
d .  Fluid Mech. (1990), vol. 215, p p .  393430 

Printed in Great Britain 

393 

Vortex dynamics in a shearing zonal flow 

By PHILIP S. MARCUS 
Department of Mechanical Engineering, University of California at Berkeley, 

Berkeley, CA 94720, USA 

(Received 23 January 1986 and in revised form 1 November 1989) 

When vortices are embedded in a shearing zonal flow their interactions are changed 
qualitatively, If the zonal flow’s shear and the vortex’s strength are of the same order 
and opposite sign, the vortex is pulled into a thin spiral, fragments, and is destroyed 
in a turn-around time. If the signs are the same, the vortex redistributes its vorticity 
so that its maximum value is at the centre, and its shape is determined by the ratio 
of its vorticity to the shear of the surrounding zonal flow. The dynamics depends 
crucially on the exchange between the self-energy of the vortices and the interaction 
energy of the zonal flow with the vortices. A numerical example that shows all of 
these effects is the breakup of a vortex layer : either a single large vortex is formed 
or successively smaller and more numerous thin filaments of vorticity are created. 
Two stable vortices are shown to merge if their initial separation in the cross-zonal 
direction is smaller than a critical distance which is approximately equal the vortices’ 
radii. The motions of large vortices are constrained by conservation laws, but when 
the zonal flow is filled with small-scale filaments of vorticity, the large vortices 
exchange energy with the filaments so that they are no longer constrained by these 
laws, and their dynamics become richer. Energy is shown to flow from the large 
vortices to  the filaments, and this observation is used to predict the strength of 
boundary layers and the critical separation distance for vortex merging. 

1. Introduction 
Large vortices are interesting because of their longevity, their robustness to large 

perturbations, their coexistence with surrounding turbulence, and their ubiquity in 
laboratory, geophysical, and astrophysical flows. There have been numerous studies 
of the stability, interactions, and mergers of small numbers of isolated monopolar 
and dipolar vortices (cf. Overman & Zabusky 1982; Flierl, Stern & Whitehead 1983; 
Melander, Styczek & Zabusky 1984; Buttke 1990). In  this paper we extend the study 
of two-dimensional vortices by examining their behaviour when they are embedded 
in shearing zonal flows. Our study is motivated by the fact that vortices frequently 
appear in zonal flows and by our observation that zonal flows greatly alter vortex 
interactions. Examples of zonal flows containing vortices are laboratory mixing 
layers, the Gulf Stream, and the East-West winds of Jupiter, Saturn, and Neptune. 

The addition of a zonal flow complicates the vortex dynamics not only because the 
zonal flow advects and shears the vortices, but also because the vortices react back 
upon and change the zonal flow. Disentangling the physics of all of these processes 
from a numerical simulation or an experiment can be extremely difficult, so this 
study is restricted to zonal flows with uniform and approximately uniform potential 
vorticity up. (As we show in 52 of this paper, this class of zonal flows is very broad, 
and in fact any zonal flow can be made to have uniform potential vorticity if the 
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bottom boundary condition is chosen properly.) The advantage of studying a zonal 
flow with uniform potential vorticity is that the zonal flow affects the vortices, but 
the vortices do not affect the zonal flow (Marcus 1986, 1987). Hence, the zonal 
velocities are approximately constant during the vortex interactions, and the vortex 
dynamics are simpler to understand. We have found that when the zonal flows do not 
have uniform wp, the zonal velocities evolve with the same timescale as the vortices. 
Although this is no more difficult to compute, a physical interpretation of the 
dynamics is more difficult. A second motivation for studying vortices in zonal flows 
with uniform wp is that these zonal flows occur frequently because one of the ways 
in which vortices react back upon a zonal flow is by making its potential vorticity 
homogeneous (Rhines & Young 1982). For example, Nielsen & Schoeberl (1984) 
showed numerically that a small, locally unstable region of a zonal flow (where the 
gradient of wp is positive) evolves into a much larger region that is approximately 
marginally stable (where the gradient of wp is approximately zero). As a second 
example, Sommeria, Myers & Swinney (1988) showed experimentally that an 
external forcing that mixes the fluid also mixes and homogenizes the potential 
vorticity (whose governing equation is Dwp/Dt z 0 - see $2) so that zonal flows with 
approximately uniform wp are produced spontaneously. Of course, not all unstable 
or forced flows produce zonal velocities with uniform wp, but this class of flows is 
sufficiently common and produces vortex dynamics sufficiently rich and easy to 
interpret that it warrants study. 

In  $ 2  we present the equations of motion and describe their numerical solution. In 
93 we demonstrate how the shear of a zonal flow breaks the degeneracy between 
clockwise and counterclockwise vortices ; the vortex with the same sense of rotation 
as the zonal flow remains intact while the vortex with the opposite sign is stretched 
into a thin layer and breaks into small fragments or dissipates. In  $4  we examine the 
breakup of a vortex layer in a zonal flow. We choose i t  as an example because it 
clearly demonstrates the transfer of energy between the self-energy of the vorticity 
and the interaction energy of the zonal flow with the vorticity. The behaviour of the 
layer depends on the direction in which the energy is transferred which depends in 
turn upon the sign of the vorticity of the layer with respect to the sign of the shear 
of the zonal flow. Vortex mergers are examined in $$4 and 5 .  We show how the 
potential vorticity rearranges itself inside a large vortex after smaller vortices bind 
together. We also show that vortices merge if and only if their initial separation in 
the cross-zonal direction is less than a critical value. Small-scale filaments of vorticity 
within the zonal flow are found to absorb energy from the large vortices, and we use 
this observation to  predict the critical value for the initial separation between 
merging vortices. Our conclusions are presented in $6 where we also discuss future 
numerical work and the relationships among this work, laboratory experiments 
(Sommeria et al. 1988), and numerical work on long-lived planetary vortices (Marcus 
1988). 

2. Equations 
2.1. Equations of motion 

In  this paper we consider two-dimensional, inviscid, constant-density, quasi- 
geostrophic flows. The fluid is contained in a rapidly rotating annulus bounded above 
by a flat impermeable surface at z = 0 and below by a smooth, axisymmetric, but not 
flat bottom at x = - [ H  + h(r) ] ,  where H is the mean depth and ( h / H (  6 1.  The velocity 
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u of this flow is two dimensional (perpendicular to z2), divergence-free, and governed 
by a generalization of the Euler equation 

where 52z2 is the angular velocity of the rotating annulus, 17 is the pressure head of 
the flow, p is the density, and u is the velocity as observed in the rotating frame of 
the annulus. Equation (2.1) is equivalent to the shallow-water equation for a 
eonstant-density fluid and is valid for small Rossby number, Ro = U/2S2L < 1, where 
L and U are the characteristic magnitudes of the horizontal length and of u. We have 
chosen an annular rather than the more standard planar geometry because it has a 
naturally periodic coordinate, hence no upstream or downstream boundary 
conditions. Moreover, the geometry will allow us to make a direct comparison with 
the laboratory experiments of Sommeria et al. (1988). The boundary conditions of the 
flow are that u, = 0 at r = R,, and r =Rout.  Note that (2.1) reduces to the Euler 
equation for h = 0, and to the usual /3-plane equations for h = /3y or h = Pr. 

Many of the simulations in this paper produce flows with more-or-less permanent, 
non-axisymmetric features, so a natural question to ask is how fast those features 
travel around the annulus. Because of the rotational invariance of equation (2.1) (i.e. 
if u(r, $, t )  is a solution to (2.1), then so is u(r, $ - C t ,  t)+Crt?$, where C is arbitrary), 
this question does not have a unique answer. Therefore, when we refer to the 
rotational speed of a feature, it will be with respect to the surrounding zonal velocity. 
Another symmetry of (2.1) is that it is invariant under the transformation 
Qh(r)+-Qh(r) ,  $+-$, and u$+-u#. 

2.2. Decomposition of the velocity 
The potential vorticity wp of u is defined as 

a J r ,  $, t )  = V x u(r, $, t )  -252h(r)/H. (2.2) 

The flows of interest to us in this paper have large regions of wp superposed on 
background axisymmetric zonal flows of nearly uniform potential vorticity. This 
suggests a decomposition of the flow into two components. We define the background 
zonal flow ir to be the exactly axisymmetric, azimuthal flow with uniform potential 
vorticity : 

6, = 0, (2.4) 

where C, and C, are constants. The other component v is simply defined as u = u- 6. 
We denote the curl of u and ir as w and h respectively, and we define the shear as cr 
and 6: 

and 
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Note that 6 is itself an exact equilibrium solution of (2.1). Equation (2.1) implies 

Dw - - 4 = O  
Dt 

and because w = wp - 2C,, it is also advectively conserved : 

D W  
~ = 0. 
Dt 

(2.7) 

For the decomposition of u into 6 and v to be unique, the constants C, and C, must 
be specified. The choices of C, and C, are arbitrary, and we define them as 

(2.10) 

where A is the area of the annulus that bounds the fluid, Ltot is the total angular 
momentum of u,  and rktt and ri;t are the circulations of u at Rout and R,: 

(2.11) 

(2.12) 

The right-hand sides of (2.9) and (2.10) are time-independent, therefore 6 is time- 
independent. The definition of C, makes Cn, the circulation of the v-component of the 
velocity a t  Rin, equal to zero for all time. The definition of C, makes the average value 
of u (weighted by r2)  zero for all time (see $2.3). All definitions of the decomposition 
lead to the same physical results, but these choices are very useful: we shall argue 
that the dynamics of a vortex embedded in a zonal flow depends upon the ratio of 
o to the shear of the local zonal flow. With C, defined by (2.9), the shear of the 
surrounding zonal flow is approximately 3. The definition of C, leads to a simple 
relationship between the kinetic energies and o (see $2.3). 

2.3. Conserved quantities 

Equation (2.1) conserves angular momentum, energy, two independent circulations, 
and all moments of the enstrophy. 

The circulation Pot = Pot -Pot in is conserved, and it can be written in terms of w :  

r - w(r,t)rdrd$+r, ,  
tot - ID (2.13) 

where D is the domain of the annulus and & is the time-independent constant 

r, = 2AC,. (2.14) 

(We have used the fact that the mean depth of the annulus H is defined such that 
J i ~ t h ( r )  r d r  = 0.) Therefore w(r, t )  integrated over the domain of the fluid is 
conserved. 
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The angular momentum Ltot is 

(2.15) 

where Lo is the time-independent constant 

L o = 1 zp H [ r t O t  out R2 o u t - r i n ~ i n l - ~ , p ~ ~ ~ 1 [ ~ ~ u t  tot 2 + ~ ~ 1 - 2 n p ~ l r r 3 h ( r )  dr. (2.16) 

Equation (2.15) shows that the w-weighted value of r2 is conserved in time. 
Conservation of angular momentum and circulation imply conservation of r2a ,  and 
with our choice of C, 

lD r2a(r ,  t )  r dr dq4 = 0. (2.17) 

The conserved kinetic energy is 

Etot = +pHjDu2rdrdq5 = Eself( t )+Eint( t )+E0,  

where ESelf is quadratic in v :  

Eself(t) E &H lD 02r dr dq5 = - +pH w(r,  t )  $(r,  t )  r dr dq5. JD 
Eint is linear in v :  

Eint(t) =pHJDv*6rdrdq5 = -pH w ( r , t ) ~ ( r ) r d r d # ,  

and E,  is the time-independent constant 

E, = +pH JD G2r dr dq4. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Here $ ( r ,  t )  and $ ( r )  are the stream functions of v and 6 respectively and their gauges 
are chosen so $(Rout) = $(Rout) = 0. Without this choice of gauge and our definition 
of C,, the expressions for Eself and Eint would contain time-dependent surface terms. 

