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SIMULATION OF CYLINDRICAL COUETTE FLOW 

We have developed, tested, and implemented a numerical code for calculating 
the viscous, three dimensional flow between two differentially rotating cylinders 
(cylindrical Couette flow). In this paper we describe the methods that we have 
used to apply efficiently pseudo-spectral techniques to a complicated (i.e. non- 
Cartesian) geometry with real (i.e. viscous, no-slip) boundaries and the tests 
that we have used to determine the accuracy of our code. 

I. OBSERVED STATES OF COUETTE FLOW 

When the inner cylinder is rotating and the outer cylinder is held station- 
ary, four non-chaotic flows have been observed experimentally. We define the Rey- 
nolds number as RE = ~ R I (R2 - Rl)/V where v is the viscosity, ~ is the angu- 
lar velocity of the inner cylinder, and R I and R 2 are the radii of the inner and 
outer cylinders. We also define the radius ratio ~ to be R I /R 2. For a given 
geometry, as the Reynolds number is increased to RE .x, the stable flow changes 

• . . crlt. 
from its laminar proflle to N axlsyu~etrlc Taylor vortlces stacked on top of 
each other. Near the endplates the vortices disappear. The upper surface bound- 
ary condition (rigid or free) strongly influences whether N is even or odd. A 
rigid upper surface tends to make N even. The Couette system selects the number 
N mo that the axial wavelength of the cells, ~ , is of order twice the radial gap 
separation (which is nearly the critical axial wavelength for the onset of the 
Taylor vortices). The number N is not unique for a fixed Reynolds number and 
geometry and is determined by the past history of the system. As the Reynolds 
number is increased further ~ azimuthal traveling waves [proportional to exp(im18)] 
form on the vortices. Each state in this regime can be identified by N and ml. 
The waves travel with a speed c I . If this state is observed in the proper 
rotating frame, it appears as a steady-state. Although the speed c I depends on 
the radii of the inner and outer cylinders, it appears to be almost independent 
of m I. For Reynolds numbers near critical, the wave speed is a strong function of 
RE, but for RE greater than -6 times the critical value, the wave speed approaches 
a constant value. The wave speed is also a function of the axial wavelength. This 
non-axisyu,netric, steady (in the proper rotating frame) flow becomes unstable as 
the Reynolds number is increased further and two traveling waves appear. The 
second traveling wave has azimuthal number m 2 and phase speed c 2. The second 
wave speed depends upon the radius ratio and weakly depends on N, ml, m2, and the 
Reynolds number. When the flow has one or two traveling waves, the states are 
meta-stable and the Reynolds number alone does not determine uniquely which par- 
ticular state the flow will be. The numbers (N,ml,m 2) that characterize the flow 
are not unique functions of the Reynolds number but depend upon the past history 
of the flow. The flow with two traveling waves does not appear as a steady state 
to any observer. When the Reynolds number is greater than a second critical 
value, the time spectrum of the flow develops a broad component centered around a 
frequency fb " In this case, the motions are aperiodic (weakly chaotic). There 
is an increase in the amount of small scale structure visible in the flow as the 
Reynolds number is increased further. The azimuthal traveling waves eventually 
disappear but the Taylor vortex cells persist to the highest values of Reynolds 
number examined. 

I I .  EQUATIONS AND BOUNDARY CONDITIONS 

Our primary motivation for writing an initial-value code rather than a 
steady-state solver is that we are interested in computing the transitions among 
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the four non-chaotic flows. One of the flows is quasi-periodic and not a steady- 
state. The initial-value equation that we solve is the Navier-Stokes equation in 
cylindrical coordinates with the boundary conditions that the radial and axial 
components of the velocity at the radial boundaries vanish and that the azimuthal 
components of the velocity match the cylinder rotation speed, ~ , at the walls. 
We assume periodicity in the axial direction and require that the velocity be 
divergence-free. 

