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Jupiter’s zonal winds: are they bands of
homogenized potential vorticity organized as

a monotonic staircase?
BY PHILIP S. MARCUS* AND SUSHIL SHETTY

Department of Mechanical Engineering, University of California, Berkeley,
CA 94720, USA

The east–west striped pattern of clouds in Jupiter’s weather layer is accompanied by a
zonal flow containing 12 eastward-going jet streams alternating in latitude with westward-
going jet streams. Based on theory, simulation and observations of the Earth’s oceans and
atmosphere, it is conjectured that Jupiter’s weather layer is made of bands of constant
potential vorticity (PV), where the interfaces between bands are at the latitudes of the
maxima of the eastward-going jet streams. It is speculated that the mixing of PV on
Jupiter is analogous to the mixing of salt in the ocean by the Phillips effect, which
causes the salt density to form a monotonic ‘staircase’. It is hypothesized that the PV in
Jupiter’s weather layer is also a staircase, decreasing from north to south. PV is a function
of vorticity, as well as parameters with unknown values, e.g. the vertical stratification and
the zonal flow beneath the observable weather layer. Therefore, these hypotheses cannot
be tested directly. Using an atmospheric model that contains these unknown parameters,
we solved the inverse problem and found values of the unknown parameters (and their
uncertainties) that best fit Jovian observations. The unknown parameters influence how
the zonal flow interacts with large vortices, e.g. the Great Red Spot (GRS; the largest and
longest-lived Jovian vortex, centred at 23◦ S) and the Oval BA (the second largest vortex,
centred at 33◦ S). Although we found that the PV distribution is approximately piecewise-
constant and that the peaks of the eastward-going jet streams are at the latitudes of PV
interfaces, there is also a PV interface at 20◦ S, where there is a westward-going jet
stream. We find that the zonal PV is not a monotonic staircase due to the ‘backwards’
interface at 20◦ S. We show that this backwards interface is necessary to make the GRS
nearly round, and that without that interface, the Red Spot would be highly elongated
in the east–west direction and probably unstable.

Keywords: potential vorticity; staircase; zonal flow; Jupiter

1. Introduction

Jupiter’s most prominent, and also most permanent, visual feature is its pattern
of horizontally (east–west) striped bands of multi-coloured clouds. This pattern
was first observed by Hook [1] nearly 350 years ago. Since the first measurements
of the zonal (east–west) winds of Jupiter were extracted from Voyager cloud
*Author for correspondence (pmarcus@me.berkeley.edu).
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images [2], it has been known that accompanying the east–west cloud pattern
is a system of a dozen alternating jet streams, in which the characteristic
peak velocities are approximately 100 m s−1. Although there is approximately
10 per cent temporal variability (on scales from hours to decades) in the
maximum amplitude of the winds [3], the latitudes of the locations of their
maximum and minimum velocities have remained remarkably constant since the
first observations in 1979 [4–8]. Figure 1a shows the oscillatory nature of the
longitudinally averaged east–west flow in Jupiter’s weather layer (i.e. the layer
containing the visible clouds and, therefore, the layer of atmosphere in which
the observed zonal velocity resides). The figure shows that the zonal flow is
remarkably constant over time.

There is no overarching theory for the formation and maintenance of the winds
that can account for all of their features, but in general, there are two leading,
but competing, scenarios. According to one scenario, the zonal winds are part
of a shallow, nearly two-dimensional system driven by ageostrophic forcing at
length scales much smaller than the characteristic latitudinal distances between
adjacent jet-stream maxima. In this picture, the large-scale winds are created by
an inverse cascade of energy from the small to the large scales with the cascade
acting in concert with the anisotropic b-plane effect that makes round vortices
into zonal flows [9–17]. In the second scenario of zonal wind formation, the winds
are deeply rooted and are coupled to the underlying convective zone, which is
the ultimate source of energy of the winds [18–23]. In addition to these general
scenarios, there are many other theories: for example, in one theory, the zonal
winds are due to entropy maximization [24]; in another theory, the zonal winds
are due to tidal forcing of the Jovian atmosphere from the Jovian moons [25–
27]; and in another theory, there is a resonant interaction between the tidal
forces of the Jovian moons and an atmospheric inertial mode, which drives the
winds [28].

In all of the theories listed above, the flow has a well-defined Ertel’s potential
vorticity (PV). Dritschel & McIntyre [29] have reviewed the importance of PV
mixing with respect to the formation of persistent zonal jets in the Earth’s
atmosphere and oceans. They point out the fact that numerical simulations and
laboratory experiments both show that mixing often causes the PV to organize
into parallel bands with nearly uniform values of PV and that these bands
result in multiple zonal jets. In many cases, the PV monotonically increases or
decreases in the direction perpendicular to the orientation of the bands and jets
so that the PV forms a staircase. They argue that there is an analogy between
the banding and staircasing of PV and the Phillips effect [30], i.e. the vertical
staircasing of the density in a stably stratified fluid due to stirring. It has been
suggested by Dritschel & McIntyre and many other authors, especially those that
are advocates for the scenario that the Jovian zonal winds are a shallow and nearly
geostrophic system, that the zonal flows of Jupiter consist of a series of east–
west, staircased bands in which the PV within each band has been homogenized
by mixing to a nearly uniform value within each band. The interfaces between
the homogenized bands are at the latitudes where the eastward-going jet streams
have their maximum velocities.

The earliest attempt to fit the observed zonal velocities of Jupiter to this
picture was carried out by Ingersoll et al. [31], who used a one-dimensional, local
(Cartesian approximation of a spherical shell), quasi-geostrophic approximation
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Figure 1. The Jovian zonal velocity and its changes in time from Asay-Davis et al. [8]. (a) Zonal
(east–west) velocity profiles u∞(y) derived from Hubble Space Telescope (HST) images from
10 May 2008 and from Cassini satellite images from 11–13 December 2000 (black curve, HST
2008; red curve, Cassini 2000). (b) The difference between the HST and Cassini zonal velocity
profiles from (a). Also shown is the composite uncertainty of the two profiles ±r.m.s.C ≡
±√

(r.m.s.HST2008)2 + (r.m.s.Cassini2000)2, where r.m.s.HST2008 and r.m.s.Cassini2000 are the respective
r.m.s. uncertainties of the zonal velocities as computed in Asay-Davis et al. [8] (black curve,
difference; red curves, ±r.m.s.C). Statistically significant changes occur only where the black curve
lies outside the bounds of the red curves.

of the atmosphere with an infinite Rossby deformation radius so that the
quasi-geostrophic PV q was

q ≡ u + by, (1.1)

where u is the local vertical (z) component of the vorticity, b is the longitudinal
gradient of the Coriolis force and y is the local north–south coordinate.
In the ith band, if the value of the PV is qi and constant, and if the
velocity is purely zonal, such that v(y) = vx(y)x̂ , where x̂ is the unit vector
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in the east (positive x) direction, then vx = by2/2 − qiy + ci , where ci is an
integration constant. That is, the zonal flow forms a series of linked parabolas.
The eastward-going jet streams have their maxima at the interfaces between
the bands.