The self-energy Eself(t) is the energy that the flow v would have if 6 = 0. For 
example, in the absence of horizontal boundaries Eself(t) is (up to an additive 
constant) 

Ese”(t) = -g JD JD,ln lr-r’l w(r ,  t )  w(r’,  t )  rdrd$r’dr’dq5’. (2.22) 

The self-energy of the flow is completely analogous to the self-energy of a distribution 
of electric charge (in two dimensions). The self-energy of two vortices increases 
logarithmically with the distance between them ; pushing two vortices (or charges) of 
the same sign together increases P e l P  and requires external work. A single uniform 
vortex with fixed area is in its highest energy state when its shape is round ; any 
elongation reduces its self-energy . Because a boundary can be conceptually replaced 
by an image vortex of equal and opposite sign on the opposite side of the boundary, 
i t  is clear that moving a vortex closer to a boundary (and hence closer to its opposite- 
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signed image) decreases Eself. The term Eint(t) is the interaction energy between the 
v-  and 6-components of the velocity. It is analogous to th,e interaction energy 
between a charge of strength w in an electrostatic potential $(r) .  Although Eself is 
invariant under the transformation w + - w ,  Eint is not. This is why vortex dynamics 
with no background flow is degenerate with respect to the sign of w and why stable 
vortices have a preferred sign when 6 is present. 

The nth moment of the enstrophy 8" based on w is conserved: 

En = w(r,  t)" r dr d$. L (2.23) 

If h(r)  =!= 0, the enstrophies made from the total vorticity, V x u,  are not conserved. 

2.4. Numerical methods 
The nonlinear solutions to (2.1) that  are presented throughout this paper are 
computed with an initial-value code that uses a spectral collocation method with 
256 x 256, 128 x 128, or 64 x 64 Fourier-Chebyshev modes. Our numerical com- 
putations are carried out in a constantly changing rotating frame so that the effective 
Courant number is minimized. Details of the numerics and the types of tests that the 
numerical codes were subjected to were reported for a similar calculation earlier 
(Marcus 1984~) .  In this paper we compute two types of solutions. In  the first, we 
solve (2.1) with no numerical dissipation. The energy, angular momentum, and each 
of the two independent circulations are conserved from the beginning to the end of 
a run to one part in lo6. The second moment of the enstrophy, which cascades more 
quickly than the energy to  the small scales, is conserved only to  one part in lo4. The 
spectral calculations are terminated when enough enstrophy builds up at the 
smallest numerically resolvable scale that the enstrophy spectrum begins to turn 
upward. The time that it takes for the enstrophy spectrum to turn upward depends 
on the initial conditions. Frequently it is many dynamical times, and the physics 
that we need to observe takes place well before the computation needs to be 
terminated. Occasionally, we need to run for longer times. The proper and only 
numerically sound way of solving this problem is to repeat the calculation with more 
resolution so that it takes longer for the enstrophy to cascade to the smallest 
resolvable scale. However, we have found empirically that removing the aliasing 
errors retards the pile-up of enstrophy a t  small scales and allows us to run the 
calculations for a slightly longer time while maintaining accuracy. (As a test we 
compared the de-aliased results with calculations with twice the numerical resolution 
and found good agreement.) Therefore the calculations reported in this paper have 
been de-aliased using the ':-rule' (see Orszag 1974). This benefit from de-aliasing is 
in contrast to  our experience with spectral collocation methods in a similar geometry 
when the Navier-Stokes equation is solved. There we found that the small-scale 
viscous dissipation dominated the aliasing and solutions computed with and without 
aliasing were indistinguishable from each other (Marcus 1984 b ) .  

I n  any case, de-aliasing can postpone the pile-up of enstrophy a t  the small scales 
but it cannot get rid of it. A second method for computing solutions a t  late time is 
to  add dissipation to  the code. We have tried four types of dissipation : hyperviscosity 
or V4u, molecular viscosity, Ekman spin-down, and direct removal of energy from 
the highest wavenumber Fourier-Chebyshev modes. Results obtained using a 
hyperviscosity and direct removal from the highest modes were indistinguishable a t  
the large scales. Because hyperviscosity was more expensive and cumbersome to 
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implement (the equation requires two more radial boundary conditions), results 
reported here were computed by the direct removal method. Molecular viscosity and 
Ekman spin-down made the energy decay quickly in these run-down experiments. 
These sources of dissipation correspond to those in the laboratory experiments of 
Sommeria et al., and we report our results with these sources of dissipation elsewhere. 

In our calculations with dissipation the circulation and momenta are still 
conserved to about 1 part in los, and the energy to 1 part in lo3, but the enstrophy 
can decrease by as much as 30%. We have compared solutions made with no 
dissipation to solutions that were computed with dissipation and with half the 
number of Fourier-Chebyshev modes. For times that are long enough that the low- 
resolution calculation is dissipative but short enough that the non-dissipative, high- 
resolution calculation does not have an appreciable upward turn in its enstrophy 
spectrum, the two solutions are nearly identical for all but the smallest scale modes. 
We therefore believe that the large-scale physics is accurately represented in our 
weakly dissipative calculations. 

In this paper we illustrate the flows with false-colour plots where each pixel has a 
colour that represents the local value of w ,  with red for the most positive value of w ,  
blue for the most negative, and the colours as ordered in the spectrum for the 
intermediate values. Each pixel represents an average of w over the area of the pixel, 
so if the pixel size were less than or equal to the numerical resolution, each pixel 
would act like a fluid element and be advected by the local velocity, conserving its 
colour or value of w .  However, our pixels range in size from 4 to 64 times larger than 
the numerical resolution. Thus pixel colour is not conserved. The averaging blurs 
small-scale structures. For example, it  makes a region that contains fine filaments of 
red and blue w appear as green. 

Throughout the remainder of the paper we shall use dimensionless units in which 
the density is in units of p,  horizontal length in units of (Rout-Rin), vertical depth 
or h(r)  in units of H ,  and time in units of $2. 

3. Sign-dependent behaviour of vortices 
3.1. Initial dipolar stream function 

To demonstrate how the behaviour of vortices in a shearing zonal flow depends upon 
the sign of $ / w ,  we choose an initial flow consisting of one large vortex of each sign 
superposed on the zonal flow 

8, = &(2r-Rin-ROut). (3.11 

The bottom topography is h(r)  = ( r - i ) ,  and Rin/Rout = 0.25. Note that 6 = ir  > 0 
and that 8, = 0 midway between the inner and outer annular boundaries. The zonal 
flow in (3.1) was chosen because it has a non-zero 6 and a non-trivial (i.e. non- 
constant) 4. 

The initial vortices in figure 1 ( a )  (plate 1) have the stream function 

The large exponent in the $-dependence of the stream function was chosen because 
it produces two large vortices of nearly uniform w with sharp, but numerically 
resolvable, boundaries. The maximum and minimum values of w are f0 .34,  so 
I&/wl = O( 1) a t  the centres of the two large vortices. The four smaller banana-shaped 
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vortices that initially surround the two large vortices were included as part of the 
initial conditions because they allow us to illustrate the effects of the boundaries. Our 
calculations were done with a small amount of dissipation in the eight smallest 
Fourier-Chebyshev modes. 

3.2. Focusing and expulsion of w 

Figure 1(b-h) (plates 1, 2) shows the subsequent flow with the times listed in the 
caption given in units of the approximate turn-around time of the large vortices, 
0.3414~. Each large vortex is initially pulled apart by 6, which is clockwise near the 
inner boundary and counterclockwise near the outer (figure 1 b). Even a t  early times, 
there is a large asymmetry between the red and blue vortices. As the red vortex with 
S / w  > 0 is stretched azimuthally, it remains midway between the inner and outer 
boundaries, whereas the extremities of the blue vortex are pulled to the two radial 
boundaries (figure 1 c) .  This effect is easily understood by using the fact that the total 
velocity a t  any location can be found from the plot of w in figure 1 by adding the 
velocity due to o - using the usual Biot-Savart law - to 6$. In  figure 1 ( b )  a fluid 
element with red w located at the outer edge of the large red vortex is first pulled 
counterclockwise by 6, towards the right-hand side of the vortex. The counter- 
clockwise velocity produced by the vorticity of the red vortex itself then pushes this 
fluid element inward towards the inner radius. Thus an element located initially at 
the outer edge of the vortex is pushed towards the inner boundary. Similarly, an 
element located initially a t  the inner edge of the vortex is pushed towards the outer 
boundary. A fluid element with blue w located a t  the outer edge of the large blue 
vortex will be pulled counterclockwise by Q, towards the left-hand side of the blue 
vortex. The clockwise velocity of the blue vortex will then push the element outward 
towards the outer radius. A fluid element of blue w located initially a t  the outer edge 
of the blue vortex is drawn further outwards by the combined interaction of 6+ and 
the velocity of the blue vortex, and an element located initially at the inner edge of 
the blue vortex is pushed further inward towards the radial boundary. Thus, a vortex 
with S / w  < 0 is stretched into a spiral and its vorticity is pulled towards the radial 
boundaries of the shearing zonal flow; whereas a vortex with S / w  > 0 is focused 
towards the centre of the zonal flow. This focusing and expulsion is further examined 
in 53.9. 

3.3. Breakup of vortex layers 
Figure 1 (c)  shows that the large blue vortex is surrounded on each side by thin yellow 
spirals that are the remnants of the two initial, banana-shaped, yellow vortices. The 
yellow vortex layers with S / w  > 0 break up into modes whose wavelengths are 
approximately 16 times their thickness (figure l c - f ) .  (In 54 we show that this 
wavelength is the most rapidly growing unstable Kelvin-Helmholtz eigenmode of 
the yellow vortex layer in figure 1 c.) As the two yellow layers break up, they disrupt 
the blue spiral and cause it to fragment. After 6 turn-around times the blue spiral is 
broken into small thin filaments (figure l g ) .  

3.4. Robustness of vortices with S l w  > 0 
The large red vortex is sheared azimuthally until -0 .7  turn-around times and then 
contracts. During this time it sheds a small amount of w ( ~ 5  YO of its circulation). 
Some of the shed fragments become uniformly dispersed in the zonal flow, some go 
into the radial boundary layers, but more than half eventually reattach to the large 
red vortex. Figure 1 (g) shows that in just six turn-around times the flow has formed 
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one large, approximately elliptically shaped, red vortex and a much smaller red 
vortex near the inner boundary that is distinctly separated in radial location from 
the large one. The large vortex has an approximately permanent form and travels 
azimuthally around the annulus a t  an approximately constant velocity (see below), 
but it is not a steady state. It is buffeted about with respect to its mean velocity by 
the blue filaments of w ,  and its shape and size are not permanent because it 
constantly sheds and regains filaments of w .  After six turn-around times all of the 
blue w that was initially located in large vortices is fragmented into small pieces, and 
it ends up in one of three places: in the inner or outer radial boundary layers or as 
thin filaments of w that are spread approximately uniformly throughout the flow. 
(The amount a t  each location is discussed in $5.) The uniform spreading of the blue 
filaments in the zonal flow is an example of the homogenization of potential vorticity 
discussed in $ 1.  The motion of the blue filaments is chaotic, and a power spectrum 
of the velocity shows broad peaks. 

