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ABSTRACT

A numerical method for computing the total energy of self-gravitating, incompressible, rotat-
ing, axisymmetric fluid bodies is presented. Then, using a minimization technique, the stablest
axisymmetric shapes are found for fluids having the same angular momentum distribution as the
Maclaurin spheroids. For small angular momenta the Maclaurin spheroid is a minimum-energy
configuration; above a certain value a new, toroidal family of differentially rotating figures be-
comes the stable minimum-energy shape. Just below this critical value the spheroids are stable to
small perturbations, but the corresponding toroids have lower energy. The family of ‘“Mestel
disks” (mass oc 1/r, flat rotation curve) with this same angular momentum distribution are
equilibria, but they are always unstable. Similar conclusions hold for other angular momentum
distributions also investigated. These results may clarify the ‘‘ring formation” stage of some
realistic collapse models, and may also support the hypothesis of massive galactic halos.

Subject headings: galaxies: formation — hydrodynamics — instabilities — rotation

I. INTRODUCTION

We have investigated some equilibrium and nonequilibrium configurations of an axisymmetric mass of gravitat-
ing, incompressible fluid, which is rapidly and differentially rotating. Some curious results have emerged, as have
some efficient numerical techniques which may be extendible to more realistic problems in the structure of rotating
stars and galaxies.

Since our model system is so highly idealized, we will state the case for its astrophysical relevance at this point,
rather than later. The underlying problem is the collapse of a rapidly rotating gas mass to form a star or stellar
association; or of a rapidly rotating mass of gas and/or stars to form a galaxy. In the physics of both collapse
problems, one would like to distinguish the dynamical features which originate with just Newton’s laws of motion
and gravitation, from features which depend on much messier and more complicated ‘‘transport® phenomena—
radiation losses, angular momentum transport by turbulence or hydromagnetic instability, convection, violent
stellar relaxation, and so on. Of course, these transport effects are the crux of any realistic calculations (such as those
of Larson 1972 for galaxies, or Black and Bodenheimer 1976 for stars). But transport effects are difficult to model
accurately, so it is not always possible to know which aspects of a “‘realistic’’ calculation are in fact realistic, and
which are artifacts of the model’s assumptions. A good intuitive appreciation of the purely dynamical properties
of rotating, gravitating systems should help mitigate this problem. Even the purely dynamical phenomena are
sufficiently varied, however, that this appreciation must be developed through a variety of model investigations of
idealized systems.

The approach of this paper is to explore, numerically, the total energy (gravitational plus rotational) of an
axisymmetric fluid mass, as a function of its physical shape, and to apply a highly efficient minimization algorithm
to find local minima in this energy (which correspond to equilibrium configurations). We are not restricted to small
changes in shape; we will smash equilibrium spheroids into pancakes or tori, and see whether they return to their
old minima, or to new ones. The rule of the game is that each mass element (a ring, because of axisymmetry) has its
angular momentum specified initially and conserved thereafter; there is no viscous transport of angular momentum.
(See Gott and Thuan 1976 for discussion of the situations in galaxy formation where this assumption might be
realistic.)

* Supported in part by the National Science Foundation, grants GP-30799X, PHY76-14852, and PHY76-07297.
1 Alfred P. Sloan Foundation Research Fellow.
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The sequence of physical shapes taken by a galaxy or star in its collapse will not, in general, be exactly a ““valley”
of the energy surface that we are exploring; but it may well be “close” to a valley, especially if dissipation time
scales are comparable to or larger than dynamical time scales. A dynamic evolution must in any case terminate at
a local minimum of the energy surface. So, given an initial configuration, we may want to think of its steepest
downhill valley as a ““preferred”” channel for evolution. Often this channel will be competing with other channels
that we are not modeling, such as an efficient mechanism for angular momentum transport. In other cases there
may be unmodeled channels which can act cooperatively with modeled ones. For example, many of our con-
figurations are likely to be unstable not only against nonaxisymmetric instabilities (not modeled) but also against
substantial radial readjustment (which we see in the energy surface). One has a feeling that these changes are
roughly ‘““orthogonal,” at least initially, so both channels probably act cooperatively, at least for a while, with the
fluid both fragmenting and radially readjusting itself.

Here are some more specific questions that we will address in this study: (1) What is the shape of the stable
continuation of the Maclaurin sequence (uniformly rotating, flattened spheroids) at angular momenta above the
onset of axisymmetric instabilities? (2) Are the configurations of Mestel (1963), which have galaxy-like rotation
curves, radially stable ? If not, what stable configuration do they go to? (3) Given an angular momentum distribu-
tion, can there be more than one stable equilibrium configuration ? If there is more than one, then the shape of a
galaxy or star might depend on how it ‘““happened” to collapse; and under a sufficiently large perturbation it might
dynamically switch to a new shape. (In fact, we do find this effect in our axisymmetric inviscid models.)

Section II of this paper concerns itself with a problem in ““classical” potential theory: computing the gravita-
tional energy of a fluid mass as a finite superposition of cylindrical shells and estimating the truncation error in-
herent in this method. The utility of this method is that it reduces the subsequent calculation of gravitational
potentials to one-dimensional (from two). For flat systems, we think that this technique is superior to that of using
concentric spheroidal shells, as in Cameron and Pine (1973).

In § ITI we prove that our minimization procedure is equivalent to standard structure equations, and we review
the Fletcher-Powell (1963) minimization algorithm, which we have found to be very efficient. Masses with the
angular-momentum distribution of a Maclaurin spheroid (or rigidly rotating sphere) are studied in § IV. Some
other angular-momentum distributions are investigated in § V. Finally, § VI summarizes our findings.