In a reference frame rotating with angular velocity C with respect to the 
inertial frame, the Navier-Stokes equation is 

~V 

= - C r&o) _ x + + RE-IV2v - VP c 
~t (vc + VLAM (We WLAM) c c (1) 

^ 

where the velocity seen by an observer in the inertial frame, v, is 

v(r,e,z,t) - Vc(r,0+ct,z,t) + VLAM(r) (2) 

where VLA M is the laminar velocity of Couette flow (as seen in the inertial frame) 

[ 1 _ 
VtAM(r ) = ~ ~  r(l-~)]ee (3) 

where WLA M is the vorticity of the laminar flow 

WLA M = -25/(i+~) ez (4) 

and where w is the relative vorticity 
C 

(r,e,z,t) - V x v (r,e,z,t). (5) 
C c 

We use the relative velocity Vc(r,e,z,t) as our dependent variable rather than the 
full velocity because Vc(r,0,z,t) obeys the homogeneous boundary condition: 

Vc(r,0,z,t) = 0 at the radial bounaries. (6) 

In equation (I) the velocity is in units of ~R I and the length is in units 
of (R2-RI) . Our code is designed so that the speed of the rotating frame of the 
observer, C, can be easily changed at any timestep (in fact we generally automati- 
cally update C so that one of the two traveling waves appears steady). Equation 
(I) is solved spectrally and we adopt the notation that each variable Q(r,e,z,t) 
is written as the spectral sum: 

Q(r,O,z,t) = g m ~ Q(r,m,k,t)exp[i(me+2~kz/%)] (7) 

Note that e .v (r,m=0,k=0,t) must always be identically equal to zero. 
r c 

The radial dependence of each quantity is evaluated at the Chebyshev colloca- 
tion points. Radial derivatives are found by fast-Fourier transforming into Che- 
byshev space, taking the spectral derivative, and inverse transforming back into 
physical radial space. Azimuthal and axial derivatives are evaluated spectrally. 
The nonlinear terms are computed by transforming into axial and azimuthal physical 
space, multiplying the values at the collocation points, and then inverse 
transforming. We do not remove aliasing errors. 

III. THE TIME-SPLITTING STEPS 

The nonlinear terms are computed in rotation form using a second-order 
Adams-Bashforth method. The velocity at the end of the nonlinear fractional step 
that goes from timestep N to timestep N+I is: 
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N~I/3 At .. N rSe) N N 
v (r,O,z,t) = -~-[j[v e + VLA M - C x (w e + ~LAM ) + Vc 

.vN-I N-I 
- ( c + VLA M - C ree) x ( c + mLAM )] 

(8) 

(For the remainder of this section, we assume that the angular speed of the obser- 
ver, C, is zero to simplify the notation and the presentation of the equations. 
We omit the subscript, C, from the velocity.) The stability of the explicit non- 
linear step in equation (8) is governed by the Courant condition. We can modify 
equation (8) to allow bigger timesteps by observing that even in a rotating frame, 
the largest velocity component is the z-independent, axisymmetric (m=0,k=0) 
component of the azimuthal velocity. In cylindrical Couette flow the mean azi- 
muthal velocity is analogous to the mean temperature gradient in convection; it 
drives the advective instability and has a profile that is modified by order unity 
due to the nonlinear interactions. Like the mean temperature gradient, the mean 
velocity becomes modified so that in the interior of the flow the mean profile is 
nearly neutrally stable. Typically, Iv'[ < 50.0 Ive(r,0,0,t)I where v' ~ v - 
~8 (r,0'0't) es" We therefore treat the nonlinear contribution of ~%(r,0,0,t) and 
~8(r,0,0,t) implicitly. 