Figure 1 ( h )  shows that the flow after 20 turn-around times is still quite similar to 
the flow in figure l (g)  with the exception that the flow surrounding the two red 
vortices has lost most of its small-scale structure ; the flow in figure 1 (h)  has the same 
circulation and angular momentum (to within YO) as in figure 1(g) but has less 
than - 30 % of the enstrophy because the numerical dissipation smooths the nearly 
uniform distribution of thin blue filaments into a zonal flow with nearly uniform w. 
The .macroscopic velocities in figure 1(g, h) are the same to within 8 YO. Here, and 
throughout the remainder of this paper we define a macroscopic quantity by 
construction : filter out the highest spatial modes and average over one turn-around 
time. 

3.5. Aduected velocities of vortices 

Travelling waves or vortices of permanent forms superposed on zonal flows do not, 
in general, advect a t  the speed of the local flow velocity, cf. the solitary Rossby wave 
solutions of Maxworthy & Redekopp (1976). However, vortices with boundaries 
defined by closed isopotential vorticity contours do. To see this, define the location 
of an arbitrary distribution of vorticity X, as 

wrr dr d$ 

J 

and its velocity V ,  as DX,/Dt, or 

wr dr d$ 
(3.41 

where 
,. f w 6 r  dr d$ 

[wr dr d$ ' 

V , =  (3.6) 

The integrals in (3.4)-(3.6) must be taken over the entire domain or over a region 
bounded by a closed material curve - for example, a closed contour with a constant 
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- @  -a- 
FIQURE 2. Sketch showing how a counterclockwise vortex with B / w  > 0 (at the left of the figure) 
overtakes a clockwise vortex with & / w  c 0 (at the right). i, (represented by the long straight 
arrows) advects both vortices to the right a t  the same velocity. The image vortices (dashed 
streamlines) below the boundary increase the velocity of the vortex with B / w  > 0 and retard the 
motion of the vortex with B / w  < 0. 

value of o. If there are no horizontal boundaries, it is often useful to use the entire 
domain because the two contour integrals in (3.5) vanish, and then V,  = t. For a 
flow with one or more isolated compact patches of vorticity, the integrals could be 
taken over one of the patches. Then, yo is the sum of (which is 8 averaged over 
the area of the vortex) and the two contour integrals (which are the velocity due to 
the advection by the other patches of vorticity and the velocity due to the 
boundaries - which could be replaced with image vortices). Thus in figure 1 ( h ) ,  each 
of the two vortices moves approximately a t  the speed of its local 8 (which are not the 
same). In $ 5  we show that if more than one vortex is present a t  late times, then each 
vortex must be located a t  a different radial location. Therefore in general, if 
aB,/ar =!= 0, each vortex travels around the annulus at a unique speed. 

Figure 1 shows that the small red and blue vortices near the inner boundary are 
both advected clockwise by 6, but that the red vortex with $/o > 0 travels faster 
and eventually overtakes the blue vortex with $/o < 0. This overtaking can be 
understood by examining the sketch of the inner boundary (using a plane-parallel 
approximation) in figure 2. Both small vortices (indicated by solid streamlines) are 
advected to the right by the same to. (The 8 is indicated by the arrows pointing to 
the right near the boundary at the middle of the figure and to the left at the top of 
the figure.) The effect of the boundaries is to produce image vortices (shown as 
broken streamlines beneath the boundary). The image retards the motion of the blue 
vortex with &/w < 0 but aids the motion of the red vortex with $ / w  > 0. Therefore 
the vortex with $10 > 0 overtakes the vortex with $/w < 0. 

3.6. Spectra 
During the first few time-around times of the flow's evolution some kinetic energy is 
transferred from large scales to smaller scales, but most remains in the large scales. 
The energy spectra E(m)  as a function of azimuthal wavenumber m after 0, 6.03, and 
20.7 turn-around times are shown in figure 3. This is the spectrum for a calculation 
with 128 de-aliased Fourier modes in the azimuthal direction, but there was 
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FIGURE 3. Energy spectrum log,,E(m) of the Aow in figure 1. Solid curve after 0 turn-around 
times (figure la), dotted curve after 6.04 (figure l g ) ,  and long-dashed curve after 20.7 (figure 
1 h) .  

essentially no change in this part of the spectrum when the calculation was repeated 
with 256 modes. The spectrum E(m)  is defined 

so 
M 

E = C E ( m )  
m-0 

(3.7) 

where u(r, t ) ,  is the mth azimuthal Fourier component of u(r,  4, t ) .  In  figure 3 we have 
connected the non-zero values of E(m) with a solid line. (NB Except for m = 0, the 
initial energy spectrum is zero for all even values of m and for all m > 16.) Although 
the flow represented in figure 3 does not show a reverse energy cascade (as many of 
our flows do - see $ 5 )  most of the kinetic energy remains trapped in the large-scale 
modes. For m 2 10, the late-time spectrum of the flow in figure 1 has E(m) K mP4 
consistent with the high-resolution, two-dimensional simulations of vortex- 
dominated flows computed by Benzi, Patarnello & Santngelo (1987). 

3.7. Family of solutions 
We have repeated our numerical calculations with the same bottom topography and 
zonal flow as in (3.1) but with the initial dipolar stream function given by (3.2) and 
(3.3) multiplied by a constant. By varying the value of the constant we computed a 
family of solutions in which the magnitude of the vorticity w varies with respect to 
the magnitude of the 6. Because neither w nor 6 is uniform throughout the Aow, we 
arbitrarily define a vortex's characteristic vorticity ( 0 )  as its maximum or minimum 
value and the characteristic zonal shear (6) as the value of 6 at the location where 



404 P. S. Marcus 

the initial vortex has its maximum amplitude. We have explored the range 
10 > I ( $ ) / ( w )  1 .  There are four regimes - two of which are examined in this paper : the 
regime I ( $ ) / ( w )  I > 4 is not of interest to us in this paper because initial vortices of 
both sign are stretched into thin spirals that  break apart. The regime I ( $ ) / ( w )  I < 
0.1 is also not of interest to us because the vortices behave as if there were no zonal 
flow present, and this behaviour has been reported elsewhere. For 4 > 1 ( $ ) / ( w )  1 > 
0.2,  we find that the vortices behave similarly to those in figure 1 which have 
( $ ) / ( w )  = kO.8. In particular, for the eight flows that we examined in this range we 
found that within one turn-around t,ime the vortex with (&)I(@) < 0 always 
stretches into a spiral whose extremities are drawn to the radial boundaries. After 
one to three turn-around times the spiral fragments into filaments of w that are either 
deposited a t  the radial boundaries or are mixed uniformly throughout the zonal flow. 
The vortex with ( G ) / ( w )  > 0 remains nearly intact shedding only 3-10% of its 
vorticity. This vortex oscillates, alternately stretching and contracting in the 
azimuthal direction. The oscillations damp in 5-10 turn-around times, and the flow 
reaches a statistically steady state. Most of the w shed during the oscillations is 
reattached to the vortex. A second example of a solution in this regime is shown in 
figure 4 (plate 3) after 62.1 turn-around times. Here ( $ ) / ( w )  = 0.28. This late-time 
flow is quite similar to the one in figure 1 (h) .  The main differences between the two 
are that in figure 4 the small red vortex initially a t  the inner boundary has merged 
with the large red vortex, and the large vortex in figure 4 is much rounder than the 
one in figure 1 (h ) .  (The merging is discussed in $ 5 . )  We parameterize the shape with 
E which we define to be the ratio of the length of the macroscopic vortex in its 
azimuthal direction to that in the radial, where we arbitrarily define the boundary 
of the vortex to be the isovorticity contour with 101 = 0.11 ( w )  I. Not surprisingly, we 
find that E increases with ( & ) / ( w )  owing to  the stretching of the vortex by the zonal 
shear. 

The regime 0.1 < I ( $ ) / ( w )  I < 0.2 is different from the previous regime because 
here vortices of both sign exist and are stable. Vortices of both sign are approximately 
round ( E  = l ) ,  but the E of the vortex with ( G ) / ( w )  > 0 is always greater than that 
of the vortex with ( $ ) / ( w )  < 0. Except for vortices located initially very close to a 
boundary, a vortex with ( $ ) / ( w )  < 0 has E < 1. The vortices with ($)I(@) < 0 are 
less robust than those with ( 6 ) / ( w )  > 0, as our simulations show that they can be 
broken into fragments by perturbations. To illustrate exactly how we perturbed the 
vortices consider figure 5 which is a schematic of the streamlines of an unbounded 
steady-state vortex with ( & ) / ( w )  < 0. Here, streamlines are either closed and 
bounded, or they are open and extend to infinity. In  contrast, an unbounded vortex 
with ( $ ) / ( w )  > 0 has only closed streamlines. The streamlines near the vortex are 
closed, and the last closed streamline or separatrix (shown by a broken curve in figure 
5 )  connects two stagnation points. Velocities along streamlines inside the separatrix 
have circulations with the same sign as the vortex ; outside, they have the opposite 
sign. Imagine perturbing the flow by perturbing the boundary of the vortex so that 
the circulation, angular momentum and enstrophy remain fixed. If the perturbation 
is small, then the location of the separatrix remains nearly constant. Clearly, any 
piece of the vortex that is perturbed outside the separatrix can never return across 
the separatrix and is carried off to infinity. The flow cannot return to  its original 
equilibrium or even a close approximation of it. However, if the boundary of the 
perturbed vortex remains inside the separatrix, then all the w is confined within the 
separatrix, and the vortex can relax back to a state close to its original equilibrium. 
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FIQURE 5. Sketch of streamlines of a steady-state flow consisting of a vortex with a / w  < 0 (shaded 
region) and a non-zero 8. The two stagnation points exterior to the shaded region are connected by 
the last closed streamline or separatrix, shown as a broken curve. Inside the separatrix, the 
velocities along the closed streamlines have the same sign as the circulation of the vortex. Outside, 
the circulations of the velocities along the open streamlines have the opposite sign. 

(By conservation of energy it cannot return to its original equilibrium.) Thus the 
distance between the boundary of the vortex and the separatrix sets the scale for the 
size of the finite-amplitude perturbations to which the vortex is unstable. To 
examine this perturbation numerically we added a perturbation to the vortex that 
conserved the flow’s angular momentum, circulation and all enstrophy moments. In  
addition, the perturbation had a well-defined lengthscale. (The perturbed vortex is 
created numerically by integrating forward in time the equation 

with the initial flow equal to the unperturbed macroscopic vortex and with V+(r) 
equal to a Gaussian peaked midway between the inner and outer boundaries. This 
integration creates a perturbed vortex with a ‘finger’ growing out of its side in the 
azimuthal direction. The lengthscale of the perturbation is the length of the finger 
and is proportional to the time a t  which we integrate the equation. The integration 
clearly conserves the angular momentum, the two circulations, and all of the 
enstrophy moments of the original flow.) Our numerical simulations confirm the fact 
that the lengthscale of the perturbation that first causes a vortex to break apart is 
approximately equal to the distance between the separatrix and the edge of the 
unperturbed, equilibrium vortex. 