II. GRAVITATIONAL POTENTIAL ENERGY OF AN AXISYMMETRIC, INCOMPRESSIBLE FLUID
a) Discretized Calculation

Suppose that a fluid mass of density p has an axis of rotational symmetry perpendicular to the axis. In cylindrical
coordinates (R, ¢, z), suppose that the fluid surface is at z = +A(R), where A(R) is a single-valued function.
(Reflection symmetry and single-valuedness are not absolutely essential for what follows, but they make the
calculation simpler.)

Next, discretize the calculation by dividing the body into N radial zones, where the boundaries of the zones are
the cylinders R = R;,i = 0, 1,..., N, where R, = 0, and Ry is the farthest radial extent of the fluid. The gravita-
tional potential energy of the fluid is now a sum of interaction energies between different zones, W,/ (1 < i <
j < N) and self-energies of the zones, W;*¥ (1 < i < N). We will approximate the W2t by calculating exactly the
interaction energy between two infinitesimally thin cylindrical shells with radii a; and a;, masses M; and M;, and
semiheights /; and Ay, given by

a=3R-1 +R), (2.1)
ho=(R? - R [ 2h(R)RAR = M
' ' . 2mp(R? — Ry_4?)

Ry-3

(and likewise for j). We approximate the self-energy, WY, by calculating one-half the interaction energy of two
shells like the above, each of mass M; and semiheight A;, and located at fractional distances 0.3844 and 0.6116 into
the ith zone. These approximations may sound arbitrary; but we show in § IIb that they result in a value for the
potential energy which is exact to order 1/N, and has fractional errors only at order 1/N?2; in other words, 30 zones
will give accuracy to the 0.1%, level.

Now to calculate the interaction energy between infinitesimally thin shells, we write

2.2)

‘ 2n h h
pV”int = _MiMjf d(ﬁJ’ ' dz ¢l dZ’[(Z _ Zl)z + 412 + ajz _ 2a,~a, cos (ﬁ]_l/z
87Thihj 0 —n —hy
— M, [® h> 1 .
= }I:il};j /J:) koO(kaj)JO(kai)[? - }'2‘ exp (—kh>) sinh (kh<)] . (2.3)

Here we have chosen units with the gravitational constant G equal to unity and used the standard techniques of,
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e.g., Morse and Feshbach (1953, § 10.3); /. (<) is the greater (lesser) of A; and ;. If we define a function G(«, B) by

° 1
Gler) = [ a[§ — g exp (B0 1k, @4
0
then equation (2.3) becomes
—MMa a hy+ h a; |h — hy
my _ —MiMsay | (e bt hy) (a1 = )
Wi = 2hihy [G(af a ) G(af a; @3

We discuss the relation of G(e, B) to known functions, and give efficient numerical methods for calculating it, in
§ Ilc.

One might ask, Why introduce a function G that has to be tabulated numerically? Why not directly define a
tabulated function that is the interaction energy of the ith and jth shells (when multiplied by M;M;, say)? The
answer is that this function would be a function of three variables instead of two: from the four lengths a;, a;, &;,
and 4;, one can form three independent dimensionless ratios. Thus, it is in fact somewhat surprising that we can
calculate W/t from a function G of two dimensionless variables only. The reason for this is that there is an
underlying, hidden symmetry in the problem: using superposition arguments, the two A’s can be subsumed into a
single vertical displacement between two semi-infinite cylinders.* The geometrical details will not concern us here.

For the self-energy of a single zone we have, in the approximation described above,

M2 0.3884R, + 0.6116R,. 2%
self _ __ 1 i i-1 i s
Wikt = —gpa (O6116R: + 0'3884R"1)G(0.6116R1 1 0.3884R,_,” 0.6116R, + 0.3884Ri-1)

4n?2 (2.6)
where we have used G(«, 0) = O (see § IIc below). The total gravitational potential energy W now follows from
equations (2.5) (2.6), and

W = Z Wit 4 Z Wselt 2.7

1<si<jsN 1<i<N

In subsequent sections we will want to know not only W, but also the generalized gravitational forces associated
with changes in the radii R;, namely,

14
w=—_¢
F¥=-2x (2.8)

These are readily calculated from equations (2.1), (2.2), (2.8), and (2.4)-(2.7) in terms of two new functions:

g p) = L&D,

=~
oG,
9(e, f) = 202D @9
These functions will also be considered below in more detail.

b) Error Estimates

The reader who is satisfied that equation (2.7) has truncation errors only of order 1/N? can omit this section.
Consider an approximation intermediate between our W, /¢ and the exact W, 2%®): let W, ®® be the interaction
energy of two cylindrical shells of finite thickness, extending from R;_; to R; and from R;_, to R,. The two shells
have the same masses (M; and M) as before, and the same semiheights (4; and 4;). The exact ith zone may be
thought of as consisting of the ith thick cylinder, plus a superposed remainder mass distribution (of zero total
mass) made up of positive and negative regions near the surface. The total amount of positive mass, m;, in re-
mainder regions decreases with the number of zones as

m 1
M, N
for large enough N. Now we have
W, ot® = W, inth 4 W, RZ L W, RZ 4 RR (2.10)

1 We thank Dr. George Rybicki for showing us how to do this.
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where W% is the interaction energy of the jth zone and ith remainder, and W;®® is the remainder-remainder
interaction. W;*% and W, B® are estimated by treating the ith remainder as a dipole with mass + m; and separation

R, — R‘_I:
o (_Mym MM, \ (Ri— Ri_i\ (my 1
Rz, | T — ~ M, i i-1) (M) e L
v R (la‘ - a"l)(Ri Ris) (lat - ail)( la; — aj] )(M,) W O(Nz) @2.11)
and
W, BR ~ _6_2_ mym; (R, — Ri_)(R; — R;_,) ~ W0 _1_ . 2.12)
ij @Rz ‘ai _ ajl i i-1 7 j-1 7 N4

So the step from W, nt® to W, 4D js accurate enough. What about the step from W, 2%0 to W, * (the thin shell
case)? We have exactly

27 h hy R R
W, > — —-21rp2f dqu ' dzj dz'J ' drj L@z — ) + 1 4 2 4 2 cos 7. (2.13)
0 -hy —hy Ri-31 Rj-1

Changing variables by r = a; + &, r' = a; + ¢, and expanding the denominator of equation (2.13), one readily
obtains

2.14)

W, im0 = W fne (terms of order 2LMs 1 ) .

la; — a N?
The terms that go as (M;M,/|a; — a,|)(1/N) vanish because they contain only odd powers of £ and ¢ in the integral.