Marcus [32] found a better fit to the Jovian zonal flow over a range of
latitudes by using a finite value of the Rossby deformation radius Lr, so that
the quasi-geostrophic PV in the Jovian weather layer was

q ≡ u + by − j

L2
r
, (1.2)

where j is the stream function. With a finite value of Lr, if the PV in the ith band
has constant value qi , and if the velocity is purely zonal, then in the ith band,
vx(y) = Ai cosh[(y − yi)/Lr] − bL2

r , where Ai and yi are integration constants. As
in the case of infinite Lr, the eastward-going jet streams with finite Lr have their
maxima at the interfaces between the bands.

Of course, this picture of exactly homogenized bands of PV with sharp
interfaces between them is a great simplification of the actual Jovian flow.
Even using the quasi-geostrophic approximation, the above analysis ignores the
effects on the PV in the observable weather layer due to an underlying layer
of denser fluid. Accounting for that underlying layer by using the one-and-a-
half layer quasi-geostrophic model makes the PV in the upper, observable layer
equal to [33]

q(x , y, t) ≡ u − j

L2
r

+ jb(y)
L2

r
+ by (1.3)

=
[(

V2 − 1
L2

r

)
gh
f0

]
+ ghb(y)

L2
r f0

+ by, (1.4)

where

v ≡ ẑ × V
gh
f0

, (1.5)

and where g is the reduced gravity in the weather layer, h(x , y, t) is the free-
surface height of the upper layer (which acts like a stream function because j ≡
gh/f0), hb(y) is the height of the rigid bottom layer of fluid, v is the weather
layer’s horizontal velocity in system III,1 ẑ is the local vertical unit vector, f (y)
is the Coriolis parameter and f0 is the local value of f (y). Note that V2j = u and
jb(y) ≡ ghb/f0 is the stream function of the (unobservable) east–west flow in the
underlying layer, which is assumed to be a function of latitude but not longitude
or time.

Support for the shallow-layer theory with small-scale forcing as the source
of the Jovian wind comes from numerical simulations (cf. Scott & Polvani
[14]). Almost all numerical simulations of the quasi-geostrophic equations of

1System III is the rotating coordinate system based on a 9 h 55 m 29.711 s day, in which many
researchers report the atmospheric velocities of Jupiter; it is based on the rotation rate of Jupiter’s
magnetosphere.
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Figure 2. Zonal PV and velocities created by small-scale, isotropic forcing of the quasi-geostrophic
equations as in Marcus et al. [12] (but where q is defined by equation (1.2)). The unit of length is
Ly , where Ly is the size of the computational domain in the y direction. (a) PV (in units of bLy)
at a late time as a function of latitude y. PV profiles at eight, equally spaced longitudes (x) are
superposed, but they lie nearly on top of each other. (b) The east–west component of the velocity
(in units of b(Ly)2) as a function of latitude. Velocity profiles at eight, equally spaced longitudes
(x) are superposed, but they lie nearly on top of each other. The locations of the maxima of
the eastward-going jet streams are approximately the same as the interfaces of the bands of the
PV in (a).

motion on a b-plane with a large-scale Rayleigh (or Ekman) dissipation, and a
sufficiently large-amplitude, small-scale, homogeneous and isotropic forcing show
the formation of zonal flows. Figure 2 shows the PV and zonal velocity of a
typical simulation with finite Rossby deformation radius at late times when the
flow has become statistically steady. The PV has formed a nearly monotonic
staircase as a function of latitude y and is nearly independent of longitude x .
The widths (latitudinal distance between adjacent peaks of the eastward-going
jet streams) of the zonal flows in the numerical simulations are approximately
equal to 2pLr, in fair agreement with Jupiter’s zonal widths (figure 1; assuming
that the atmosphere’s vertical stratification and pressure scale-height are uniform
over the planet at the weather layer, the deformation radius is proportional to
1/ sin q, where q is the latitude). In these initial-value numerical simulations, the
mechanism that creates the monotonic steps of PV is the same mixing mechanism
that Phillips hypothesized creates monotonic steps of salinity in the upper layer
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of the ocean [30]. Initially, the PV, q as defined in equation (1.2), in the numerical
simulations is independent of the east–west coordinate x , linear in y and equal
to by because the initial stream function and vorticity of the flow is zero. As
the small-scale forcing builds up the flow, the resulting velocity starts to mix
the PV. At random (and unequally spaced) latitudes yi , the mixing causes the
PV to depart from its initial value and have a near uniform value of q = byi
in a band centred on latitude yi . Thus, the PV forms bands of approximately
homogenized PV where the boundaries of the bands, by definition, are the
latitudes of the near-discontinuities in the PV and are the locations of the
peaks of the eastward-going zonal jets. The PV of the late-time, statistically
steady flow is approximately staircased, decreasing from north to south. The
fact that the PV profiles at different values of x (longitude) in figure 2 are
nearly coincident indicates that the PV is nearly independent of x (as is the
stream function), and, therefore, the flow is approximately zonal (east–west).
During the mixing, the circulation of the initial q(x , y, t) is locally conserved,
such that

∫Lx
0 dx

∫yi+Di/2
yi−Di/2

dy q(x , y, t = 0) ≡ qiLxDi , where Lx is the computational
domain size in the x-direction and Di is the latitudinal width of the ith band.
Here, q(x , y, t = 0) = by, so qi = (byi). As time goes on, the widths of the mixed
bands become broader. Occasionally, neighbouring bands merge together, and
homogenize the PV throughout the larger merged band such that the circulation
of the PV is locally conserved. Where the homogenized bands of PV abut each
other, there are sharp interfaces of PV. The end result is a series of steps of PV
qi that are monotonic in y. Note that the final piecewise-constant PV profile is
monotonic in y in these simulations only because the initial distribution of PV
was also monotonic. Our numerical experiments show that in many cases, when
the zonally averaged initial value of q(x , y, t) is not monotonic in y, the final,
steady-state values of qi are not monotonic in yi .

All current formation scenarios have major difficulties. For example, although
the longitudinal spacing between adjacent peaks of the eastward-going jet-
stream maxima in figure 2 are in good agreement with Jupiter’s zonal flows,
the zonal velocities are an order of magnitude smaller than the observed Jovian
velocities. The purpose of this paper is not to discuss the failures or successes
of any specific model of zonal flow formation on Jupiter, but rather to answer
more general questions about the current and observable distribution of PV
in Jupiter’s atmosphere. From the observations: (i) do Jupiter’s zonal flows
consist of bands of homogenized PV, (ii) if homogenized bands exist, are the
interfaces of PV located at the eastward-going jet streams, and (iii) if bands of
homogenized PV exist, is the PV in a monotonic staircase, decreasing from north
to south?