We summarize our results by noting that the function e ( ( & ) / ( w ) )  looks 
qualitatively like the curve shown in figure 6 which is the exact relation for an 
elliptical vortex of uniform strength (0) in an unbounded, plane-parallel zonal flow 
with uniform shear ( 2 )  (Moore & Saffman 1971). Not surprisingly, the e ( ( G ) / ( u ) )  
curve for our numerical family of solutions changes if we change our (arbitrary) 
definitions of the vortices’ ( w ) ,  or ( 2 ) ,  or if we redefine the boundary a t  which e is 
measured. However, all of the definitions that we tried show that E increases 
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<a>/<w> 

FIGURE 6. Relation between B arid ( & > / ( w )  for a Moore-Saffmaii ellipse with uniform vorticity (w> 
and 0 = -(G)y@,. E = (1  + ( & ) / ( w ) f f ( ( & ) / ( w ) ) ,  where f ( x )  = f l + x f [ ( l + ~ ) ~ + 4 ~ l t f / 2 ( 1 + ~ ) .  
There are equilibria with ( & ) / ( w )  < 0 but there is a turning point so that there are none with 
( & ) / ( W )  < - 3 + 2 1 / 2 .  

monotonically with ( & ) / ( w ) ,  and all show a turning point near ($)I(@) = -0.2. 
Near the turning point we always find that the curve has the usual parabolic 
behaviour. With our initial-value code, of course, we have not been able to compute 
the unstable lower branch in figure 6. 

Obviously, the . ( ( 8 ) / ( w ) )  curve in figure 6 could not extend indefinitely to the 
left because the distance between the separatrix and the edge of the vortex decreases 
with decresing ( & ) / ( w ) .  For sufficiently negative values of (G)/(u),  a vortex would 
overflow its own separatrix and could not be a steady equilibrium. The curve for the 
Moore-Saffman vortices has a turning before the distance between the vortex and 
the separatrix decreases to  zero. Our family of vortices also has this property. 
However, we must note that we have found zonal flows in which a family of vortices 
extends to sufficiently negative values of ( $ ) / ( w )  that  the vortex touches its own 
separatrix. At this point physically realizable solutions end abruptly, and the 
streamline that marks the boundary of the vortex develops a discontinuity in its 
slope. (With contour dynamics a ' corner ' forms.) Examples of this latter case will be 
presented elsewhere. 

3.8. Relaxation to equilibrium in a nearly dissipationless $ow 
The vortices examined in the last section relax from their initial non-equilibrium 
state to a statistically steady flow in a few turn-around times. Although the vortices 
initially oscillate, they damp quickly. It seems paradoxical that fast damping and 
relaxation to an equilibrium can occur in a nearly dissipationless flow. The 
explanation of the paradox is that although the total energy of the flow is conserved 
within 0.1 %, the energy of the large red vortex in figure 1 (defined to be the integral 
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of &(u.u) over the domain enclosed by the Iw( = 0.11 ( w )  I isovorticity contour) is not 
conserved. It decreases by - 7 YO after 6 turn-around times. This energy loss causes 
the damping. Although some of the energy loss is due to the shedding of vorticity 
with w > 0, we find numerically that over 80% goes into the energy of the blue, 
w < 0, vortex filaments. 

To see how important the blue vortex filaments are in allowing the red vortex to 
relax to its equilibrium, we conducted two new numerical experiments. In the first, 
we repeated the numerical simulation of figure 1 (a )  with the following exception : all 
of the initial fluid elements in figure 1 (a )  not within the boundary of the large red 
vortex have their w set equal to zero. That is, the initial distribution of vorticity in 
this new experiment looks like the large red vortex figure 1 (a )  but without the two 
small red vortices and with no blue or yellow vortices. In  this simulation, the large 
red vortex is stretched azimuthally by 6 and oscillates. After 10 turn-around times 
i t  has lost less than 1 % of its energy (owing to vortex shedding) and the oscillations 
have not noticeably damped. Our second new experiment is a repeat of the previous 
one with the exception that a uniform distribution of blue filaments of w is added to 
the initial flow. (The filaments are created with a Fourier-Chebyshev series with 
random-phase coefficients Gaussianly distributed around a large radial and 
azimuthal wavenumber. The velocity is then transformed into physical space and 
filtered with a Gaussian peaked a t  w = -0.3.) In  this experiment the oscillations of 
the large red vortex are damped. After 10 turn-around times the vortex loses over 
6 % of its initial energy to the blue filaments, and the macroscopic vortex is steady. 

Thus for this family of vortices, we argue that the large coherent vortex relaxes to 
equilibrium by transferring energy to the small-scale, temporally chaotic, fluid 
filaments of w rather than by vortex shedding. We have shown that the dynamics of 
vortices qualitatively differs if the vortices cannot lose their energy and thereby relax 
to equilibrium. 

Because the filaments of vorticity with & / w  < 0 promoted the fast relaxation of 
the large vortex with &/w > 0 to its equilibrium, we were curious whether the final 
equilibrium was a function only of the values of the conserved quantities listed in $2 
and whether the flow lost the memory of all of the other properties of its initial 
condition. (The answer to this question is of importance to anyone who attempts to 
use statistical mechanics to predict final equilibria.) To answer this question we 
repeated the experiment shown in figures 4 and 1 (a) five times, each time varying the 
initial radial location of the large blue and red vortices from T = O.75[$(Ri, +Rout)] to 
r = 1.25[&(Ri, +Rout)]. We also varied the initial azimuthal separation between the 
blue and red vorti,ces so that the energies, momenta, circulations, and enstrophies of 
the five flows were the same. (By symmetry, the circulation, f or3 dr d$, and Eint were 
zero for all five flows. The initial azimuthal separations were chosen to make the 
energies the same to one part in lo6. Because the initial vortices were approximately 
isolated we expected that changes in their initial locations would have little effect on 
the flows’ enstrophies, and we found this to be true; the first three moments of the 
enstrophies of the five flows differed by less than one part in lo3.) Each of the five 
flows evolved to form one large red vortex, but the vortex’s final radial location was 
not the same for all five flows and in each case was approximately equal to its initial 
value. Thus for these flows, the final equilibria were not just functions of the 
conserved quantities; the flows retained the memories of the initial locations of the 
large red vortices. (In other flows where the evolution is less laminar and where there 
is more mixing, the final flow does depend only on the values of the conserved 
quantities and loses memory of the original vortex locations - see 85.4.) 
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Finally, we note that we have repeated all of the numerical experiments in this 
section with a flat bottom topography and with 

* Rout +‘in [ - (Rout +Hi,)”] v4 = 
12 4r (3.9) 

Midway between the outer and inner boundaries of the annulus, this zonal flow has 
the same values of 2 and 6, (zero) as the zonal flow used in figure 1. We found that 
all of the qualitative features of the family of vortices in $3.7 were shared by the 
families of vortices produced in this zonal flow. We speculate that any zonal flow in 
which &(r)  does not change sign and does not change in magnitude over lengthscales 
smaller than the size of the vortices also shares these properties. Of course if &(r)  does 
change sign, the dynamics can be strikingly different as shown in the next section and 
by Marcus (1988). 

3.9. Behaviour when $(r)  changes sign 

In  $3.2 we showed that large vortices move according to the sign of ( & ) / ( w ) ;  when 
( & ) / ( w )  < 0, the vorticity is drawn into a spiral and pushed to the radial 
boundaries; when ( $ ) / ( w )  > 0, the vorticity is focused approximately midway 
between the radial boundaries. By examining vortex dynamics in a zonal flow in 
which $( r )  changes sign, we now show that this movement depends upon the local 
sign of & ( r ) / ( w ) ,  where ( w )  is defined as before and $( r )  is the value of the zonal 
shear a t  the vortex’s current location and which changes in time as the vortex moves. 
We use the zonal flow 

which has 

(3.10) 

(3.11) 

The bottom topography is h(r) = - ( r - Q ) .  The zonal flow has two distinct bands. The 
inner band with R,, < r < +(R,,+Rout) has &(r )  > 0;  the outer with i(Rin +Rout) < 
r < Rout has $( r )  < 0. The initial w is shown in figure 7 (a)  (plate 4 )  and consists of two 
vortices in each band - one counterclockwise (red) and one clockwise (blue). The red 
vortex in the outer band and the blue vortex in the inner have 6 ( r ) / ( w )  < 0, and 
figure 7 ( b )  shows that both are stretched into spirals with ends drawn to the 
boundaries of the band - either the boundary of the annulus or the boundary 
between the bands a t  r = i(Ri, +Rout). The blue vortex in the outer band and the red 
vortex in the inner, both with & ( r ) / ( w )  > 0, remain almost unchanged. As the 
leading edges of the spirals with & ( r ) / ( w )  < 0 pass between the two bands, the w rolls 
up to form two small clumps a t  the end of each spiral (figure 7 b ,  c ) .  Once these small 
clumps of w have passed from one band into the other, they are in background shears 
with & ( r ) / ( w )  > 0. The clumps then detach from their respective spirals and form 
stable vortices (figure 7 4 .  The remaining pieces of the two spirals that do not cross- 
over into the neighbouring band fragment and end as filaments of w dispersed 
throughout their respective bands. After a few more turn-around times each of the 
two small surviving vortices in figure 7 ( d )  merges with its neighbouring large vortex. 

The size of the clumps of vorticity that pass across the r = $(R,, +Rout) boundary 
into the neighbouring band and survive as coherent vortices depends crucially on 
their initial locations, In particular, it  depends on the difference between the 
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timescale for the leading edge of a spiral to cross into the neighbouring band and 
either the timescale for the linear instability to grow to finite amplitude and 
fragment it or the timescale for the thin spiral to dissipate. For example, increasing 
the distance between the initial locations of the four vortices in figure 7 (a)  and the 
r = $(Rin +Rout) boundary by only 10 YO prevents the leading edges of the spirals from 
reaching the boundary before the spirals fragment, and no coherent clumps of 
vorticity pass into the neighbouring bands. 

Marcus (1988) examined a zonal flow with sinusoidal h(r)  and 'u4(r) such that there 
were four concentric annular bands with the sign of 6(r )  changing between each band 
and found that with four bands as well as two, all large vortices with 6 ( r ) / ( w )  < 0 
either fragment or are pushed to a neighbouring band where they are stable. Thus we 
conclude that in a zonal flow in which &(r)  changes sign, it is the local instantaneous 
sign of 6(r ) / (o)  that determines the vortex behaviour. 