So we again have the accuracy desired.

Now for the self-energy, equations (2.11)-(2.12) with (R; — R;_;)/|a; — a;] taken as being of order unity, give
the result

el _ pyset® — Jyseu®mQ (I_IV ) , (2.15)

where (I) and (E) mean “‘intermediate” and ‘‘exact” as above. Next observe that we can always find radii b; and
¢; for two thin shells both of mass M, and semiheight 4;, such that R;_; < b; < ¢, < R;, and such that one-half
the interaction energy between them, 1 W, !, equals W;*¥¥, (This is obvious, since if b; = R;_;, ¢; = R;, then
LW, ot < Wt while if b; = ¢; = R;_,, then the inequality is reversed.)

For the case in which #; > (R; — R;_) the two thin shells appear to each other as parallel planes and

a%Wbcint N JZ"Wbcmt )
ob  ~ b
and a similar equation holds for c. If we compute W, 2t for any b and c that are within the ith zone but not the
exact values that make 1,2t equal to WP, we obtain
6—% Wbcmt
ob

which is accurate enough. In the other case, in which 4; « (R; — R;_;) we must be more careful. Here the ith zone
looks like a flat disk for which

O Wom

%Wbcmt — Msen(l) ~ Ab 5C

+ Ac

1
X W ( N) . (2.16)

wow — __Z8ME | p p(Ria (R® — Ri_,® — RE Ry (R2 + Ri_.%) + R® + R._°|» (217)
' 3a(RE—R-D| T\ R ' - “\ R ! i-1 i i-1 .

where E and K are complete elliptic integrals of the first and second kind (notation as in Dwight 1961). Expanding
(2.17) in powers of (R; — R;_;)/R; gives

W gy — T%f‘{‘%l"g (RfT‘RH) + %logz + % + O[RiTiRM log (1_‘%‘;_1)]} . (218)

The two thin shells appear as two interacting rings, and in this limit

Wl = = 2 K(b) : (2.19)

w c
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Choosing b and ¢ to lie equidistant from the center of the ith zone, we define 5 between 0 and 1 by
b =3[R + Ri-y) — b(R, — R,_))], (2.20)

¢ = 3[(Ri + Ri_1) + (R, — Ry_))]. (2.21)
Expanding equation (2.19),

—M? l R — R, _ 7 Ry — R Ri— R, .
SRl (—R, ) + (2log2 — }log2B) + O [ X log( R )]} (2.22)

Setting equation (2.18) equal to equation (2.22) gives

% Wbcmt =

WD — L, b 4 0(%) W g (2.23)

for 5 = exp (—3/2) = 0.2231. From these two limiting cases we can see that with this value of b, equation (2.23)
is now valid in all cases. The prescription for a zone’s self-energy is thus: compute one-half the interaction energy
of two cylindrical shells of mass M, located at fractional distances 0.3884 and 0.6116 into the zone. Since the total
self-energies of the zones are of order 1/N of the total interaction energies, our computation of W has errors only
of order 1/N2.

¢) Computation of the Functions G(«, B), g(c, B), and 9(c, B)
If we define a function

(e, B) = J dico(ka)Jo(k) exp (—BK) , 2.24)
0
then definitions (2.4) and (2.9) yield immediately

og(e, B) _
=55 = 1«h),

B

*’—G(-a—",;’ﬁ) = 2@ ),

?%(c, B) 0

g =@ (2.25)

It can be shown, using equation (551.10) from Grobner and Hofreiter (1949) and equation (8.13.3) from Abramo-
witz and Stegun (1964), that I(«, ) is related to the complete elliptic integral of the first kind K(«), by

I(@,B) = 2n~[(« + 1)* + B]" V2 K{20M?[(a + 1)* + B2]7 12} . (2.26)

Since there are fast, concise approximations for K(e:) and its derivative available (Hastings 1955 or Abramowitz
and Stegun 1964, eq. [17.3.34]), we may view I and 0I/d« as known functions. Then the equations (2.25) may be
viewed for fixed values of «, as a coupled set of ordinary differential equations to be integrated numerically from
B = 0to B = oo and tabulated along the way. The initial conditions

09(,0)

£ 0) = G(e, 0) = ¥(e, 0) = —3= = 0 (2.27a)

can be verified from the definitions of g, ¥, and G.
Our particular tabulation of the functions was for arguments 8 = 0.05 (0.05) 1.0 and g~* = 0.05 (0.05) 1.0, and
for « = 0.05 (0.05) 1.0. From these we constructed new tables for g, G, and ¥, where

8@p) = Plg@p) -]  (B=1)
= B-1g(e, B) B <D,
G(e, ) = G(e, ) — Bl (28) — 1] (B> 1)
= B-2G(e, B) B<1,
&, ) = «'9(e, p) B =1
= o« 18"19(a, f) B<1l. (2.27b)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977ApJ...214..584M

=
5y

T o712 758

2
o

1
~

1
]}
L

No. 2, 1977 STABLEST SHAPES FOR AXISYMMETRIC BODY 589

The function g is g with its leading asymptotic terms removed; similarly for G and ¢. The barred functions vary
very slowly and are always of order unity. Interpolation on them is quite accurate.

