern convection. From our numerical experiments and those of 
Toomre et al. (1977) it appears that the single-mode equations always admit at  least 
one stable, steady-state solution for all Rayleigh numbers. If we examine the transi- 
tion to time dependence of these equations using a Galerkin expansion in the vertical 
co-ordinate we would arrive a t  some erroneous conclusions. With onevertical mode we 
obtain the Lorenz model that predicts a bifurcation to a strange attractor, which is 
incorrect. An important feature of the single-mode solution is the development of 
thin boundary layers which provide a place for the kinetic energy to dissipate and 
whose thickness decreases with Rayleigh number. As the Lorenz model is supplemented 
with an increasing number of Fourier modes there will always be some Rayleigh 
number for which the Galerkin truncation can no longer resolve the boundary layers. 
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We conjecture that any Galerkin truncation of the single-mode equation always 
produces an erroneous bifurcation to time dependence at  the Rayleigh number at  
which the boundary layers become unresolvable. 
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