4. Unstable vortex layers in shear flows 
4.1. Early evolution - linear behaviour 

The breakup of a vortex layer has been studied by a number of authors (cf. Dritschel 
1985). Here, we examine the breakup of vortex layers and their late-time behaviour 
when they are embedded in zonal flows. Our motivation is not that we are interested 
in the behaviour of vortex layers per se, but that their behaviour is illustrative of 
much of the dynamics of vortices in a zonal flow, and they provide an analytically 
tractable example of how the exchange between the interaction energy and self- 
energy affects vortices. In  particular, we shall show that whether the layer breaks up 
to eventually form one large vortex or successively smaller filaments depends on 
whether the self-energy increases or decreases, which in turn depends on the sign of 

We begin by examining a flow that initially consists of the superposition of a 
&lo. 

shearing zonal flow 

and an axisymmetric vortex 

w =  

and velocity 

'u4 = ~r(2r-Rin-ROut) 

layer with vorticity 

02333 sech' [ 10(r - 0.833)] + oo 
r 

v4 = __ 0.0833 r {tanh [lO(r-O.833)]- tanh[10(Rin-0.833)]}+~oo(r-~) ,  r (4.3) 

vr = 0. (4.4) 

As in $3, h(r) = (r--Q) and Rin/Rout = 0.25. (The value of wo in (4.3) and (4.4) is chosen 
to be consistent with the definitions of C, and C, in $2.2.) The vortex layer is centred 
midway between the inner and outer radial boundaries, has radial thickness of 
approximately 0.2, and an o that is approximately uniform throughout the layer 
with a value of unity, so in the layer &/o x 0.28. Note that &/o > 0 throughout the 
entire flow. The initial w is shown in figure 8 ( a )  (plate 5 ) .  Because the vortex layer 
is axisymmetric it is a steady-state solution to the equations of motion and has no 
linearly unstable axisymmetric perturbations. Because our computational method 
preserves the symmetries in the round-off errom, the vortex layer in figure 8 ( a )  is also 
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a stable equilibrium solution of our initial-value code. To examine non-axisymmetric 
instabilities we add a small random component to the initial flow with an energy that 
is 10-l" of the energy of the axisymmetric component of the vortex layer and is so 
small that i t  is not visible in figure S(a) .  This new flow is linearly unstable, and its 
subsequent evolution is shown in figure 8(b-h) (plates 5, 6). Not surprisingly, the 
early time evolution is dominated by the most unstable eigenmodes of the vortex 
layer. We have numerically computed these eigenmodes and their eigenvalues and 
found that they are similar to those of a model vortex layer that has uniform 
strength with w = 1 for (0.833-0.1) = R, < r < R, = (0.833+0.1) and w = 0 outside 
this annular strip. The advantage of studying the model vortex layer is that although 
the vorticity is discontinuous, the linear and weakly nonlinear dynamics can be 
computed analytically in closed form. The fastest growing eigenmodes of both the 
actual and the model vortex layer are of the form ei3$ and have their greatest 
amplitudes a t  the outer edge of the layer. This is shown in the fully nonlinear solution 
in figure 8 ( b )  at t = 3.34 (in turn-around time units based on w = 1). The fact that 
amplitude is greater a t  the outer edge is due to the curvature of the vortex layer and 
not due to $$(r)  or h ( r ) ;  it is shown in the Appendix that, as the curvature goes to 
zero, the amplitudes a t  the two edges become equal regardless of the functional form 
of 4+(r) and h(r) .  The fact that the fastest growing wavenumber in figure 8 ( b )  is small 
is because the azimuthal wavenumber m of the fastest growing eigenmode of an 
unbounded, annular, vortex layer with uniform strength w is 

where we define the characteristic shear of the zonal flow at  the layer as 

and y = RJR,.  For thin vortex layers, i.e. y+ 1,  ( B )  approaches the value of 6 ( r )  at 
the vortex layer. For ( 6 ) / w  > - 1, equation (4.5) shows'that the fastest growing 
wavenumber m increases with decreasing ( $ ) / w .  For 0 > ( B ) / w  > - 1, m increases 
very rapidly as ( 6 ) / w  decreases and becomes infinite as ($) /w--+-i .  For 
( B ) / w  < - 1 ,  the flow is linearly stable. (See figure 9 and the Appendix.) Equation 
(4.5) agrees very well with our numerical calculations of the eigenmodes of the 
continuous vortex layer in (4.2) and with the solutions of the initial-value code. The 
phase speed of the eigenmode of the model vortex layer is a[(u4(R,)/&) + (u4(R2)/R2)], 
and we have found that this is the approximate phase speed of the eigenmode of the 
actual layer and is approximately equal to the pattern speed in figure 8 ( b ) .  

4.2. Weakly nonlinear growth 
Much of the subsequent evolution of the breakup of the vortex layer can be 
understood by a finite-amplitude expansion and the use of the conservation laws. Let 
the model vortex layer be initially perturbed by its most unstable eigenmode with 
amplitude 6 and wavenumber m. The locations of the two edges of the vortex layer 
are then 

R,(t, $) = R , + ~ ~ A ~ ( t ) + ~ ~ ( t ) e ~ ~ 9 + ~  2 ~ , ( t )  e2im9 + 0 ( € 3 ) ,  

R2(t $1 = R2 + e2Ba(t) + eB,(t) eiml +e2B2(t) e2"@+ o ( € ~ ) ,  

(4.7) 

(4.8) 
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FIGURE 4. The w of a flow that initially looks like that in figure I@), but with B/w one third the strength. 
The flow is shown after 62.1 turn-around times. The vortex is much rounder than the one shown in figure 
I ( h )  and it has swallowed the smaller vortex that was initially near Rin. 
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0 1 2 3 4 5 

((6) + w) /w 

FIGURE 9. The unstable wavenumbers OL of a planar vortex layer of strength w embedded in a planar 
zonal flow with shear (6). The fastest growing mode for fixed ( ( & ) + w ) / w  is shown by the long- 
dashed curve. The dotted curve is a = w / ( ( 6 )  + w ) .  The two solid curves and the long-dashed curve 
all approach the dotted curve as ((6) +w)/o+O. 

with A,(O) = B,(O) = A2(0)  = B,(O), and A,(O) and B,(O) equal to the coefficients of 
the normalized, most-unstable, eigenmode (given in the Appendix). Conservation of 
the two independent circulations requires that 1; d~ "". 4) 

r d r  and r dr 

are time-independent, or equivalently 

(4.10) 

Because IA,(t) l2 and IBl(t) l 2  increase approximately exponentially at early times, 
A,(t) and B,(t) decrease exponentially at early times, and the vortex layer moves 
radially inward. This behaviour is observed in the flow in figure 8. Note that this 
behaviour is independent of the functional forms of h(r) and G&r) and so is also true 
for annuli with flat bottom boundaries and for flows with 4, = 0. 

Conservation of angular momentum requires that 1; d~ p"" 4) 
r3 dr 

Ri(t, #) 

is time-independent, or equivalently 

[IB,(t) l 2  - IBl(0) ?I = (WQ2 [IA,(t) l 2  - IA,(O) I*] + O(C2). (4.11) 

Equation (4.11) shows that the growth of the perturbation a t  the outer side of the 
vortex layer is slower than the growth a t  the inner side, regardless of the values of 
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8, and h(r). This is illustrated in figure 8 ;  although the perturbation is initially larger 
a t  the outside edge of the layer, the asymmetry of the edges decreases in time. 

The conservation of energy and the exchange between the vortex layer’s self- 
energy and the interaction energy are particularly useful in understanding the 
weakly nonlinear behaviour. The change in the interaction energy of a model vortex 
layer embedded in a zonal flow is (using the definition in (2.20)) 

Eint(t)-Eint(0) EE - [ -w( r , t ) - -w( r ,O) ]$ ( r ) rdrd$  

To obtain (4.12) we used (4.4)-(4.11), the definition of (6) in (4.6), and carried out 
a Taylor expansion of jr(@vt)&(r)rdrd$ about r = R, and r = R2. Equation (4.12) 
shows that the change in Elint is independent of the detailed functional form of 4,(r) 
and depends only on the value of (5) as defined in (4.6). For (6)/o > 0 (as in the 
flow in figure 8), when [IA,(t) 1 2 -  IA,(O) 1 2 ]  increases in time, Eint(t) decreases. Because 
the total energy is conserved, EselP(t) must increase. The hallmark of a flow with 
increasing Eself is that i t  evolves from its initial conditions into one in which the 
spatial distribution of w becomes more compact. The formation of the three vortices 
and their subsequent merger shown in figure 8 is consistent with this picture, and we 
have found numerically that Eint decreases monotonically throughout the entire 
evolution. Equation (4.12) also shows that for an unstable flow, when 

- 1  < ( 6 ) / w  < 0, 

Eint increases, and Eself decreases in time. The hallmark of a flow with decreasing 
EselP is that the distribution of w becomes dispersed. Our numerical simulation of the 
initial flow in figure 8 ( a )  with w replaced with --w and with the same zonal flow as 
in figure 8 shows the vortex layer is unstable with respect to small-wavelength 
eigenmodes as predicted by (4.5). The layer breaks into thin filaments that become 
dispersed throughout the annulus. No large vortices form, and Eself decreases 
monotonically throughout the evolution. In  summary, the vortex layer’s behaviour 
depends on whether ESelf decreases or increases in time, which in turn depends on the 
signs of (&)/o and dAJdt. For ( & ) / w  > 0, the layer is unstable, so dA,/dt > 0 and 
Eself increases; for 0 > ( & ) / w  > -1, the layer is unstable, so dA,/dt > 0 but Eself 
decreases; and for - 1  > ( & ) / w ,  the layer is neutrally stable, so an initially 
perturbed layer has dA,/dt = 0 with EselP constant. 

4.3. Nonlinear behaviour - expulsion of weakly rotating fluid and merger 
The full details of the late-time flow, of course, cannot be determined from (4.12) 
alone. Our numerical simulation shows that the three vortices in figure 8 ( b )  separate 
from each other (owing to the small amount of numerical dissipation and diffusion) 
and then merge together. The resulting large vortex in figure 8 ( h )  is distorted from 
an ellipse into a ‘croissant ’ shape by the proximity of the annular boundaries. The 
vortex is large because the initial red vortex layer has a large area and this area is 
conserved when there is no dissipation. During the merger of the three red vortices 
some w is shed filaments. Most of the red and orange filaments reattach quickly. 
Some of the yellow reattaches, but much does not, and it migrates to the boundary 
layers or ends up dispersed in the zonal component of the flow. The filaments make 
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the resulting zonal component of the flow temporally chaotic, and although the 
potential vorticity of the macroscopic zonal flow remains uniform, there are large 
fluctuations in it on the lengthscale of the filaments. Most of the vorticity that goes 
into the filaments is shed from the large vortices during the violent collisions between 
t = 3.5 and t = 8.  The area of the large vortex in figure 8(g )  that lies within the 
isovorticity contour with w = 0.8 is 93 % of the area of the initial flow in figure 1 (a )  
with w 2 0.8. Less than 1 % of this circulation is lost through dissipation ; most goes 
into the shed filaments. From t = 0 to t = 8 the total energy of the flow decreases by 
less than 0.1 % owing to dissipation. However, the energy of the flow inside the w = 
0.8 isovorticity contour of the large vortex decreases by 8%. This energy is 
transferred to the filaments dispersed throughout the zonal flow. It is this energy 
transfer from the large vortex to  the filaments that allows the large vortex to relax 
to its equilibrium state in a timescale that is fast compared to the dissipative one. 

As the vortices in figure 8 merge together, they initially sandwich a lot of less 
rapidly rotating, yellow, w between them (shown a t  the bottom of figures 8d - f ). 
Most of this less rapidly rotating fluid is ejected to the outside of the two merging 
vortices on the fast, advective timescale before it is completely encircled by 
isovorticity contours with large w .  However, some less rapidly rotating (yellow) fluid 
with w x 0.4 does get trapped and surrounded by isovorticity contours with w x 0.8. 
If the flow were dissipationless, it would be impossible for this yellow fluid to pass 
across these isovorticity contours and escape the vortex. Our calculations show that 
in a few turn-around times most of the yellow w M 0.4 fluid is pushed from the vortex 
centre to the periphery but not outside the w x  0.8 contours. Once a t  the periphery, 
the yellow fluid remains there as a compact region and orbits around the centre of 
the vortex with the velocity of the surrounding fluid. Only on a long, dissipative time 
does the entrapped fluid with w x 0.4 break up or dissipate. Approximately half of 
it is spun up by the surrounding fluid and loses its identity by increasing its w 
(turning from yellow to red). The other half leaks to the outside of the large red 
vortex and remains attached there. (This is determined numerically by following 
particle paths.) Most, but, not all, of the less rotational yellow fluid is gone from the 
interior of the final vortex in figure 8.  