Near the boundaries of the tables « = 0, B = 0, and B — oo, the functions cannot be computed accurately
enough by the methods already described, so we use the following asymptotic formulae:

8, B 0) = 2 K@),

Ge, B—0) % B;ZK(a) ,

Y (e, f—>0) x £ a‘i K(e), (2.28)

ge—0,f)~ Mg+ (1+pH],

Gle—>0,8) ~ 1 +BIn[B+ (1 +pH)Y] - (1 + )2,

Y(a—0,B) ~ e[l — (1 + pH)~12], (2.29)
gle, B —o0) % In (26) + («* + 1)/(4%),

G(o, B—o0) x~ BlIn (26) — 1] + 7%(1 - a2)[K(oc) + Zaa—iK(a)] >

(e, B—>o0) % 2 (1 — o) 2 K(a) (2.30)

Neither g(1, 0) nor G(1, 0) is well defined, but both g(1, 0) and G(1, 0) are, so this presents no problems. %(e, B) is
fc‘liscontinuous ate = 1; wealways have « < 1, so we compute the initial value (e« = 1-, 8 — 0) by the asymptotic
ormula

Go=1-,8—0) = —3G(1, B) + ﬁ—i - 1—912—77,34111,9 + ﬁ; (1‘6‘—42 - 5;—(1)2) + 0@ mp). (231

Thus the integration of equations (2.25) for « = 1~ will typically start at 8 = 0.05 (rather than at 8 = 0 as for
other values of «).

III. STRUCTURE EQUATIONS AND MINIMIZATION METHOD
The plan is to compute a total energy (sum of gravitational and rotational energies),
E=W+T, 3.1

then to explore its functional behavior and to find equilibrium configurations by extremizing E. The discrete
procedure for calculating W was given in equation (2.7) and preceding. The discrete approximation to T is

S M,

=S _S2M
SR+ R

(3.2)

Here M, is the mass of the ith zone, and j; is its angular momentum per unit mass; both of these quantities are
conserved and specified a priori. By a calculation similar to those of § 115, one can show that the fractional error
in equation (3.2) due to the discretizing is of order 1/N?%, where N is the number of zones.

Now it is not immediately obvious that extremizing equation (3.1) with respect to only the R;’s (locations of the
zones), holding the j;’s and M;’s fixed, will give equilibrium configurations and no others. Certainly true equilibria
should be extrema, but one might suspect that there could be “false’” extrema, ones which have stationary E for
changes in the R;’s, but which might not be extrema of the more general perturbations which do not restrict the
rotation to be uniform on vertical cylinders. This is a familiar difficulty in variational problems: we know that an
equilibrium incompressible configuration must rotate uniformly on cylinders (the famous ‘‘Poincaré-Wavre”
theorem, cf. Tassoul 1977, § 4.3); but it is not a priori safe to impose this constraint before taking the variation:
a path which violates the constraint might lead downhill from a ““false” extremum to a ““true’” one (which would,
of course, rotate on cylinders).
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Luckily, we can show directly that the constraint can be imposed before variation in this particular problem.
The equation of hydrostatic equilibrium for a rotating star is

1

;VP =—-VV + D), 3.3)
where V is the gravitational potential and @ is the centrifugal potential defined by
R j2
o= f dR %5 (3.4)
(cf. Ostriker and Mark 1968, eq. [1], or Tassoul 1977). For an incompressible fluid, equation (3.3) integrates to
}—; + ¥V 4+ ® = constant . (3.5)

This equation has a solution whenever ¥ + @ is constant on the surface (P = 0) of the body, since then the
equation prescribes a self-consistent interior pressure (the incompressible fluid being indifferent to its state of
pressure). So we want to see whether the variation of equation (3.1) yields

(V + ®)gurace = constant . (3.6)

Let €(x) be a Lagrangian displacement of fluid elements which is restricted to conserve specific angular momentum
and preserve the properties 9j(R, z)/0z = 0 (rotation along cylinders) and p = constant or zero. Then from

[l
T= f 5 b dm 3.7)
we have
:2
8T = [ L5 8Rdm = — f VO-Epd®x (3.8)
where @ is defined in equation (3.4); integrating by parts gives
ST = — J ®3pdox . (3.9)
The equation of continuity,
8p = —V-(pE), (3.10)

has here been used. Notice that 8p is nonzero only at the surface of the body, where it has the values +p depending
only on how the shape has changed. As for W, we have the standard result

SW = — f V8pdx G.11)
(cf. Roberts 1963, eq. [29]). So, from equations (3.11) and (3.9) extremization gives
0=8E = f —(V + D)spd’x . (.12)
Not only does 3p lie on the surface, but it has arbitrary changes of sign there, subject only to
f Spd®x = 0. (3.13)
This is because even the restricted displacements § are enough to make arbitrary volume-conserving changes in
shape. Therefore, equation (3.12) implies equation (3.6), and we are done with the proof.
A configuration, which may or may not be in equilibrium, is now specified by three sets of numbers. The set
{M} defines a zoning; the set { i} specifies the angular momentum distribution of the body; and the set {R;} defines
the shape of the body. The numerical extremization problem, starting with some initial E{R;}, is to adjust the N R;’s

until E{R} is a local minimum. Although some numerical methods for finding minima require only the ability to
compute E{R;}, methods which can make use of the generalized forces (gradients),