The remainder of the paper is organized as follows. In §2, we review the
solutions of an inverse problem where, by fitting the parameters of a reduced-
parameter model to observations of the velocities in Jupiter’s weather layer, we
can deduce the PV distribution of the zonal flow. In §3, we show how those
results answer the three questions posed in the previous paragraph. In §4, we
review zone–vortex interactions and show why those interactions reveal the zonal
PV profile. We also show qualitatively why the observed shape of the Great
Red Spot (GRS) necessitates that the zonal PV does not form a staircase. Our
conclusions are in §5.
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2. Inverse calculations

A commonly used approximation for the layer of atmosphere containing Jupiter’s
observable clouds, zonal flow and vortices is the one-and-a-half layer quasi-
geostrophic model, in which the PV and velocity are given by equations (1.4)
and (1.5) and for which the PV is advectively conserved,(

v

vt
+ v · V

)
q = 0. (2.1)

The only independent dynamical variable in equations (1.4)–(2.1) is the free-
surface height h; q and v are slaved to h through equations (1.4)–(1.5). The
influence of an anomalous region of PV, such as a Jovian vortex, falls off
exponentially fast far from the vortex with a characteristic decay distance of
Lr. Therefore, far from the vortices, we would expect the far-field velocity to be
zonal, independent of x and t and a function of y. It is this far-field zonal velocity
u∞(y), shown in figure 1, in which we are interested in determining whether its
PV is in nearly uniform bands with sharp interfaces and whether those bands
form monotonic steps. Previous researchers [32,34,35] parametrized the influence
of deep layers on the Jovian weather layer with the height hb(y) of the rigid
bottom topography. However, it is more useful (but equivalent) for us to use
the PV q∞(y) of the far-field zonal flow u∞(y)x̂. From equation (1.4), there is a
one-to-one relation between hb(y) and q∞(y),

q∞(y) ≡
(

d2

dy2
− 1

L2
r

)
(gh∞)

f0
+ ghb(y)

f0L2
r

+ by, (2.2)

where h∞(y) is the free-surface height of the far-field zonal flow, defined by

1
f0

d(gh∞)
dy

≡ −u∞(y), (2.3)

and where the integral of h∞ over the computational domain is arbitrarily defined
to be zero.2 Because u∞(y) can be measured, b and f0 are known for the domain
of interest, the above equation shows that hb(y) can be parametrized in terms of
q∞(y) and Lr. We cannot use an initial-value solver to solve equations (1.4)–
(2.1) for h (and thus for v and q), with h∞(y) parametrized by q∞(y) (via
equations (2.2) and (2.3)) because the values of Lr and q∞(y) (the objective
of this study) are unknown. A standard, but tedious, method of dealing with this
difficulty would be to solve the inverse problem: (i) guess a set of values for Lr and
q∞(y), (ii) solve the initial-value equations (1.4)–(2.1) with these parameters until
the velocity converges to a statistically steady state, (iii) if the resulting velocity
looks like the Jovian zonal velocity, then stop, but if is does not, then (iv) vary
the guessed parameter values of Lr and q∞(y), and go back to step (ii). When the
resulting velocity looks like the actual Jovian zonal velocity, the parameter values
2A ‘gauge’ constant can be added to h∞, hb and/or h, representing a shift in origin or the vertical
coordinate. Such a shift has no effect on the velocity or any other observable quantity because h
acts as a stream function and only its spatial derivative enters into the dynamics. A change in
gauge will change the PV by a constant value. We have arbitrarily chosen the gauge for hb such
that the PV along the southern boundary of our computational domain is zero.
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of Lr and q∞(y) used in the initial-value equations are the ‘best-fit’ parameter
values, and we could use the best-fit value to determine if q∞(y) is a staircase,
as hypothesized. Unfortunately, this method cannot work in the case when the
Jovian flow is exactly zonal, i.e. with a q and v that are functions of y only, and
with v in the x-direction. In this case, v · Vq ≡ 0. Thus, the steady-state form of
equation (2.1) is trivially satisfied for v equal to the observed zonal velocity and
for any values of Lr and q∞(y), and therefore, all profiles of q∞(y) are best fits
because zonal flows are not affected by q∞(y) (or h∞(y)).

However, as shown below, q∞(y) (and h∞(y)) have a strong effect on non-
zonal velocities and in particular on the Jovian vortices. We can, therefore,
exploit an earlier study [36] that was used for finding best fits for Jupiter’s
GRS and Oval BA (Jupiter’s second largest vortex) to determine q∞(y) between
the latitudes of approximately 9◦ S and approximately 39◦ S. We used several
sets of observations to find best-fit parameter values, but they all resulted in
similar results, so we restrict our discussion here to a review of our results
based on observations we took on April 2006 with the Hubble Space Telescope
(HST). Our study looked for steady or for uniformly translating (in x) solutions
of equations (1.4)–(2.1). Most studies in which the velocity fields of the GRS
or Oval BA were determined were carried out manually. That is, clouds were
assumed to be passive tracers and their displacements over time were used to
determine velocities. In laboratory flows, manual methods for extracting velocities
were replaced by automated methods such as particle image velocimetry or
coherent image velocimetry (CIV) [37,38] to extract velocities automatically using
correlation methods. Those automated methods and similar correlation methods
[39] fail to work with Jovian images taken more than 42 min apart because
the Jovian velocities distort the clouds so much that the automated methods
are unable to find correlations between the images. The advantage of longer
time intervals between the images is that the extracted velocities have smaller
uncertainties, and the advantage of automated methods over manual methods
is that the velocity fields obtained of the GRS and Oval BA contain millions
of vectors, while the manually extracted field contains hundreds or at most a
few thousand. We recently developed a refinement of CIV, called the advected
corrected coherent image velocimetry algorithm (ACCIV) that allowed us to use
images separated by 10 h to extract automatically the velocities of the GRS and
the surrounding zonal flows at 23◦ S. With ACCIV and CIV, we also extracted
the velocities of the Oval BA and its surrounding zonal flows at 34◦ S [3]. The
characteristic velocities of these vortices and zones are approximately 100 m s−1,
and the uncertainty of the measurements is approximately ±5 m s−1.

Rather than solving the inverse problem with an initial-value code, as outlined
above, we use a steady-state finder, which is a code that quickly computes the
steady or uniformly translating solutions to equations (1.4)–(2.1). This is a much
more efficient method and is described in Shetty et al. [35,36]. Rather than using
generic values in searching for the best-fit parameter values, we use the genetic
algorithm as described in Zohdi [40] and Shetty & Marcus [36] to find the values
of the unknown parameters that minimize the L1 norm between the velocities
computed with the numerical model and the observed velocities (see §3). Rather
than search over all possible parametrizations of the Jovian atmosphere between
approximately 9◦ S and approximately 39◦ S, we separately solve for the flow near
the latitudes of the GRS and of the Oval BA.
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Figure 3. Schematic of the PV of the reduced-parameter model of a Jovian vortex illustrating its
input parameters.