Thus, to fully understand the merging of the vortices in figure 8,  i t  is necessary to 
understand how a vortex with a local minimum of IwI at  its centre expels the less 
rapidly rotating fluid. Inviscid linear theory can be used to calculate the unstable 
eigenmodes of a zonal flow superposed with a model vortex with a local minimum of 
IwI a t  its centre (see the Appendix) ; however, the mechanics of how the instability 
turns the vortex ‘inside out’ so that the less rapidly rotating fluid is on the outside 
can only be determined from a numerical calculation with dissipation. Therefore we 
have examined numerically a one-parameter family of flows whose initial states 
consist of a vortex with strength unity nested inside and concentric with another 
vortex of strength (1 + x). The nested vortices are superposed on the zonal flow in 
equation (4.1) such that their centres are located a t  r = i(Ri,,+Rout). The two nested 
vortices both have ellipticity equal to two. Their major axes are both aligned in the 
azimuthal direction. Specifically, the value of w of the initial flow is 

w = [1+&(1 +tanh{60[(x2+4y2)~-0.16]})]4(1 -tanh{60[(x2+4y2)i-0.32]})], 
(4.13) 

where x and y are the local Cartesian coordinates with origin a t  the centre of the 
vortices and x-axis aligned with the azimuthal direction. The value of w is constant 
along concentric elliptical contours with ellipticity of two. The semi-major axes of 
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the inner and outer nested vortices are 0.16 and 0.32, respectively. For < 0, the w 
of the vortex decreases from the centre to the edge, and our numerical calculations 
show that the vortex relaxes to its equilibrium without expelling fluid from its 
interior. For x > 0 the fluid a t  the centre is less rapidly rotating, so there is a local 
minimum of (wI inside the vortex, and we have observed two distinct types of 
behaviour. For x > 0.1 the vortex breaks apart violently in less than one turn- 
around time so that the less rapidly rotating fluid at the centre of the initial vortex 
is no longer trapped. The fragments of the vortex remerge so that none of the less 
rapidly rotating fluid remains in the interior, and w decreases from the centre of the 
vortex to the periphery. For 0.1 > x > 0 the vortex behaviour is similar to the 
dynamics exhibited by the three vortices formed from the unstable vortex layer in 
figure 8 : within 3 turn-around times most of the less rapidly rotating fluid with w = 
1 is pushed off-centre but remains as a coherent, compact, roundish blob, that orbits 
around the vortex centre inside the w = (1 + x) isovorticity contours. After several 
hundred turn-around times it either dissipates or leaks to the outside of the vortex. 

We have repeated all of the numerical calculations of this section with h(r) = 0 and 
$+(r) = 0.0937 [(4r/(Rin+RouJ2)-(l/r)]. This zonal flow is similar to that in equation 
(4.1) in that they have the same value of (6) (as defined in (4.6)). At r = &Rin+Rout) 
they both have $+ = 0 and the same value of 6 to within 3%. The dynamics, and in 
particular the pictures of the evolution of w ,  are qualitatively similar for the two 
zonal flows; thus, we speculate that  the behaviour shown in figure 8 is common to 
zonal flows in which $(r)  does not change sign, has the same order-of-magnitude 
strength as the layer’s vorticity, and has variations over lengthscales longer than the 
layer’s thickness. 

5. Mergers in shear flows 
5.1. The merger of two vortices 

In the last section we saw an example of vortex merger. Mergers are common in our 
initial-value experiments, and in some ways resemble the mergers of isolated vortices 
observed by Overman & Zabusky (1982) and Dritschel (1985) in flows without zonal 
velocities. There are however several important differences : In a horizontally 
unbounded flow with 6 = 0 angular momentum around all points is conserved, so 

is conserved for all values of ro. Thus, two vortices with the same sign are prevented 
from coming close together and merging at ro by an angular momentum barrier, 
unless (i) there is a third vortex to absorb the excess angular momentum, or (ii) the 
two vortices are initially both very close to  each other (and to ro),  or (iii) the two 
vortices fragment and shed some w during their merger, with the shed fragments 
moving far from ro carrying most of the angular momentum. If annular horizontal 
boundaries or a non-zero 6 are present, then angular momentum is conserved only 
about the origin ; thus, two vortices initially far from each other have no angular 
momentum barrier and are free to come together and merge (but not a t  the origin). 
In  fact, the differential rotation of 6 brings distant vortices close together on a fast, 
advective timescale. Another difference in which a zonal flow affects vortex mergers 
is that  it allows an exchange between EselP and Eint. Small-scale filaments of w 
dispersed throughout the zonal flow also cause a difference between the mergers of 
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vortices examined in this paper and the mergers of isolated vortices. These last two 
differences are important in the balance of energy and are discussed in detail in $5.3. 

An example of a vortex merger in a zonal flow with uniform wp superposed with 
small-scale filaments of vorticity is shown in figure 10 (plates 7, 8). Initially (figure 
10a) the zonal flow contains are no filaments - only two identical vortices positioned 
at  the same radial location in the annulus and separated azimuthally by 55x164 rad. 
The initial stream function is 

$(T>  $1 = - d T ,  $- -$ ) -9@,  $ + 4 W 4 ) ,  (5.2) 

where g ( r , $ )  is defined by (3.3). The bottom topography is h(r)  = ( T - ! ) ,  and the 
zonal flow is $, = +(2r--Rin-ROut), so that $ / w  a t  the vortices is positive and of 
order unity. Our motivation for choosing the initial 55x/64rad separation is the 
following. A flow with two identical vortices initially separated by x rad is two-fold 
symmetric. Because the symmetry is preserved the vortices can never merge. 
However, the flow is linearly unstable to non-two-fold symmetric perturbations that 
move the two vortices to different radial locations. Once the two vortices are at 
different radial locations the differential rotation of 6, brings them together. Our 
numerical code is designed so that its round-off errors also preserve the two-fold 
symmetry. Thus our initial separation of 55x164 is used to break the symmetry while 
keeping the initial vortices well separated. 

When the symmetry is removed, the u-component of the flow causes the two 
vortices to rotate about their common centre of vorticity ; the vortex a t  $ = x moves 
quickly to a location with slightly larger radius, and the other to a smaller. Both 
vortices shed filaments and become more elliptical (figure l ob ) .  The values of their 
ellipticities are related to the local value of $ / w  as described in $3.7. Some filaments 
reattach to the large vortices, but about half do not and become distributed 
throughout the zonal flow with nearly uniform density. After the differential rotation 
in 6, brings the two vortices together (figure lOc), they merge and expel the less 
rotational, yellow and light-blue coloured fluid entrained between them (figure 10d). 
The close proximity of the two vortices just before merger produces a large strain 
which in turn causes two filamentary whiskers of o to form (figure l O e , f ) .  The 
whiskers break off (figure log)  and fragment with some of the fragments rejoining the 
vortices, some going to the boundaries of the annulus and some distributing 
themselves throughout the zonal flow. Although the time for the vortices to approach 
each other is sensitive to the initial azimuthal separation, once the two vortices are 
separated by a vortex diameter, the merger itself takes between one and two turn- 
around times. Here, the characteristic turn-around time is defined to be 4~10.34. 
Note that the resulting merged vortex in figure 10 must have approximately the 
same strength of vorticity, total area, radial location, and ellipticity as the two initial 
vortices, owing respectively to the conservation of vorticity, circulation, angular 
momentum, and the fact that the ellipticity is a function of $ / w .  Dissipation and 
vortex shedding make the conservation laws inexact. For example, the area of the 
merged vortex in figure 10 (h)  inside the w = 0.25 contour is only 97 YO of the area 
in the initial flow in figure 10 ( a )  for which w > 0.25. The missing 3 'YO is mostly in the 
filaments distributed throughout the zonal flow. Less than 1% is lost by the 
numerical dissipation. The flow in figure 10(h)  is time-dependent and is steady only 
in a statistical sense because w is continually exchanged between the large vortex and 
the filaments in the zonal flow. 
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5.2. Multiple mergers 

In  order to  determine whether or not all large vortices in a zonal flow merge together, 
we consider a zonal flow superposed initially with several large vort,ices all with 
approximately the same value of w such that & / w  at the vortices is positive and of 
order unity. Our initial flow is the checkerboard pattern shown in figure 11 (a )  (plate 
9). The initial distribution of w is chosen to be slightly irregular (so that, there are no 
symmetries that could be conserved by our initial-value code) and such that the 
vortices are square in shape (i.e. far from equilibrium so that they quickly shed some 
of their w as filaments). The boundaries of the annulus, bottom topography, and 6 are 
the same as in figure 10. The initial vorticity in figure 11 ( a )  is 

4 

w(r ,  q5) = 0.56 f ( r ,  0.58) 2 g{mod [(q5-$t+fnj), 2x1) 
j = O  

5 

( 
+ f ( r ,  0.83) 2 g{mod [($-;x+&j), 2x1) 

+ f ( r ,  1.01) 2 g{mod [($-+-x+&j), 2-x]}) 

+ WO, (5.3) 

where f ( r , s )  = gtanh [30(r-s+O0.1)]-tanh[30(r-s-0.l)]}, (5.4) 

j = O  

7 

j =O 

g(q5) = '{ 2 tanh [?( q5-x +&)I - tanh [? (q5 --x -&)I}, (5.5) 

and o,, is chosen to be consistent with the definitions of C, and C, in $2.2. The 
maximum value of the initial w is 0.424. The 19 initial vortices shear, shed vorticity, 
approach each other, and merge (figure 11 a-h) (plates 9, 10). The final flow has two 
elliptical vortices. The ellipticities of the two are different, but both are consistent 
with the ellipticity-&/w relation discussed in $3.7. The vortex collisions cause a large 
amount of w to be stripped from them. Although much of this w gets dispersed 
throughout the zonal flow as filaments, approximately one-third is lost through 
dissipation ; the flow in figure 11 ( h )  has only 32 YO of the enstrophy of the initial flow 
value. The high rate of dissipation is because most of the stripped w is put directly into 
the small, dissipative scales. Despite, the large dissipation and stripping, the angular 
momentum is conserved to a few parts in lo5, and the energy undergoes a reverse 
cascade. The energy spectra a t  three different times are shown in figure 12. Most of 
the energy of the non-axisymmetric component of the initial velocity is in azimuthal 
modes with m > 5. By 5.17 turn-around times, most shifts to the modes with 0 < 
m < 5, and this reverse cascade continues for more than 58 turn-around times. An 
analysis of the enstrophy spectra show that, enstrophy cascades to the small scales 
in bursts that correlate in time with the stripping of w from the large vortices. 

The fact that the final flow in figure 11 (h) has two vortices is not significant. We 
have found examples of initial flows with 19 vortices that are only slightly different 
from the checkerboard arrangement in figure 11 ( a )  that produce one, three, or four 
final vortices. The number of final vortices depends on the order in which the vortices 
merge. We have found that two vortices merge i f  and only i f  their radial separation is 
less than a critical value which is  of order the radius of the larger vortex. (We calculate 
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FIQURE 12. Energy spectra log,,E(m) of the flow in figure 1 1  with the solid curve after 0 
turn-around times, dotted curve after 5.17, and long-dashed curve after 58.2. 

this value in the next section.) Therefore when the vortices merge as in figure 11, so 
that the first mergers leave one cluster of vortices near the outer boundary and 
another near the inner, the vortices within each cluster merge into a single vortex. 
Because the two remaining vortices are then separated by more than a vortex radius 
they themselves do not merge together, and the final flow has two vortices. For the 
final flow to have only one vortex, it is necessary that the vortices merge in an order 
so that no vortex is ever cut off from its neighbours by a radial distance larger than 
a vortex radius. 