F{R} = —0E{R}|0R;, (3.14)
are much more powerful.
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A variety of function minimization algorithms are reviewed by Acton (1970). One basic technique is to proceed
““downhill” in steps, choosing as a direction in N-space the local gradient F. This is essentially one form of the
““quasi-dynamic method”” (QDM) used by Rakavy, Shaviv, and Zinamon (1967) and elaborated on by Kovetz,
Shaviv, and Zisman (1976, and references therein). The QDM method has been implemented successfully for
models of realistic stars with two-dimensional zoning. Nevertheless, we do not recommend downhill minimization
methods when alternatives are feasible. Downhill methods have a debilitating disease: they tend to proceed down
narrow valleys by taking many sideways ““tacks.” For a quadratic form in N-space (the simplest function with a
minimum), downhill minimization does not converge after order N directions; rather, it requires more by a factor
in which ratios of the principal axes enter. This factor is typically very large in realistic physical systems, because
there typically exist some “‘small” trial displacements with very large restoring forces (such as smashing a single
zone to oblivion).

Fletcher and Powell (1963) have given a very elegant minimization algorithm which avoids these problems.
(N.B. The summary of this method in Acton 1970 contains a typographical error.) After one step in a downhill
direction, successive gradient directions are modified by a linear transformation which is built up iteratively. The
power of the method is that it is exact for quadratic forms after N directions (because on the Nth step the linear
transformation has become the inverse 2nd partial derivative matrix!). The cost of the method is (i) storage of
order N2 for the linear transformation matrix, and (ii) of order N2 operations per direction to multiply and update
this matrix. For our one-dimensional zoning, N ~ 30, these are insignificant costs compared to the advantages
realized. Even though E{R;} is not a quadratic form, we usually converge after less than 2N directions. Whether
the Fletcher-Powell or similar algorithms should be applied to alter the QDM method is an open (and interesting)
question. There, with two-dimensional zoning, we may have N ~ (30)?, so that the storage requirement N2 is
becoming large. One would want to compare the Fletcher-Powell algorithm both to the explicit QDM downbhill
method, and to the implicit scheme of Kovetz, Shaviv, and Zisman (1976) which requires the inversion of a tri-
diagonal block matrix.

Our criterion for convergence is

FiR,

5 |<¢ foralli=1,...,N. (3.15)

Typically we take € = 1076,

IV. THE MACLAURIN ANGULAR MOMENTUM DISTRIBUTION
@) Maclaurin Spheroids

The Maclaurin spheroids are uniformly rotating, equilibrium bodies parametrized by their eccentricity e. For a
given total mass M and density p, their total angular momentum L increases monotonically with e. We will want
to parametrize the sequence by L (not e) or by its nondimensional equivalent

L* = (%) e LG~ 1/2M—5l3P1/6 (4.1)
(Gis the gravitational constant), since e is not so meaningful for shapes other than spheroidal. The relation between
e and L, is (Chandrasekhar 1969, hereafter cited as EFE)
[ — p2)1/2
L2 =% — e?)~28 - eae ) (3 —2¢®)sin"te — %(1 — ez)] . 4.2
The angular momentum distribution of a uniformly rotating spheroid obviously has the same functional form as
that of a uniformly rotating sphere. In detail this turns out to be

1ym) = Le|1 - 5 (1 - j’\”—l) +3 (1 - ]%)5'3] : (4.3)

Here m (0 < m < M) is the total mass interior to a cylinder of some radius, and /,(m) is the total nondimensional
angular momentum within this same cylinder.

We have applied the minimization method of § III to this angular momentum distribution. Typically we use 20
zones and choose the M;’s so that the R;’s are equally spaced if the fluid is a spheroid, and then use these R,’s as
the initial guesses. The j;’s are computed from equation (4.3). For e < 0.99892, corresponding to L, < 0.965175,
the Maclaurin sequence is known to be dynamically stable to small axisymmetric perturbations (EFE, § 33).
Therefore, we expect only very small adjustments in the R;’s before a minimum is reached. This is in fact found.
Our computed total energy for, say, e = 0.7, is within 0.07%, of the analytically calculable Maclaurin spheroid
energy (see EFE, § 32), and our calculated rotation curve is uniformly rotating to an accuracy of 0.4%, (with errors
about equally positive and negative). These results are not just due to the “‘judicious” initial guesses; the dimen-
sionless forces (eq. [3.15]) were reduced by three orders of magnitude by the minimization routine, and we also
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Fic. 1.—Shape of 20 zone model found by energy minimization. The Maclaurin spheroid with the same angular momentum
(eccentricity e = 0.7) is also shown. Energies of the two shapes agree within 0.07%,. Lengths are measured in units of R,, the
radius of the sphere of equal volume.

converge to precisely the same values from initial guesses that are greatly different from the Maclaurin spheroid
R;’s. We have also checked that the error in energy decreases with number of zones as 1/N?2, confirming the esti-
mates in § ITI56. Figure 1 shows the shape of our model superposed on an actual ellipse of eccentricity 0.7.

b) New * Maclaurin Toroids™

If L, > 0965175 = L*, the Maclaurin spheroids are dynamically unstable to axisymmetric perturbations.
Therefore, the extremum of our variational method is a saddle, and the minimizing algorithm will not converge
to it. Instead it converges to a new shape, the one which the spheroid’s instability is “trying” to take it to. Before
doing the experiment, we expected that this new shape would be a centrally condensed disk, like that of Mestel
(1963; see § IVd below). But instead, the new shape turns out to be that of a differentially rotating toroid. At
L, = L*, the total energy of the toroid is ~3%, less than the corresponding spheroid. Figure 2a shows the cross
section of this toroid superposed on that of the marginally stable spheroid, and Figure 2b shows its angular momen-
tum as a function of radius. The toroid’s polar minor radius is about half its equatorial minor radius. Its inner
edge is not rotating at all, but rather is held outward by the gravitational attraction of the toroid. (The matter
here was formerly on the axis of the spheroid and has no angular momentum.) The outer edge is rotating slightly
faster than the angular velocity of the corresponding spheroid.