To model the flow near the GRS (and the Oval BA), we use the
reduced-parameter model that is shown schematically in figure 3. In this reduced-
parameter model we assume that far from the vortices, the flow forms bands of
uniform PV (three bands are shown in figure 3). We exploit the fact that the GRS
has been shown by several groups of authors to be a compact region of anomalous
PV (cf. the references cited in the review article [32]). Here, we parametrize each
vortex by assuming that it consists of a set of nested patches of anomalous PV
(two nested regions are shown in figure 3). In our reduced model of the GRS, the
PV of the vortex is compact and consists of two nested patches of uniform PV with
values qVOR

2 and qVOR
1 . Different values of PV are indicated by different shades of

grey in figure 3. The outer boundaries of these patches have infinitesimal widths,
and the diameters of the east–west principal axes of the inner and outer patches
are (Dx)2 and (Dx)1, respectively. In our models, the GRS and Oval BA are each
embedded in a zonal flow that consists of three uniform patches of PV. Far from
the vortex, the zonal flow in figure 3 becomes parallel to the east–west axis, and
the latitudes of the two interfaces between these three patches asymptote to yE
and yW. At these two interfaces, the ‘jumps’ or changes in the values of the PV
are DQE and DQW, respectively. These interfaces have widths of dE and dW. The
GRS or Oval BA, represented by the compact, nested patches of PV, deform the
contours of the interfaces between the patches of zonal PV so that they bend
around the vortex. In our model, the locus of the four contours between the
five patches of uniform PV are all computed numerically and determined such
that the flow (which is uniquely determined by the PV) is a steady solution to
the quasi-geostrophic equations of motion in a frame translating eastward with
velocity U (where U is uniquely determined by the equations of motion).

In figure 3, the regions of anomalous PV representing the vortices are embedded
within the Jovian zonal flows, but their PV is not simply superposed on the zonal
bands with straight interfaces. A set of east–west zonal winds that consists of a set
of bands of uniform PV with straight edges could exist as an equilibrium solution
to equations (1.4)–(2.1). However, the superposition of those bands of PV with
the anomalous PV of a GRS could never be a steady (or uniformly translating)
solution of equations (1.4)–(2.1) because the velocity produced by the anomalous
PV of a GRS (an extension of the way in which the Biot–Savart law produces
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circulation around a vortex) distorts the PV of the zonal bands, so that the
interfaces between the PV zonal bands would become curved. In a steady (or
uniformly translating) flow, the interfaces between regions of uniform PV must
be coincident with streamlines. It is, therefore, impossible for an interface of the
zonal PV to intersect the outermost streamline of the GRS, so it is necessary that
the interfaces between the PV of the zonal flow bend around the GRS, as in the
schematic in figure 3. Thus, the shapes of each patch, interface and streamline are
not free parameters, but are computed by the steady- (or uniformly translating)
state finding code.

The fast-solver that computes (uniformly translating) steady-state solutions of
the quasi-geostrophic equations (1.4)–(2.1) requires slightly different information
to initialize than a standard initial-value solver. Instead of requiring an initial
velocity field, the steady-state finding code requires that we specify: (i) u∞(y)
(which is known by observations), (ii) the PV along the north–south line at the
extreme right-hand side of the computational domain, which is effectively q∞,
the function for which we seek a best fit, and (iii) the values of the PV along an
east–west line that passes through the vortex (which are unknown parameters).
The PV along these two lines remains fixed as the steady-state finder is iterated.
For the GRS, we choose that east–west line to be the latitude 23◦ S, and for the
Oval BA, we choose it to be latitude 33◦ S (based on observations, these latitudes
are the principal east–west axes of these two vortices).

In this study, the GRS or Oval BA are each represented by at most two nested
patches of PV because we found that having more than two did not improve the
match between the best-fit solution and the observed ACCIV-extracted velocities.

To model q∞(y), we assumed that it was nearly piecewise-constant, so we
carried out calculations in which q∞(y) consisted of Nz bands of uniform PV,
and in which the interfaces between each band were smoothed over some finite
distance (a separate distance for each interface). However, we found that for both
the GRS and Oval BA, having just one interface south of the vortex centre and
one north of the vortex centre was sufficient and that more interfaces did not
improve the fit of the best-fit solution to the observations. Thus, the zonal flows
embedding both the GRS and the Oval BA were modelled with three bands of
PV, as shown in figure 3. Near the latitude of the interface of zonal PV south
(or north) of a vortex centre, there is an eastward-going (or westward-going) jet
stream. We model that interface as a jump in PV of strength DQE (or DQW),
located asymptotically far from the vortex at latitude yE (or yW), and with a
latitudinal width dE (or dW), such that q∞ for the zonal flow for either the GRS
or the Oval BA is discretized as

q∞(y) ≡ DQE

2

(
tanh

y − yE

dE
+ 1

)
+ DQW

2

(
tanh

y − yW

dW
+ 1

)
. (2.4)

Thus, our model for the flow near the GRS (or for the Oval BA) consists of 11
parameters: Lr, (Dx)1, (Dx)2, qVOR

1 , qVOR
2 , yE, yW, DQW, DQE, dE and dW. Once

the 11 parameter values are specified, the fast-solver finds a uniformly translating
equilibrium solution to equations (1.4)–(2.1) with those values. The fast-solver
computes the shapes of the interfaces along with the value of U , the rate at which
the vortex drifts eastward with respect to system III.
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Table 1. The best-fit parameters for the GRS and Oval BA. (Values and uncertainties from Shetty
& Marcus [36]. The last two entries in the table, the area and the aspect ratio, are quantities that
are derived from the best-fit model, and are not independent parameters of the model. Areas in
the table are from the best-fit models and are defined to be the areas enclosed by the model’s outer
contour of the PV, i.e. the contour with east–west diameter (Dx )1. The aspect ratio is defined as
the ratio of the east–west diameter (Dx )1 to the north–south diameter of the models’ outer contour
of PV. Note that the best-fit values of the inner core qVOR

2 and outer envelope qVOR
1 PV of the

Oval BA are nearly the same, so we treat the anomalous PV of the Oval BA as one region of
PV rather than two nested regions. Also note that the best-fit value of DQW for the Oval BA is
effectively zero, meaning that there is no PV interface at the westward-going jet north of the centre
of the Oval BA.)

parameter unit GRS Oval BA

(Dx )1 km 15400 ± 100 7100 ± 90
(Dx )2 km 8300 ± 530 —
Lr km 2300 ± 70 1900 ± 150
qVOR
1 10−5 s−1 12.0 ± 0.7 13.3 ± 1.3

qVOR
2 10−5 s−1 7.5 ± 0.5 —

DQE 10−5 s−1 3.4 ± 1.0 1.4 ± 0.5
DQW 10−5 s−1 −7.0 ± 0.9 0
yE

◦ S 25.6 ± 0.3 35.3 ± 0.7
yW

◦ S 19.9 ± 0.3 —
dE km 400 ± 200 400 ± 200
dW km 700 ± 200 —

area 106 km2 120.9 ± 0.5 30.8 ± 0.2
aspect ratio 1.6 ± 0.1 1.2 ± 0.1

3. The best-fit solutions

The results of the search for the best-fit parameter values as determined by
Shetty & Marcus [36] are shown in table 1. The primary measure for determining
that a set of parameters was the best fit was that that the set minimized
the L1 norm of the difference between the velocity field computed with those
parameter values and the observed velocity vectors as extracted from the images
by the ACCIV method. For both the GRS and the Oval BA, the differences were
compared at approximately 1 × 106 grid points that covered the vortices and the
surrounding zonal flows. The uncertainties listed in table 1 for each of the 11
best-fit parameters for the GRS and Oval BA were computed with a boot-strap
Monte Carlo method [36,41], which is a standard method for finding uncertainties
when the distribution function of the uncertainty at each measurement point is
not known.