Adding the gradient of the pressure to vN+i/3makes the velocity divergence- 
free at the end of the next fractional step: 

v N+2/3 = v N+I/3 - V~ N+I (9) 

N+I . N+2/3 
The pressure head, ~ , is computed by requiring that v be divergence-free at 
the interior points. At the radial boundaries we require that ~v~ +I /Dr = 0. This 
last condition is equivalent to requiring that V-vN+I =0 at the radial boundaries. 
(We do not impose the boundary condition that ~v~+2/3/~r = 0 because we have 
found that it leads to a slow instability.) Since v N~I is unknown during this 
fractional step, we write 

~+i _ N+I ~N+I 
=n . . + (i0) invls 

V2~ N+I = V.V N+I/3 in the fluid interior 

V2~ N+I = 0 in the fluid interior 

where 

N+I 
and where ~ invis 

(Ii) 

(12) 

Using the Greens function with the fractional step method produces a global 
temporal error of ~(At2). Instead of using Greens functions we can reduce 
the time-splitting error by solving the pressure equation with the inviscid 
boundary condition and using a Richardson extrapolation. For this particular 
geometry we have found that the use of Greens functions require no more 

satisfies the inviscid boundary condition for the pressure 
~N+I. 

invls $ ~+i/3 
Dr r at the boundaries (13) 

The viscous step is the final fractional step and gives v N+I : 

A t v2 (v N + vN+I) V N+I = V N+2/3 + ~ in the fluid interior (14) 

At V2 The operator (I - -~ ) is inverted by requiring v r = v 8 = v z = 0 at the 
radial boundaries. The Greens function, ~ N+I is evaluated at the end of the 
viscous step. It is computed by evaluating a (diagonal) capacitance matrix once in 
a pre-proeessing stage and inverting the capacitance matrix after each viscous step. 
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storage than a Richardson extrapolation, but uses significantly 

less computing time. Furthermore, the Richardson extrapolation error is~h(At 3/2) 
in the velocity and larger than~(At) 3/2 forpthe radial derivatives of v at 
the boundary. In particular, the error in ~-vr using a Richardson extrapolation 

remains order unity. Sr 2 

IV. RESULTS 

In addition to an initial-value code, we have written an eigenvalue code that 
solves the linearized sixth-order Navier-Stokes equation without the use of frac- 
tional steps. ( The divergence of the velocity is everywhere zero including the 
boundaries). We have compared the linear eigenvalues (both the real and imaginary 
parts) computed from our linear eigenvalue-solver to the growth rates and veloci- 
ties computed from the initial-value solver. For large Reynolds numbers, the 
errors in the growth rates and velocities from the initial-value solver decrease 
as At 2 (until the timestep is so small that truncation errors begin to dom- 
inate). The decrease confirms that the code is second-order accurate in time and 
shows that in the linear equations the splitting error is small. For the smallest 
timestep the errors in the growth rate and velocity are one part in 106 . We have 
also compared these eigenvalues to those calculated by Chandrasekhar (1961) for 
axisymmetric modes in a viscous fluid with ~=0.5 and to those of Kreuger, Gross, 
and DiPrima (1966) for non-axisynrmetric, viscous flows in a thin gap with $ =0.95. 
We agree with these eigenvalues within one part in i0 4 . 

We have several checks of consistency within our code. When a solution set- 
tles down to a quasi-periodic, periodic, or steady state, we calculate the diver- 
gence of the velocity. The divergence is a good measure of the time splitting 
error. We have found that for all modes (k,m) (V-v)/Ivl min(k,m/r) is 
less than 10 -6 not only at the fluid interior but also at the radial boundaries. 
For flows with one traveling wave, we also compute the Curl of (V'~+RE'IV 2v) 
which should be zero (whenlobserved in the rotating frame of the traveling wave). 
We find that Vx(v x ~ + RE- VZv) (in units of the average enstrophy) is of order 
10 -6 . In the steady state the rate of angular momentum flux in the radial 
&irection 

2z 3 ~rve(r'0'0't) 
- Ir2v v dedz//dz (15), 

F=~r ~r r z 

should be independent of radius and equal to the torque at the boundary. We find 
that the fractional variation in flux over the entire radius is about 0.003%. We 
have also solved the same initial-value problem (i.e. the same radius ratio and 
Reynolds number) several times while forcing the code to compute the solutions in 
different rotating reference frames. In one rotating frame the flow (with one 
traveling wave) appears as a steady-state but in the other frames it is periodic 
in time. Comparison of these solutions allows us to measure the temporal accu- 
racy of the time-splitting when the nonlinear terms are large. We find that even 
for large nonlinear terms, the time stepping error remains small. 