Now varying L, we find that the toroid at L, = L™ is just one member of a whole sequence of ‘‘Maclaurin
toroids.”” As we increase L., the toroids remain stable against axisymmetric disturbances (insofar as we can de-
termine). They do not break up into two or more rings, or into a disk. The radius of the rings is always less than,

I I
0.3 Maclaurin foroid\v’__\\\ _
/ N
(Z/R,)0.0 - ( ) —
\
rd
03 Maclaurin spher/c:id ST _
e=0.9975 |
1
0.0 1.0 2.0
I T
1.0 — <.
Maclaurin spheroid e
e
(Q/%,) .
0.5 - // -
Maclaurin toroid —, 7
/
00 I i L
0.0 1.0 2.0

(R/R,)

F1G. 2.—(a) (top) Cross section of marginally stable Maclaurin spheroid, eccentricity e = 0.9975 (solid line) and stable Maclaurin
toroid (dashed line). The energy of the toroid is X 3%, lower than that of the spheroid. Lengths are measured in units of R, as in
Fig. 1. (b) (bottom) Angular velocity, Q, of the differentially rotating Maclaurin toroid of Fig. 2a (dashed line) as a function of
distance from the axis of rotation. Angular velocity is measured in units of Q,, the angular velocity of the rigidly rotating spheroid
(solid line). The toroid’s inner edge is not rotating and is supported only by gravitational attraction to the mass of the toroid.
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F1G. 3.—(a) (top) Cross sections of some Maclaurin toroids. The dimensionless angular momentum, Ly = (47[3)SLG~/2 x
M~513p118 yaries, while M and p are kept constant. The distribution of angular momentum per unit mass is the same as that of a
rigidly rotating spheroid. Lengths are in the same units as Fig. 1. (b) (bottom) Rotation curves of the toroids shown in Fig. 3a.
Shown is the angular velocity Q, [angular velocity in units of (Gp)*/?] as a function of distance from the axis of rotation.

but on the same order as, the radius of the corresponding (unstable) spheroid. The rings never become very
flattened; the ratio of their minor radii stays at about 2. Figure 3a shows the cross section of several Maclaurin
toroids, and Figure 3b plots the corresponding rotation curves. The angular velocity of the outer edge of the
toroid is always of the same order as the corresponding Maclaurin spheroid. We have followed the sequence up to
L, ~ 3.5, corresponding to e & 1 — 1071° or a ratio of spheroid axes of ~107°.

As L, decreases from L*, the toroidal sequence also continues. At Ly = 0.792 + 0.002 = L, (e = 0.9949 +
0.0001) the toroid total energy crosses that of the spheroid. One might have thought that stability passes to the

T T T T
| — Maclaurin spheroid
Maclaurin toroid
Mestel disk

— — —

-0.1
(E/E,)

TT1T 1 T

-1.0
0.0

Fic. 4—Total energy of the Mestel disk, Maclaurin spheroid, and Maclaurin toroid as a function of angular momentum.
Energy is measured in units of | Eo|, the energy of a nonrotating sphere of equal mass and volume. L, is the dimensionless angular
momentum as in Fig. 3a. The inset is the difference in energy between the spheroid and the toroid. When Ly = Lo = 0.792 the
energies are equal. For L, < L, < L* = 0.965 the spheroid is stable to small perturbations but the toroid has lower energy.
For L, = L, = L_ = 0.775 the toroid is stable, but the spheroid has lower energy. Solid circles mark onsets of instability. The
Mestel disk is never stable. Disk, spheroid, and toroid have identical distributions or angular momentum per mass element.
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spheroid at this point, but in fact this point has no special dynamical significance for either toroid or spheroid.
When L, has decreased further ~0.775 = L_ (e ~ 0.994), the toroids become unstable and we drop down to the
spheroid sequence, whose energy is now 0.4%, lower. Figure 4 summarizes these results. One sees that, for L,
between L, and L*, the Maclaurin spheroids are actually metastable to axisymmetric disturbances: they are stable
against small perturbations, but a sufficiently large perturbation will push them into the lower-energy toroid
‘““valley.” We have verified this by converging our program from a variety of initial guesses. No initial guess,
however bizarre, converted to any third shape; we therefore think that the toroids are the global minimum. (Inci-
dentally, we were not able to converge to spheroids all the way up to [analytically known] L*; at values slightly
less, the metastable spheroid ““valley” is so small that we are not able to find initial guesses in it—we instead drop
down to the toroid sequence. Discretization errors must also come into play.)

For L, between L_ and L, the spheroids seem to be global minimum, and the toroids are metastable. Below L _
the toroids are unstable, and we have no way of knowing how far the sequence continues.