Quantitatively, the numerical solutions of the GRS and Oval BA evaluated with
the best-fit parameter values in table 1 were determined to be good by showing
that the L1 norm difference between the velocity fields of the numerical solutions
and the velocities extracted from the observations is small [36]. Qualitatively,
those numerical solutions can be seen to be good by examining figures 4 and 5,
which show comparisons between the velocities from the best-fit models and
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Figure 4. GRS: comparison of observed (HST, April 2006) velocities with model velocities computed
with best-fit parameter values. Black curves are the model velocities and grey curves are observed
velocities. (a) North–south velocities along the east–west principal axis of the GRS and (b) east–
west velocities along the north–south principal axis of the GRS.
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(b)

Figure 5. Oval BA: comparison of observed (HST, April 2006) velocities (grey curves) with model
velocities (black curves) computed with best-fit parameter values. Shown as in figure 4.

the observed velocities along the two principal axes of the GRS and Oval BA.
Despite the fact that the model has only 11 free parameters, the best-fit models
are good fits to the observations due to the facts that the models are true
equilibrium solutions to the equations of motion and that tens of thousands of
sets of parameter values were examined to determine the set of values that best
fit the observations.

The results that are relevant with respect to the question of the staircasing of
the PV for Jupiter are the values of yE, yW, DQW, DQE, dE and dW for the GRS and
Oval BA. The q∞ (up to an arbitrary gauge constant) or far-field zonal PV as a
function of latitude between 9◦ S and 39◦ S is shown in figure 6. The answer to the
question ‘do Jupiter’s zonal flows consist of bands of homogenized PV’ is partially
yes. If the zonal flow had not formed regions with homogenized PV, and instead
the PV was a smoothly varying function of latitude, then the Jovian PV profile
q∞(y) near the GRS (or Oval BA) would be poorly approximated by a piecewise-
constant function with only three ‘pieces’ with two interfaces between them.
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Figure 6. Zonal PV between 9◦ S and 39◦ S from our best-fit parameter values as a function of
latitude. Also indicated are the latitudes of the observed locations of the maxima of Jupiter’s two
eastward-going jet streams (horizontal solid lines) and two westward-going jet streams (horizontal
dashed lines) within this region (see figure 1). Although the PV is nearly piecewise-constant, it
does not form a monotonic staircase. There is a PV interface at the latitudes of both eastward-
going jet streams, but there is also one at the westward-going jet stream north of the GRS. The
PV does not form a monotonic staircase.

The approximation of a continuous PV profile by a piecewise-constant function
would improve if the number of discontinuities Nz , or interfaces, increased (and
a near perfect fit as Nz → ∞). However, our numerical experiments found that
piecewise-constant PV profiles with Nz > 2 did not improve the fit for the zonal
flow near the GRS (and with Nz > 1 did not improve the fit for the zonal flow near
the Oval BA), thereby demonstrating that the PV profile in each of our models
was well-approximated by regions of uniform PV separated by sharp interfaces.
The evidence that the Jovian PV interfaces are sharp is demonstrated by the fact
that the widths dE and dW of the interfaces of the best-fit models of both the
GRS and Oval BA are much smaller than the latitudinal widths of the bands of
homogenized PV (figure 6).

The answer to the question ‘do Jupiter’s zonal flows consist of bands of
homogenized PV’ is only a partial, rather than a full, yes is due to our definition
of a ‘band’. Based on numerical simulations such as those in figure 2, we had
defined a band to be the region between two adjacent eastward-going jet streams.
Figure 6 and the fact that DQW �= 0 for the GRS show that with this definition
of band, the PV in a band is not uniform. By now re-defining band to mean
the region between an eastward-going jet stream and a neighbouring westward-
going jet stream, we can state that we have found that the PV within a band is
homogenized over the latitudes that we have examined.

The answer to the question ‘if homogenized bands exist, are the interfaces of
the PV located at the eastward-going jet streams’ is no. Figure 6 shows that
yE and yW for the GRS are at the latitudes of its ambient eastward-going and
westward-going jet streams, respectively, and that yE for the Oval BA is at the
latitude of the eastward-going jet stream to its south.
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The answer to the question ‘if bands of homogenized PV exist, is the PV in
a monotonic staircase, decreasing from north to south’ is no as indicated by the
negative and large-amplitude value of DQW for the GRS and as shown in figure 6.

It is the fact that DQW < 0, derived from our solution of the inverse problem,
which shows that Jupiter’s zonal PV does not form a monotonic staircase. Because
the workings of the inverse problem are not immediately transparent, we show
qualitatively in §4 that DQW < 0 is necessary for the GRS not to be highly
elongated in the east–west direction.

4. The aspect ratio of the Great Red Spot and non-monotonic zonal
potential vorticity

Here, we show how q∞(y) affects the GRS’s aspect ratio, which is defined to be
north–south minor diameter of qVOR

1 , the GRS’s outer PV anomaly (the white
region in figure 3), divided by its east–west major diameter, (Dx)1. We show
that the aspect ratio is a strong function of q∞(y) and that if q∞(y) did not
have a large backwards jump of PV (defined to be a PV interface where the
sign of the PV change makes the staircase non-monotonic) at approximately
the latitude of the westward-going jet stream just north of the centre of the
GRS, the GRS would be highly elongated in its east–west direction. Thus, even
without the inverse problem, we can argue that Jupiter’s zonal PV does not form
a monotonic staircase.

(a) Zone–vortex interactions

Using the one-and-a-half layer quasi-geostrophic approximation, Van Buskirk
[42] and Shetty et al. [35] showed that the aspect ratio of a vortex embedded in
a shearing zonal flow is primarily a function of the ratio of the magnitude of the
PV of the vortex to the shear of the local zonal flow. To a first approximation,
the aspect ratio of a vortex that is a steady or uniformly translating solution
of the one-and-a-half layer quasi-geostrophic equations behaves as it does for a
Moore–Saffman vortex, i.e. a vortex of uniform vorticity embedded in a zonal flow
with uniform shear and with 1/Lr ≡ hb ≡ jb ≡ 0. With no shear, a Moore–Saffman
vortex is round, and as the shear increases, the vortex is stretched in the direction
of the zonal flow [43]. For a vortex in which the PV consists of two nested regions,
such as the vortex shown schematically in figure 3, when [(Dx)1 − (Dx)2)] > 2Lr,
the aspect ratio is primarily a function of qVOR

1 divided by the local zonal shear.
The PV in the vortex’s core, due to qVOR

2 , and the other parameters of the model
do not strongly affect the aspect ratio because the influence of a delta-function
patch of PV falls off exponentially at distances greater than Lr from the delta
function [32]. It would, therefore, appear that the aspect ratio of the GRS is a
function primarily of qVOR

1 and the shear s∞(y) ≡ du∞/dy of the observed zonal
flow u∞(y), and that the aspect ratio should be independent of q∞(y). However,
due to zone–vortex interactions, the previous sentence is misleading.