Another interesting feature of multiple vortex mergers is the homogenization of 
potential vorticity in the final merged vortex. To demonstrate this we used the same 
initial checkerboard pattern as shown in figure l l (a) ,  but we gave each vortex a 
different and nearly constant value of w ranging from 0.36(r) to 3$(r) .  From the 
results in $4, we had expected that, in the limit of no numerical diffusion of vorticity, 
the distribution of w within the final vortex would have arranged itself into distinctly 
stratified layers like an onion, with the largest w a t  the vortex centre and decreasing 
monotonically outward. With numerical diffusion, we expected the boundaries 
between the layers to blur and the w to decrease smoothly and monotonically from 
the vortex centre outward. Instead, we found that the final vortex had nearly 
uniform w with a mean w of 0.83 and a variation (in the central 75% of the vortex) 
less than 10 YO. Diffusion made approximately half the w spin-up and half spin-down. 
The explanation for the unanticipated behaviour is the following. As the initial 
vortices merge they are broken into small fragments. Just after the fragments all 
bind together into a single vortex, there are two competing effects: (i) a t  a rate that 
increases with fragment size, the fragments stratify so that those with the largest IwI 
are a t  the centre, and (ii) at a rate that decreases with fragment size, the vorticity 
of the fragments diffuses so it approaches a common value. In our numerical 
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experiments the size of the fragments and value of the numerical diffusion were such 
that the vorticity diffused to a constant value before the fragments had a chance to 
stratify. 

In  summary, we have found that vortices with &/w > 0 merge on a fast, advective 
timescale. Undoubtedly, this propensity to merge is responsible, a t  least in part, for 
the finite-amplitude stability of vortices with $ / w  > 0 in very turbulent shear flows 
like those studied by Sommeria et al. (1988). A vortex in a turbulent shear has 
fragments of w continually torn from it. These fragments and other filaments in the 
zonal flow with $ / w  > 0 continually merge with the large vortex and a statistical 
equilibrium is maintained. If the zonal turbulence were to split the vortex into two, 
then the two pieces would recombine. Our numerical simulations show that vortices 
with $ ( r ) / w  > 0 merge with their neighbours (within a critical radial distance) and 
grow in area until all of the vortices have merged together, but there is one exception 
to this result : If the sign of $(r )  changes with r ,  then a vortex with $ ( r ) / w  > 0 merges 
and grows until part of it overflows into the region where the shear of the zonal flow 
changes sign. Van Buskirk & Marcus (1990) have shown that the vortex can only 
penetrate a finite distance into this region, and so the vortex continues to merge with 
other vortices of like sign, but the rate a t  which it gains area is balanced by the rate 
a t  which i t  loses i t  through the shedding of filaments in the region of the zonal flow 
where &(r) /w  < 0. 

5.3. Critical separation distance for vortex merging 
In order to determine the critical separation for vortex merging, we ran a series of 
experiments consisting of a zonal flow superposed with two identical vortices whose 
centres were located radially a t  r = ;(Rout +Bin) f iAr and separated azimuthally by 
55xl64rad. By varying the impact parameter Ar and observing whether the two 
vortices merged, we determined the critical impact parameter ATcrit above which 
vortices do not merge and below which they do. We carried out the experiments with 
two different zonal flows, one given by equation (3.1) and others by (3.9). We also 
varied the characteristic value of the initial vortices’ w from 0.3 to 3.0&~(R,,,+Ri,) 
in increments of 0.24(BOnt+Rin). Each of the initial two vortices was designed so 
that it would have been in equilibrium if the other were not present and if it had been 
located at  r = i(ROut+Rin). (We chose quasi-equilibria for initial conditions to help 
minimize the shedding of w and thereby conserve the circulation of the large 
vortices.) Our initial flows also included the superposition of a uniform distribution 
of small-scale filaments of vorticity as described in $3.7. 

To summarize our results : the two, initial, quasi-equilibrium vortices shed 
(without eventual reattaching) very little w ,  less than 1 % of their circulation. When 
two vortices merge, the angular momentum of the final vortex is within 1 % of that 
of the two initial vortices. This implies that  the transfer of angular momentum from 
the vortices to the filaments is nil. Less than 0.1 YO of the energy of the initial vortices 
is lost through dissipation, but there is a large transfer of energy, up to lo%,  from 
the vortices to the filaments. When two vortices merge, the final vortex is always 
(statistically) steady with an ellipticity as described in 53.7. Using these observations 
we developed a test for predicting vortex merger based on energy arguments. The 
test successfully predicts the critical impact parameter ATcrit. 

To apply our test, first divide the velocity into two parts: (i) a large, temporally 
coherent component consisting of 6 and the component of v due to the large vortices, 
and (ii) a temporarlly incoherent part due to the filaments of w in the zonal flow. (The 
coherent part is defined numerically by using a time-averaging algorithm.) If none 
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of the filaments of w in the zonal flow merges with the vortices or attaches to the 
boundaries of the annulus, then the circulation and all of the enstrophies of both the 
temporally coherent and incoherent components are conserved independently. In 
addition, if the distribution of filaments remains macroscopically uniform throughout 
the zonal flow, the angular momenta of both components (which depend on the w- 
weighted average value of r 2 )  are independently conserved. However, the energies of 
the two components are free to change. The energy of the temporally incoherent 
component changes when the microscopic distribution of filaments changes. For 
example, if pairs of like-signed filaments of w bind together while keeping the 
macroscopic distribution of pairs uniform, the energy of the temporally incoherent 
component increases while keeping its circulation, enstrophy and momentum 
constant. Note that the total energy of the flow is the sum of three parts : the energy 
of the temporally coherent velocity, the energy of the temporally incoherent 
velocity, and the energy of the cross-term between these two components. However, 
if the macroscopic distribution of filaments remains uncorrelated with the vortices, 
then the value of the cross-term remains constant. Prior to running our initial-value 
simulations we do not know whether the two initial vortices will merge together. 
However, if we had a priori knowledge that they did merge, then we could determine 
in advance the velocity of the merged vortex flow without using our initial-value 
code. This is because we know the values of the circulations, entrophies, and angular 
momenta of the merged vortex flow (assuming no filaments leave or join the 
incoherent component of the velocity), and we know that a merged vortex is steady. 
This information is sufficient to  compute the coherent component of the final flow. 
As an analytic example, consider a plane-parallel, unbounded zonal flow with 
constant shear 6, and let the two initial vortices have uniform w with ellipticities 
given by the Moore-Saffman relation in figure 6. Then the final vortex (if one forms) 
is steady and has the same w and ellipticity as the initial vortices and twice their area. 
By conservation of momentum, its location in the zonal flow is midway between the 
locations of the two initial vortices. Thus, the final flow with the single vortex is 
completely specified. Our numerical experiments with vortices of non-uniform w in 
annular zonal flow with boundaries require a numerical calculation to compute the 
final flow, but the point is that i t  is uniquely determined by the conservation of the 
circulations, enstrophies, and angular momenta, but not energy. The energy of the 
coherent component of the final flow will in general not be equal to that of the initial 
flow. Therefore, the coherent and incoherent components must exchange energy for 
there to be mergers. Because we found empirically that the energy of the coherent 
component of the velocity decreases, our proposed test for vortex merger is this: 
calculate the energy of the coherent component of the velocity of the initial two- 
vortex flow and compare i t  with that of the one-vortex flow with the same 
circulations, enstrophies, and momenta; vortices merge if and only if the latter 
energy is smaller, This test agrees with the results of our numerical experiments. We 
can predict the value of Arcrit to within 5 % ,  where the uncertainty is due to our 
uncertainty in dividing the final flow into coherent and incoherent components 
(which depends on the timescale used in the averaging). 

More importantly, we can determine semianalytically how ATcrit depends 
qualitatively on 6, w,  and the sizes of the initial vortices. To do this, note that the 
coherent component of the energy is itself a sum of two parts - the self-energy and 
the interaction energy. To determine how the interaction energy of the flow changes 
during a merger let us first consider t,he analytically tractable case of the merger of 
two identical Moore-Saffman vortices, each with ellipticity 8, area A ,  potential 
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vorticity w e ,  and minor radius R, superposed on a zonal flow with constant shear 6. 
From (2.20), the change in the interaction energy after merger is 

SE, int - -- ' ' 'we [($)2 - 1  ] = 
47c€ 

where f is the slowly varying function of $ / w e :  

(5.6) 

We use the subscript c to denote the coherent component of any quantity. Equation 
(5.6) shows that for Ar < R,, the one-vortex flow has less interaction energy than the 
two-vortex flow when G / w  > 0, and it has greater when G / w  < 0, and vice versa for 
Ar > R,. When Ar = R,, merger does not change the interaction energy. For 
mergers in arbitrary, bounded, annular zonal flows, SEFt must be calculated 
numerically, but it is qualitatively similar to equation (5.6). In particular,  SIT',"^ 
depends only on the sign of $ / w ,  and not on the individual signs of G and w,, and we 
find numerically that SEFt = 0 a t  a value of Ar approximately equal to the minor 
radius of one of the initial vortices. For example, for the zonal flow in equation (3.1) 

2AG 
SEFt = - ( ( ~ , r ~ ) , - - ( w , r ~ ) ~ ) ,  3r (5.8) 

where A is the area of one of the initial vortices, ( w , ~ ~ ) ~  is the average value of 
w, r3 

( w ,  r3)t = - w, r3r dr d$, (5.Q) A ' S  
and the subscript i is 1 and 2 for the one- and two-vortex flows, respectively. The 
quantity ( ( w c  r3 ) ,  - (w,  r3)*)  is negative when Ar = 0, increases monotonically with 
Ar, and passes t,hrough zero when Ar z R,, so (5.8) and (5.6) are qualitatively 
similar. 

To determine how the self-energy of the coherent component of the velocity 
changes during merger, we parameterize it in terms of the dimensionless function y 
defined by 

(5.10) 

where D is the distance between the two initial vortices. Generally, 5 cannot be 
computed in closed form, but it is of order unity and depends only on the geometry 
of the vortices : [ is only a weak function of the zonal flow. When vortices merge, the 
distribution of w, becomes compact, so generically SEYlf is always positive regardless 
of the size of Ar or the signs of w, and 6. (There are exceptions, for example when the 
final vortex is close to a boundary.) Our test for merger predicts that if two vortices 
approach each other, then they will merge if SErt is sufficiently negative that it 
overcomes the increase in SE5,elf. We define Arcrit to be the value of impact parameter 
at which &Ept + = 0. For Moore-Saffman vortices 

(5.11) 
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For Ar < ArCrit and C;/w > 0, the coherent component of the energy decreases in a 
merger. Equation (5.11) shows that ArCrit/Hm is less than one and increases with the 
value of C;/u, and with the value of R,/D. We have found numerically that these 
relationships are also true for mergers in annular geometries with the zonal flows in 
(3.1) and (3.9). 