¢) Comparison with Dyson Toroids, and |T[W |

Toroidal fluid bodies with a uniform (rigid) rotation law have been investigated previously, notably by Dyson
(1892, 1893) and recently by Wong (1974) who gives further references. These bodies do not have the same distribu-
tion of angular momentum with mass as the Maclaurin spheroids; only processes which transport angular momen-
tum could induce a transition from a Maclaurin spheroid to a Dyson-Wong toroid. Bardeen (1971) has noted that
the total energy of the Dyson rings crosses that of the Maclaurin sequence very nearly at the angular momentum
value where secular axisymmetric instability sets in, while the energy of our toroidal sequence crosses nearer the
dynamic instability point L*. A fair amount is known about the nonaxisymmetric stability (or lack thereof) of the
uniformly rotating toroids. Let us see what further comparisons can be made between the Dyson-Wong and
Maclaurin toroidal sequences:

One proposed indicator of body’s dynamic stability (Ostriker and Bodenheimer 1968) is the ratio of its rotational
energy to its potential energy, |T/W|. Figure 5 shows this quantity as a function of L, for the Maclaurin spheroids
and toroids, and Dyson-Wong toroids. The spheroid values are given analytically by

1[(3 — 2¢%) sin~* e — 3e(1 — e)'?]
2 e?sin~te

|T/W| = “44

The toroidal values are from our numerical work and from Wong (1974). Notice that the Maclaurin ring has a
lower (““more stable’’) value than the spheroid, and decreases with increasing L, at least up to L, = 3.5. It would
be interesting to know whether this decrease continues indefinitely. (We encounter numerical difficulties at L, =
3.5 and have not proceeded further.) For the Dyson-Wong sequence |T/W| decreases until a minimum value is
reached at L, ~ 0.69, and then increases again.

Although it is not rigorously known in the inviscid case, the Dyson-Wong toroids are probably all unstable
against ‘““beaded” displacements which lead to their fragmentation into separately orbiting lumps. How can we
estimate whether the Maclaurin toroids are more or less stable to these modes? One rough way (Ostriker, un-
published; Wiita and Press 1976) is to break up the toroids by fiat into n > 2 equal spheres in a circular orbit,
conserving total mass, angular momentum, and circulation in the midplane. One then sees whether the total energy
of the system has increased (indication of its stability) or decreased (indication of instability). We have done this
calculation for several values of L,. For L, = 0.979, the Dyson toroid is indicated unstable for all n. The Maclaurin

T I T
0.5 —

N

aclaurin spheroid
0.4+ —
~
\/ s T T T
03 /TR T T
IT/w| \Dyson~Wong toroid \
0.2 Maclaurin toroid -

0.0 1 1 1
0.0 1.0 L 2.0 3.0

*

FiG. 5.—Stability indicator |7/ W] as a function of angular momenta for the Maclaurin spheroid, Maclaurin toroid, and Dyson-
Wong (uniformly rotating) toroid. 7 and W are the rotational and potential energies, respectively. Solid circles indicate where the
sequences become unstable. For values of L, greater than 1.2 the Maclaurin toroids have the lowest |7/ W|, suggesting that they
may have the greatest stability. Note that the Dyson-Wong toroids have a different distribution of angular momentum from the

~ two Maclaurin sequences.
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toroid is indicated stable for n = 2, 3, 4, 5, and unstable for larger n. Of course, at some large » the method is not
reliable anyway, since the supposed spheres start overlapping. For a larger L, = 2.69, the Dyson toroid still seems
unstable for all #, while the Maclaurin seems stable for n = 2, 3,. .., 47. The explanation is that the large circula-
tion implied by the differential rotation of the Maclaurin toroid imposes a strong constraint on the rotational
velocities and orbital radius of the spheres. This fact, coupled with decreasing |7/ W| raises the interesting pos-
siblility that the Maclaurin toroids might actually be stable to a// infinitesimal perturbations, at least for some high
values of L, !

d) Mestel Disks with the Maclaurin Angular Momentum Distribution

Mestel (1973) found yet another shape which is an equilibrium configuration of the angular momentum law
(4.3), at least in the limit of very flat bodies (very large L,). In the language of incompressible fluids, Mestel’s disk
has semiheight.

hmy=%£%%(y—%ym, 4.5)
where R, is an outer radius, related to L (or L,) by
R, = BI*G*M 2. (4.6)
This configuration is a centrally condensed disk with a constant-velocity rotation curve:
V(R) = RO(R) = (; c;]}‘%)”2 : @

which makes it interesting as a galactic model. The disk is a precise equilibrium only in the limit R, — co. Never-
theless, we originally expected that for finite R, we might use this disk as a starting guess and then converge to a
precise equilibrium only slightly different. In fact, there seems to be no nearby energy minimum for any R, (or Ly).
The existence of nearby extrema is confirmed by the fact that the starting values of the nondimensional forced
F,R,/E are very small; but the minimization algorithm always traverses a large distance away from the extremum
to settle on a Maclaurin spheroid or toroid which is a true minimum. In Figure 4, the energies of the initial near-
extrema are plotted. One sees that a toroid or spheroid always has a lower energy. From these results we conclude
that these fluid Mestel disks are always unstable to axisymmetric perturbations, and are neither local nor global
energy minima.

This conclusion can be compared to the predictions of the local (high-wavenumber) disk stability tests due to
Toomre (1964) and Goldreich and Lynden-Bell (1965). For fluid disks, both criteria give the inequality #Gp[4Q? >
constant, for instability. For the Goldreich and Lynden-Bell test the constant is 1.75, and our Mestel disks are
stable by this test over their whole surface whenever L, < 0.763. For the Toomre test, the constant is smaller by
a factor which can be as large as ~8 (depending on the assumptions under which one translates from stellar-
dynamic to perfect-fluid formalism). However, the critical value of L, varies only as the one-sixth power of this
constant. As one expects, the local test indicates instability reliably, but global instabilities do occur even when the
local test is not violated.