To understand the interactions between vortices and zonal flows, it is first
necessary to understand that the total PV of the flow is not a linear superposition
of the far-field zonal PV and the PV anomaly of a vortex. For example, the total
PV q of our best-fit GRS model (which is a uniformly translating solution of

Phil. Trans. R. Soc. A (2011)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The PV of Jupiter’s zonal winds 785

−32
−28
−24
−20
−16

(a)
(i)

(ii)

(iii)

(iv)

(b)

−32
−28
−24
−20
−16

−32
−28
−24
−20
−16

−32
−28
−24
−20
−16

pl
an

et
og

ra
ph

ic
 la

tit
ud

e 
(∞

)

longitude (∞)
235240245250255260 −150 −100 −50 0 50 100 150

east−west velocity (m s−1)

Figure 7. Vortex–zonal flow interactions. (a) (i) q or total PV from the best-fit model of the GRS,
(ii) q∞ or far-field PV, (iii) qINT or interaction PV, and (iv) qGRS or the PV of the vortex. A
grey-scale map is used with white representing the most anti-cyclonic flow, and black representing
the most cyclonic flow. (b) The corresponding east–west velocity produced by each PV along the
north–south principal axis of the GRS.

equations (1.4)–(2.1)) is shown in figure 7a(i), and it is not the sum of the best-
fit PV q∞ of the far-field zonal flow (figure 7a(ii)) as defined in equation (2.2) and
the best-fit PV anomaly qGRS of the GRS (figure 7a(iv)), which we define to be
the PV due to qVOR

2 and qVOR
1 . To understand the nonlinearity mathematically,

define the interaction PV as

qINT(x , y) ≡ q(x , y) − [q∞(y) + qGRS(x , y)]. (4.1)

The interaction PV is found by numerically computing a steady (or uniformly
translating) solution of equations (1.4)–(2.1), thereby finding the parameters
q∞(y), qGRS(x , y) and the total PV q(x , y). Then, qINT(x , y) is computed using the
definition in equation (4.1). In general, equilibrium is only possible with a non-
zero qINT(x , y) (figure 7a(iii)). To understand the PV interaction from a physical
point of view, consider the locations in latitude y of the PV interfaces with jumps
DQE and DQW as functions of longitude x . These locations for the flow around the
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Figure 8. PV of the best-fit model of the GRS. The value of the PV in the model is indicated with
a grey scale (and consists of five patches). The thick, white streamlines indicate the locations of
the PV jumps in the zonal component of the flow. The bending of the curves around the GRS is a
result of the nonlinear interaction between the GRS and the zonal flow and is the reason the total
PV of the flow cannot be modelled as a superposition of the PV of the GRS and the PV of the
far-field zonal flow.

GRS are the two streamlines shown as thick, white curves in figure 8. The velocity
created by the PV anomaly of the GRS causes those streamlines to bend around
the GRS, rather than intersect it. (The outer boundary of the GRS’s PV anomaly
is also a streamline, and streamlines cannot intersect, except at stagnation points
where the velocity must be zero.) Figure 7 shows that qINT(x , y) (figure 7a(iii))
is created by the bending of the PV jumps of the zonal flow around the GRS.
That is, qINT(x , y) is what needs to be added to the straight streamlines of the
far-field zonal flow (figure 7a(ii)) so that the zonal flow bends around the GRS.

Figure 7 shows that qINT consists of two compact regions of PV anomaly just
north and south of the GRS. By definition, qINT asymptotes to zero far from
the GRS. For the GRS, we found from the solution to the inverse problem that
DQE > 0 and DQW < 0, so the two patches of qINT are both anti-cyclonic (counter-
clockwise) like the GRS. The velocities created by the total PV and its three
components are shown in figure 7(b). The velocity created by q∞ embeds the GRS
in anti-cyclonic shear; however, the velocity produced by the two anti-cyclones
that make up qINT embeds the GRS in a cyclonic (clockwise) shear, such that
the total shear that the GRS feels from q∞ + qINT is nearly zero. If the PV of
the far-field zonal flow decreased monotonically from the North to South Pole,
then DQW would be non-negative. A positive DQW, together with a positive DQE,
would make qINT into a dipole with an anti-cyclonic patch south of the GRS and
a cyclonic patch north of it. This dipole would not significantly reduce the shear
in which the GRS is embedded, but rather produce a westward-going jet near the
centre of the GRS, which would make the GRS drift rapidly to the west.

With no interface in the zonal PV (i.e. if the zonal PV of Jupiter were
everywhere constant), qINT would be zero, the GRS would only feel the shear
s∞ ≡ du∞/dy, and (using the values of qVOR

2 , Lr and DQE from table 1—but see
the next subsection) the GRS would be much more elongated. Thus, it is the
interfaces of the zonal PV and, in particular, the non-monotonicity of q∞, that
prevents the GRS from being highly elongated by the local zonal shear s∞.
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(b) ‘Traits’ of the Great Red Spot

In a previous study of reduced-parameter models [35], we showed that the
values of qVOR

1 , Lr, yE and DQE can be approximately determined without formally
solving the inverse problem. We determined the dependence of the features or
traits of the GRS velocity field on the model’s parameters. For example, we
found that the maximum north–south amplitude of the velocity on the east–
west principal axis of the GRS (as shown in figure 4a) is strongly dependent
on the product LrqVOR

1 and is insensitive to all of the other parameters of the
model. In hindsight, this lack of dependence on the other parameters is not
surprising. First, there is no obvious mechanism for the east–west zonal flow
to affect the north–south velocity along the principal axis (because the qINT PV
is farther than Lr from the principal axis). Secondly, the longitudes of the two
locations of the extrema of the north–south velocity along the GRS’s principal
axis are approximately located at distances ±(Dx)1/2 from the centre of the GRS.
Thus, because [(Dx)1 − (Dx)2]/2 > Lr, qVOR

2 and (Dx)2 do not strongly affect the
north–south velocity at these locations.

We also found that the north–south velocity along the latitude of the principal
east–west axis decayed approximately exponentially in x outside the region of
anomalous PV (i.e. for |x | > (Dx)1, where the centre of the GRS is defined to
be at x = 0). This observation was consistent with the fact that the velocity
produced by a delta function of PV in the one-and-a-half layer quasi-geostrophic
approximation (equations (1.4)–(2.1)) falls off exponentially, with an e-folding
length Lr, with distance from the delta function [32]. Fitting the north–south
velocity along the principal axis for |x | > (Dx)1, we found a value of Lr that was
consistent with the value in table 1. Thus, both qVOR

1 and Lr can be found without
relying on solutions of the inverse problem.