We have also measured the initial angular momentum of the flow. The initial 
angular momentum plus the temporally integrated torque should be equal to the 
angular momentum of the fluid in its final state. This type of consistency measure 
very accurately tests the torque and the structure of the solution near the boun- 
dary. The fractional difference between the actual angular momentum and that pre- 
dicted by integrating the torques for ~ 4 rotation periods of the inner cylinder 
is of order 10 4 . 

We have compared our numerically calculated torques with those measured 
experimentally by Donnelly and Simon (1960) for axisymmetric Taylor vortex flow 
with a radius ratio of ~ =0.5. and for Reynolds numbers up to 4 times the criti- 
cal value. Our agreement is within experimental error. One difficulty in compar- 
ing the torques with experiments is that there is a slight dependence,of ItoKque on 
the axial wavelength. The torque measurements of Donnelly anH Simon rand aZmost 
all other experimentalists) are done with opaque cylinders so that the axial 
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wavenumber (and often the 
azimuthal wavenumber) is not known 
and must be assumed. We have 
also found good agreement between 
our torques computed from an 
initial-value solver and those 
torques computed by Meyer-Spasche 
and Keller (1980)using a steady- 
state solver. 

The most severe test that 
we have performed is the calcul- 
ation of the wave speeds. We 
have found that at large Reynolds 
number (i0 times REcr~t) where 
the wave speed is insensitive 

to the exact value of the Reynolds 
number, one can be somewhat 
cavalier with the treatment of 
the boundary conditions and 
obtain the correct result for 
the wave speed. At small values 
of the Reynolds number ( 2 times 
REcrit) , the boundaries must 
be treated very carefully. 
Table 1 shows the experimentally 
measured values of the wave speed 
Cl, for RE=459.8 ~3.96 times 
REcrit with radius ratio 
~= 0.875 ~nd m = 6 for the 
two extreme values of the axial 
wavelength (i.e. flows whose 
axial wavelengths are not 
between these two numbers are 
unstable or nearly unstable 
and difficult to maintain 
experimentally). Table 1 also 
includes the experimental value 
of c~ for RE = 230.2 ~2.00 

i 
times REcrit with ~ = 0.868 
and m = 6 for two extreme 
values of the axial wavelength. 
Included in the table are our 
numerical values computed with 
33 radial collocation points, 
32 axial collocation points 
per Taylor cell pair, and 16 
aximuthal points per 2~/6 
radians. Our calculated wave 
speeds agree with the labora- 
tory measurements within the 
experimental uncertainty. We 
have agreement to 3 significant 
digits in the wave speed. The 
experimentally measured values 
of the wave speed are only 
accurate to 1% due to the 
uncertainties in the viscosity (or 
Reynolds number) while the 
experiments are being performed. 
The experimental measurements 
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of c I presented here were done by King and Swinney (1982). We have found 
similar agreement between our numerically computed wave speeds c I and c2 

and the experiments for flows with two traveling waves at larger (RE = I0 REcrit) 
Reynolds numbers. 

TABLE I 

REcrit RE/REcrit 1 cl lab c 2 numerical 
115.1 2.05 3.00 0.365 0.3647 0.868 
115.1 2.00 2.14 0.403 0.4028 0.868 
116.1 3.96 2.32 0.359 0.3596 0.875 
116.1 3.96 3.90 0.339 0.3397 0,875 

wave speeds for m=6 traveling wave 

All four of the flows presented in Table I have a symmetry in addition to 
being 6-fold symmetric about the axis of rotation. They also have the symmet.rv 
Vr(r,0,z) = v (r,e+~- z), v0(r,@,z) = v~(r,@ + 12,z) , v (r,0,z)=-Vz(r~+ .--~-z) r z 
We show this symmetry by plotting the azimuthal modulation of a pair of Tayloi~ 
cells. Figure i shows the v z and v components of the velocity in the 
(z-r) plane for five different valuesrof e . 
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