V. OTHER DISTRIBUTIONS OF ANGULAR MOMENTUM
Mestel (1963) discovered another thin-disk equilibrium configuration, with

h(R) = E%R (R < Ry)
=0 (R > Ry, G.n
V(R) = RQ(R) = (GM[R,)'?, 5.2)
and a corresponding angular momentum distribution
Ly(m) = Ly(m/M) . (5:3)

The functional shape of this /,(m) is generally similar to the Maclaurin one (eq. [4.3]). Its difference in detail
furnishes the opportunity to see whether the conclusions of § IV are sensitive to the angular momentum distribu-
tions chosen. In brief, the answer is that they are not. We are never able to converge to the Mestel disk (5.}).
Instead we converge to an ‘““almost”-spheroid which rotates “almost” rigidly, or else to a toroid in differential
rotation. The value of L, where the toroid and spheroid sequences cross in energy is almost identical to the Mac-
laurin L, value found above, and other critical values are also similar. Again we have found that at least some
members of this unstable sequence do not violate the Jocal stability criteria.
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Another way of constructing a non-Maclaurin angular momentum distribution is to choose any desired height
profile for the disk (as a function of radius), then compute the radial generalized forces due to gravity by the
methods of § II, and finally compute the angular momenta J; which are necessary to make this shape an equi-
librium. If any J; come out imaginary, then the shape is impossible. Even when the shape is possible, it might not
be radially stable; so the minimization algorithm is invoked, and the shape may converge to a totally different one.
When we apply this procedure to the Mestel profiles of equations (4.5) and (5.1), the results are indistinguishable
from those already described. For another test we invented a two-parameter family of profiles:

M R\2]-12
h) = frpaol@ + RD™ — ag] [‘ + (2‘) ] (R < Ro)
=0 (R>Ry). &)

These are ““bulge-disk” configurations, with central spheroidal bulges whose scale is set by the parameter a,, and
tapered disks extending out to a radius R,. We chose the shape to be reminiscent of an SO galaxy seen edge-on.
Not surprisingly, the computed rotation curves for these profiles are also reminiscent of galactic rotation curves,
almost flat out to the edge of the disk.

All of the profiles (5.4) are radially unstable. They go, as does everything else we have looked at, either to approxi-
mate spheroids with approximately uniform rotation, or else to differentially rotating toroids. These profiles are,
incidentally, unstable even by the local tests; but the global toroid mode dominates their energy-minimizing
““evolution.”

VI. DISCUSSION

Our search for energy minima, which are likely to correspond to preferred “channels” of a dynamical evolution,
turned up precisely two, the spheroid-like and toroid-like shapes. The transition between these seems governed by
total angular momentum in nondimensional units, L,. The omnipresence of toroids for large L,,, while unexpected,
may help explain in a unified way results such as those of Black and Bodenheimer (1976), who find that collapsing,
rotating protostars go through a ring phase, and those of Larson (1972) who finds some protogalaxies collapsing to
toroids under physical conditions very different from the stellar-collapse case. Axisymmetric stellar dynamical
models by Prendergast and Tomer (1970) and by Gott (1973) also show toroidal features.

Our inability to find stable figures with galaxy-like profiles or rotation curves is more puzzling; Mestel disks in
two varieties, and the two-parameter family (5.4), are all unstable. One possible resolution of the puzzle is if the
instability is an artifact of our fluid’s incompressibility. We do not think this is so: the incompressible disk is so
thin that density changes in the direction parallel to the rotation axis affect the dynamics hardly at all. A com-
pressible disk would certainly lack the central spike of the incompressible Mestel figures, but the total mass in the
spike is very small. We have computed a few models of a disk of uniform thickness ~ 1/100 of the radius R,, but
with variable density so that

m(R) oc % (1 - R%)”z - ©.1)

The rotation curves were almost identical to the models of equation (4.5). These compressible disks were also all
unstable, even when they satisfied the local stability tests by a safe margin (they did have high values of |T/W|,
however, ~ 3). Our referee has suggested some further models whose stability or instability might indicate whether
compressibility is an important feature: (i) a Mestel disk with 4 oc r and p oc r ~2, since the local tests are satisfied
by a constant factor over the surface of this disk; (ii) compressible and incompressible versions of the exponential
disks of Freeman (1970) and the double exponential disks of Hohl (1971).

A second resolution is if the stellar-dynamic nature of real galaxies is crucial in stabilizing the disk. This cannot
be ruled out; however, Toomre’s (stellar-dynamic) local criterion for stability is typically more stringent for the
disks we have looked at than its perfect fluid (Goldreich-Lynden-Bell) counterpart, so it is hard to find an effect
in the right direction even!

A third possibility, which we favor, is the massive halo hypothesis of Ostriker and Peebles (1973) and others.
The massive halo has previously been invoked as a defense against nonaxisymmetric, bar instabilities. We suggest
that the halo may also be necessary to stabilize realistic models against purely radial readjustments, into spheroids
(i.e., elliptical galaxies) or toroids (ring galaxies?? cf. Freeman and de Vaucouleurs 1974; Theys and Spiegel 1976;
however, Toomre has advanced a very compelling alternative theory, cf. Lynds and Toomre 1976).

Finally some remarks concerning the computational techniques of this paper: We think that minimization
algorithms, when more sophisticated than just stepping down a gradient, may be a fruitful approach for a variety of
problems where there is an underlying variational principle. The QDM method (see § IIT) deserves further attention.
We also think that more can be done with the finite cylinder method of calculating gravitational potentials, de-
scribed in § II. At the very least it is an efficient way of computing finite-thickness corrections to disk models of
galactic rotation: even though the density in the z-direction will not be constant, the finite thickness enters in first
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order only as an effective density and scale height (details will be given elsewhere). Superposing more than one
cylinder at a given radius, one can model a general rotating star. This technique may have advantages over other
schemes of two-dimensional zoning, because the number of vertical zones necessary for an accurate potential
T calculation may be very small (i.e., four or five per radial zone) if their heights are chosen correctly.

Discussions with A. G. W. Cameron, S. Chandrasekhar, and J. P. Ostriker have benefited us in this work. We

thank the referee for a number of suggestions.
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