From figure 7, it is apparent that the shear on the GRS from (qINT + q∞)
could be decreased by either increasing the value of DQE or by making DQW
negative and increasing its absolute value. Thus, it would appear plausible that
the effective shear of the zonal flow on the GRS could be reduced so that the GRS
did not become elongated and maintained its observed aspect ratio by sufficiently
increasing DQE. However, we found (and discuss in §4c) that by making DQE
large, the model’s location of the eastward-going jet stream south of the centre
of the GRS differs significantly from its observed location.

(c) Ingredients of the model of the Great Red Spot

One way to illustrate the effect of each of the parameters of the reduced-
parameter model of the GRS on the flow, and which illustrates the need for DQW
to be negative, is to examine the computed best-fit flow when we start with a
reduced-parameter model of the GRS with very few parameters, and then see
how the fit to observations improves as we add more parameters to the model. In
particular, we can examine how the fit changes when we include or exclude the
parameter DQW from the model. We begin with a model of the GRS that has
only one PV interface (i.e. with qVOR

2 ≡ qVOR
1 �= 0 and DQW ≡ DQE ≡ 0). In this

model, Lr, qVOR
1 and (Dx)1 are the only parameters of the model. The uniformly

translating solution to equations (1.4)–(2.1) using this very constrained model
that best fits the observations is shown in figure 9. This model was computed
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by minimizing the L1 norm of the difference between the computed and observed
velocities. Figure 9b shows that this highly constrained model accurately captures
the north–south velocities along the latitude of the principal east–west axis
exterior to the GRS (i.e. for |x | > (Dx)1), which is consistent with our arguments
that the east–west zonal flow does not strongly affect the north–south velocity
along the latitude that passes through the centre of the GRS. That figure is
also consistent with our arguments that the value of qVOR

2 does not strongly
affect the magnitude of the peak north–south velocities along the principal
east–west axis and that the locations of the north–south peak velocities are at
x = ±(Dx)1/2. However, because qVOR

2 ≡ qVOR
1 , the constrained best-fit model in

figure 9 does a poor job at capturing the quiet core of the GRS. Also, figure 9c
shows that the fit between the computed and observed east–west velocities along
the longitude of the north–south, minor principal axis is poor. Most relevant to
this discussion is that figure 9a shows that the aspect ratio of the modelled GRS
is 2.2, rather than 1.6, which shows that the GRS is significantly elongated in its
east–west direction.

If we now loosen our constraints and compute the best-fit model with two PV
interfaces for the PV anomaly of the GRS (i.e. qVOR

2 and (Dx)2 are also parameters
of the model), but still have no PV interfaces in the zonal flow (i.e. with DQW ≡
DQE ≡ 0), then the best-fit model with these constraints (figure 10) captures the
observed north–south flow along the entire latitude line that passes through the
centre of the GRS (figure 10b). However, the model’s east–west velocities still
fail to fit the observed velocities (figure 10c), and the GRS is still elongated in
its east–west direction with an aspect ratio of 2.4 (figure 10a). The east–west
elongation of the GRS model in figure 9 is less than the elongation of the GRS
model in figure 10 because the PV in the core of the former GRS model is greater
than that in the core of the latter.

As figure 11 shows, to capture the observed north–south velocities along the
latitude of the major axis, and the observed east–west velocities along the portion
of the minor axis longitude to the south of the centre of the GRS, it is necessary
to have a reduced-parameter model with two PV interfaces for the GRS anomaly
(as in figure 10) and also an interface in the zonal flow south of the centre of
the GRS (i.e. with DQE, yE and dE as model parameters in addition to all
of the parameters used in the model in figure 10). The best-fit model in this
constrained model puts the location of the peak of the eastward-going jet stream
at its observed latitude. The maximum velocity of the observed eastward-going jet
stream is less than that of the model’s maximum velocity (figure 11c). However, as
discussed by Asay-Davis et al. [3], the way in which velocities are extracted from
the satellite observations tends to ‘round’ the velocity at the peaks significantly,
so it is possible that the model’s maximum velocity of the eastward-going jet
stream is more accurate than that of the observations. Figure 11a shows that
the aspect ratio of the GRS in this model is 2.1, which is less than the aspect
ratios of the models in figures 9 and 10 due to the positive value of DQE.
However, this model’s aspect ratio is still high with respect to its observed
value of 1.6.

Using the constrained model whose best-fit solution is shown in figure 11 (i.e.
a model without an interface in the zonal PV north of the GRS’s centre), we
can examine vortices that are uniformly translating solutions of equations (1.4)–
(2.1) but are not the best-fit solution (i.e. that do not minimize the L1 norm
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Figure 9. Constrained best-fit model of the GRS. Here, the model’s PV is constrained to have no
interfaces in the zonal flow PV and only one for the GRS itself (i.e. DQE ≡ DQW ≡ 0 and qVOR

2 ≡
qVOR
1 ). (a) PV of the constrained best-fit model. (b) Comparison of the north–south velocities of the

model (black curves) and observations (grey curves) on the east–west principal axis. (c) Comparison
of the east–west velocities along the principal north–south axis. The observations (grey curves)
and model (black curves) are for the HST images of April 2006. Although this constrained model
captures the locations and magnitudes of the north–south velocity peaks (b), it fails to reproduce
the observed north–south velocities in the core of the GRS, and it does not reproduce the observed
east–west velocities well. The aspect ratio of the GRS produced by this model is much larger than
the observed value.
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Figure 10. Constrained best-fit model of the GRS. As in figure 9, but here, the model’s PV is
constrained to have no interfaces in the zonal PV and two in the GRS itself (i.e. DQE ≡ DQW ≡ 0).
The inclusion of a second PV interface in the model of the GRS allows this model to capture the
north–south velocity in the core of the GRS (as well as the locations and magnitudes of the north–
south velocity peaks). However, the model does not reproduce the observed east–west velocities nor
the observed aspect ratio of the GRS. Black curves indicate model velocity; grey curves indicate
observed velocity.

difference between their computed and observed velocities). For this family of
vortices, if we increase the value of DQE sufficiently (and allow the values of
the other parameters of the model to vary), we can find vortices that correctly
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Figure 11. Constrained best-fit model of the GRS. As in figure 9, but here, the model is constrained
to have one interface in the zonal flow PV (south of the GRS) and two interfaces in the GRS itself
(i.e. DQW ≡ 0). The inclusion of a PV interface in the zonal flow south of the GRS allows the model
to capture the correct location of the eastward-going velocity peak south of the GRS (as well as the
north–south velocity along the latitude line the passes through the centre of the GRS). However,
the model does not reproduce the location of the observed westward-going velocity peak north of
the GRS nor the observed aspect ratio of the GRS. One reason that there is only fair agreement
between the observed and model values of the magnitude of the eastward-going velocity peak south
of the GRS is that the observed velocity peaks are rounded by velocity extraction methods [3].
Black curves indicate model velocity; grey curves indicate observed velocity.
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reproduce the observed aspect ratio of the GRS, in addition to the correct north–
south velocities along the latitude line that passes through the centre of the GRS.
However, in these models, the computed location of the maximum velocity of the
eastward-going jet stream differs significantly from the observed latitude. Only by
including an interface of the zonal PV north of the centre of the GRS (i.e. using
the full 11-parameter model whose best-fit solution is shown in figures 4, 6 and 8)
can we correctly reproduce the observed east–west velocities, the north–south
velocities and the observed aspect ratio of the GRS. For that model, DQW is
negative, as shown in table 1 and figure 6.

5. Conclusions

(a) Results

Exploiting the manner in which the PV of Jupiter’s east–west zonal flows interact
with the planet’s two largest vortices, the GRS and the Oval BA, we have
determined Jupiter’s zonal PV between latitudes 9◦ S and 39◦ S. We found, as
speculated by other authors and as shown by many numerical simulations, that
the Jovian PV consists of a series of east–west bands in which the PV is nearly
uniform. Also, as speculated, we found that the eastward-going jet streams at
25.6◦ S and 35.3◦ S are located at the latitudes of sharp interfaces between the
bands of constant PV. The jump or change in PV at these interfaces have the
same sign and that sign is consistent with the PV forming a monotonic staircase
from the North Pole, where the PV is large and positive, to the South Pole,
where it is large and negative. However, contrary to most previous hypotheses
and simulations, we have shown that there is also a sharp interface of zonal PV
at the latitude of the westward-going jet stream at 19.9◦ S. The jump in PV at
19.9◦ S is backwards, i.e. it has the opposite sign as the other jumps in PV at
the zonal interfaces. Thus, between 9◦ S and 39◦ S, the Jovian zonal PV is not a
monotonic staircase.

(b) Reasons for a non-monotonic staircase of potential vorticity

One unlikely explanation of why our analysis did not find a monotonic staircase
of PV at 19.9◦ S is that the interface at 19.9◦ S in figure 6 is spurious. Near the
Equator, the quasi-geostrophic approximation needed for equations (1.4)–(2.1)
breaks down, and it could be that our analysis near the Equator is therefore
incorrect. However, 19.9◦ S is not so close to the Equator that such a breakdown
would be expected. Moreover, there must be some physical mechanism that
keeps the GRS from being elongated by the local zonal shear, and other than a
backwards jump in zonal PV, no other mechanism has been proposed. Therefore,
we believe that the non-monotonicity in the Jovian zonal PV is real, rather than
a symptom of bad modelling.

Another possible explanation for the non-monotonic PV interface of q∞ at
19.9◦ S is that Jupiter’s flows are constrained by the Taylor–Proudman theorem
so that the zonal winds are ‘columns’ aligned with the rotation axis. Busse [19]
argued that the zonal flows are Taylor columns confined between an outer sphere
at radius R (the weather layer) and an inner sphere of radius RB at the boundary
of Jupiter’s solid core. Schneider & Liu [23] argued that RB is much larger and
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is at the radius where the atmosphere becomes electrically conducting and the
magnetic field retards the flow. With this Taylor-column model of the zonal winds,
q and q∞ are the components of the potential vorticity and far-field potential
vorticity in the direction of the rotation axis (rather than the spherical radial
components). At most latitudes, equations (1.4)–(2.1) are still valid, and q∞ is
still well-approximated by equation (2.2). However, now b ≡ 0 in equation (2.2)
because the axis of rotation is everywhere parallel to the direction of the PV.
Furthermore, hb(y) is primarily due to the spherical geometry that constrains the
Taylor columns between R and RB . A latitude of special interest is qT where the
vertically aligned tangent cylinder of the sphere of radius RB intersects R, i.e. qT is
the dividing latitude in the weather layer: for |q| > qT, the bottom boundary of a
Taylor column of fluid is at radius RB; for |q| < qT, the Taylor column lies outside
the radius RB, and columns extend uninterrupted from the northern hemisphere
at radius R to the southern hemisphere at radius R. Equation (2.2) is only
approximately valid near qT because of the discontinuity in hb(y) at qT where the
value of hb(y) doubles. Therefore, if the zonal flows are Taylor columns, our result
in figure 6 is only approximately valid near qT. None the less, it is worthwhile
considering whether qT is equal to 19.9◦, and whether the discontinuity in hb(y)
at qT causes a barrier to PV mixing there, resulting in a PV interface. A value
of qT = 19.9◦ implies that RB/R = cos(19.9) = 0.94, which is close to the value of
0.96 used by Schneider & Liu [23]. If there were no meridional PV mixing on
Jupiter, and if Jupiter rotated as a solid body, then the abrupt change in hb at qT
would create a jump in the value of q∞ at qT, and it is reasonable to ask whether
some remnant of that jump currently exists at 19.9◦ S. The answer is probably
no. The change in PV at qT of a solid-body rotating Jupiter is not backwards
(i.e. the change in PV from the Pole to qT because of the topographic PV has
the same sign as the jump in PV at qT). Therefore, the jump in PV at qT for
a solid-body rotating Jupiter has the opposite sign of the jump in PV that we
found at 19.9◦ S and that was shown in figure 6.

We believe that the most plausible explanation for the non-monotonicity of the
Jovian zonal PV is its ‘initial condition’. Both the theoretical argument (Phillips
effect) for, and the numerical simulations of (cf. Scott & Polvani [14]), staircasing
require that the initial distribution of PV be approximately monotonic. If the
‘initial’ Jupiter had solid-body rotation and if its relative vorticity in a spherical
weather layer were dominated by its radial component, then the initial PV would
be monotonic in latitude decreasing from north to south.3 However, for the Jovian
atmosphere, what do we mean by its initial condition? The complex processes
by which the final atmosphere formed and spun up to its present rotation rate
are not known. If, for example, the Jovian atmosphere formed with a strong
Equatorial jet stream, then the initial condition of the zonal PV might not have
been monotonic in latitude. Our numerical simulations of the evolution of zonal
PV (similar to the evolution of the flow shown in figure 2), show that the late-
time zonal PV is a function of the initial conditions. For example, the number
3In the model in which the zonal flows are Taylor columns, the Ertel PV of a solid-body rotating
Jupiter is not monotonic: the magnitude of the PV gradually decreases from the North Pole to
(qT)+; decreases by a factor of 2 from (qT)+ to (qT)−; increases back to the value it had at (qT)+ at a
latitude of sin−1[0.5 sin(qT)] � 0.5qT � 10◦; and becomes infinite at the Equator. However, 10◦ is so
close to the Equator, the stratification due to gravity is nearly perpendicular to the planet’s rotation
axis, and due to the stratification, it is unlikely that the Taylor-column hypothesis is valid there.
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of bands of nearly uniform PV in the late-time flow changes as a function of the
initial conditions [12], and the late-time zonal PV can be non-monotonic for some
non-monotonic initial conditions. Therefore, future theoretical and computational
studies of Jupiter’s formation and ‘spin-up’, or of the formation of its zonal
flows, especially those that use global circulation models, should be required
to reproduce and explain the current non-monotonicity of the zonal PV near
its Equator.
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