5.4. Vortices with + / w  < 0 
Our assertion that vortex dynamics can often be predicted by assuming that the 
coherent component of the energy decreases can be tested by examining vortices in 
zonal flows with &/w < 0. Here, the fission of a vortex into two smaller vortices with 
a small Ar generically decreases the coherent component of the energy. With &/a 
< -0.5, our simulations show that an initial vortex stretches into a spiral and breaks 
into smaller and smaller fragments as in figure 1. When the initial vortices are large 
with R, 2 t(Rout - Rin), the w from the initial vortices ends up in one of three places : 
deposited in a boundary layer at Rin (which contributes a 1/r component to 
the coherent velocity), in a boundary layer a t  Rout, or in an approximately 
macroscopically uniform distribution of filaments that fills the entire annulus (which 
contributes a solid-body rotation component to the coherent velocity). Let the 
amount of circulation that ends up in each of the three regions be designated as Gn, 
cut, and cniPorm, respectively. The values of each of the three circulations can be 
predicted by using ( i )  the assumption that the energy of the coherent component of 
the flow is minimized, (ii) the conservation of circulation c, and (iii) the conservation 
of the angular momentum L,. (Note that because the initial vortices fragment into 
pieces that become part of the incoherent component, the enstrophies of the coherent 
component are not conserved). With the zonal flow of equation (3.1), the conservation 
of circulation and momentum and the minimization of the coherent energy yield the 
following : 

and 

(5.12) 

(5.13) 

(5.14) 

There is a physical additional constraint : Gnr cut, and runifor, must all have the same 
sign as the w of the original vortex. If either 4, or Gut have the opposite sign as w ,  
(5.12) is replaced with 

and and Gut are still given by (5.13) and (5.14). (Note that runifor, always has 
the same sign as w for Rollt/Rin = 4.) The results of our numerical simulat,ions agree 
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with these predictions to within 15%, although we note that when initial flows have 
small vortices with R, < &(Rout - R,,), the fragments are not uniformly mixed in the 
zonal flow (they retain the memory of their initial radial location), and the final 
values of 4, can deviate significantly from the predicted values. 

Our test for vortex mergers was based on the assumption that the timescale for 
merger is faster than the dissipative timescale. It also assumed that the timescales 
for vortices to shed or absorb small filaments and for changes in the macroscopic 
distribution of filaments are slow, so that the circulations, enstrophies, and angular 
momenta of the coherent component of the flow are conserved during merger. Our 
test further assumed that the filaments irreversibly absorb energy from the coherent 
component. Although it is intriguing how well the assumptions hold for mergers and 
for predicting the strengths of boundary layers, they do not always hold, and the 
general behaviour of vortices cannot always be predicted with them (see $6). 

We conclude this section by emphasizing that there are qualitative differences 
between the flows studied here and those without small-scale filaments (or some 
other relaxation mechanism). In  non-dissipative flows without filaments, there is in 
general no steady one-vortex flow that has the same circulation, enstrophies, 
momenta, and energy as an arbitrary initial flow that contains two vortices. 
Therefore it is impossible for the two initial vortices to merge into a steady flow with 
one vortex. The small filaments of w in our simulations allow the large coherent 
vortices to  reduce their energy so that the flow can make a transition from one steady 
state to another. The role played by the filaments is not the same as viscosity. In  
viscous flows the enstrophies and energy decrease monotonically, and the angular 
momentum decreases or increases ; whereas in flows with small-scale filaments of w 
(that obey the assumptions of this section) only the energy of the coherent 
component decreases while all of the other quantities remain constant. In  weakly 
dissipative flows (with no zonal components, no boundaries, and no distribution of 
small filaments of w )  Dritschel(l985) argued that a two-vortex flow evolves to a one- 
vortex final state if the initial and final flows have the same momenta and circulations 
and if the change in energy between the initial and final states has the smallest value 
of all possible final states. Using this argument he was able to explain why his 
merging vortices always passed through a long-lived transient stsate with the same 
approximate ellipticity. However, starting with the long-lived state, he was unable 
to predict the direction of the flow evolution, i.e. whether the state evolves to a one- 
or a two-vortex flow. Our simulations show that these arguments do not carry over 
to flows with small-scale filaments of vorticity. Moreover in our simulations with 
filaments of w ,  the assumption that the energy flows from the coherent to the 
incoherent component always gives an unambiguous direction to the flow’s evolution, 
and so always predicts the direction in which a transient evolves. 

6.  Discussion 
6.1. Summary of numerical results 

We have shown how large vortices merge, migrate, fragment, and stretch in a 
shearing zonal flow in which there are also small-scale filaments of vorticity. The 
zonal flow breaks the degeneracy of the clockwise and counterclockwise vortices by 
allowing an exchange between the self-energy of the vortices and the interactions 
energy of the zonal flow. The small-scale filaments of vorticity allow the large-scale 
vortices to relax to equilibrium by absorbing their energy while conserving their 
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circulations and angular momenta. The decomposition of the flow into a zonal 
component with uniform potential vorticity and a remainder vorticity w is useful 
because the zonal flow advects and stretches w ,  but w does not react back upon the 
zonal flow. The statistically steady vortices in an annular shearing zonal flow that we 
found numerically are similar to the Moore-Saffman vortices of piecewise-constant 
w embedded in an unbounded, plane-parallel, zonal flow with uniform shear. We 
showed that a vortex with 4 > 6 / w  > 0 is robust, whereas a vortex with -0.2 6 
6 / w  < 0 is unstable to a finite-amplitude perturbation, and we numerically found that 
the lengthscale of the finite-amplitude perturbation is approximately equal to the 
distance between the boundary of the vortex and its last closed streamline. Initial 
vortices with &/w < -0.2 are not in equilibrium nor is there a nearby equilibrium to 
which they can evolve. Instead, they are pulled by the zonal flow into spirals and 
their w is pushed outward to the radial extremities of the zonal flow. If the w is 
pushed into a region where the shear of the zonal flow changes sign, then the w rolls 
up into a stable vortex. We have shown that stable vortices are advected with a 
speed that is equal to the sum of the velocity of the surrounding zonal flow and the 
velocity due to the neighbouring vortices and boundaries (as determined by the 
Biot-Savart law). The breakup of a vortex layer demonstrates the exchange of 
energy between the self-energy and the interaction energy. Unstable layers with 
6 / w  < 0 are shown (analytically) a t  early times and (numerically) a t  late times to 
decrease their self-energy, which is consistent with the observation that these layers 
break into successively smaller filaments. Unstable layers with 6 / w  > 0 are shown to 
increase their self-energy, which is consistent with the observation that these layers 
form a single large vortex. When large vortices are created by the binding together 
of smaller vortices, the w of the smaller fragments redistributes itself, and there are 
two competing effects. One is that  the w within each fragment diffuses so that the w 
throughout the entire vortex evolves towards a mean value on a timescale that 
increases with fragment size; this was observed in the mergers in $5. The other effect 
is that the fragments themselves move so that there is not a local minimum of JwI in 
the vortex interior. The timescale of this effect decreases with fragment size ; this was 
demonstrated in $4. In  a series of experiments that began with two vortices 
separated radially by a distance Ar we showed that there existed a critical value ATcrit 

above which vortices do not merge and below which they do. A theoretical value of 
Arcrit was calculated by assuming that energy flows irreversibly from the two large 
vortices to the small filaments of w .  The theory was confirmed by the numerical 
experiments to within 5%. 

6.2. Future work 
A number of questions about the behaviour of vortices in the presence of zonal flows 
with small-scale filaments of w have been raised by this study. For example, we have 
demonstrated that there are a t  least two cases in which the filaments absorb energy 
from the large scales, but this does not happen in all flows. In  particular, in 
laboratory flows (Sommeria et aZ.), the Jovian atmosphere, and in some of our 
unpublished numerical experiments, vortices drift across zonal flows to locations 
where the zonal shear has a local maximum. It is easily shown that these locations 
correspond to local maxima of the coherent component of the energy which implies 
that  energy flows from the filaments to the large vortices. This effect needs to be 
examined in detail. It suggests to  us a model of vortex dynamics in which the large 
vortices are in a thermal bath of filaments - if the filaments are ‘cool’, then energy 
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flows from the large vortices to the filaments, and if they are ‘warm’, vice versa. 
Currently, we are carrying out several numerical experiments to test these ideas and 
in particular how vortices and filaments come to equilibrium. Another question 
raised by this study is under what conditions the potential vorticity becomes 
approximately uniform over large regions. In this paper we have shown that when 
large vortices are created in a weakly diffusive flow by the mergers of small 
fragments, their cores have nearly uniform up. In the laboratory, Sommeria et al. 
showed that large zonal flows with nearly uniform wp are created by external forcing. 
However, a careful numerical study of flows with physically realistic forcing and 
dissipation will be needed to understand better the homogenization of wp. 

Perhaps the best laboratories for studying the interactions of large vortices with 
zonal flows are the atmospheres of Jupiter, Saturn, and Neptune. It was the 
observations of long-lived Jovian vortices that initially motivated this paper. A brief 
study of the dynamics of the Jovian Great Red Spot was reported earlier (Marcus 
1988), and detailed comparisons between the Jovian velocities and numerical 
simulations are quite good when the vertical structure of the atmosphere is taken 
into account (i.e. using the quasi-geostrophic equations with a finite value of the 
Rossby deformation radius in the definition of wp in equation (2.2) - see Marcus & 
Van Buskirk 1990). We conclude this section by listing the properties of the Red Spot 
that are shared by the vortices examined in this paper (and the vortices computed 
with the quasi-geostrophic equation with finite Rossby deformation radius). the 
Voyager satellite observations of the Red Spot show that it is a nearly two- 
dimensional vortex embedded in a zonal flow with a shear approximately equal to 
the vorticity of the Red Spot. The core of the Red Spot has nearly uniform potential 
vorticity (Dowling & Ingersolll989; Marcus & Van Buskirk 1990) which is consistent 
with a picture that it is slightly diffusive and was created by the merger of many 
small vortices. The Red Spot has thc same sense of rotation as the local zonal shear, 
which is consistent with our numerical results that show that vortices with 
0 < $ / w  = O(1) are robust. In fact, there are no observations of long-lived Jovian 
vortices with $/o < 0. The elliptical shape of the Red Spot is consistent with the 
shape of a vortex with uniform potential vorticity embedded in a zonal flow with 
$ /w,  = O(1). The Red Spot and the other long-lived Jovian vortices move around the 
planet a t  a speed equal to the velocity of the local zonal flow (to within the 
observational uncertainties). The Red Spot continually merges with and swallows 
nearby vortices of like sign but, similar to thc vortices discussed at the end of $5.2, 
its growth is checked by the fact that it not only completely fills the local band of 
zonal flow where &/u > 0 but also spills over into the neighbouring region of zonal 
flow where $10 < 0. 

I thank Harry Swinney and Joel Sommeria for discussions and Nicholas Socci for 
computer graphics. This work was sponsored by National Science Foundation grants 
AST-85-15212 and CTS-89-06343 and the Lawrence Livermore National Laboratory. 
Computations were done at the National Center for Atmospheric Research and the 
Center for High Performance Computing at  the University of Texas. 
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Appendix. Vortex layer stability 
A. 1. Eigenmodes 

The flow consisting of the zonal velocity 6# superposed on a vortex layer with 
piecewise-constant vorticity equal to w in the strip R, < r < R2 and vorticity equal 
to zero outside the strip has linear eigenmodes of the form eim(@-ct) where 

where m is a positive integer, and where y and ( 2 )  are defined in $4.  The mth mode 
is linearly unstable if and only if 

m 

Clearly the flow is stable to all modes if (6)/w < - 1. The fastest growing eigenmode 
is given by (4 .5) .  

In  the limit of a thin vortex layer, or y+ 1, the annular vortex layer has the same 
stability properties as a planar vortex layer with vorticity equal to w for 8 < y < 
E and vorticity zero outside this strip. The eigenmodes of the planar vortex layer are 
of the form eia(z-ct)'(Fa-F1), and the planar vortex layer is unstable if and only if 

for some positive wavenumber a. For the planar vortex layer in (A 3) we have defined 

(6) = [6z(z)-QQJ/(E-q. (A 4 )  

For thin layers, i.e. ( K - K ) + O ,  (6) approaches the value of r3 a t  the layer. In the 
thin-layer limit, (A 2)  and (A 3 )  are the same if one identifies the planar wavenumber 
a with +( 1 - y2)  and uses the fact that in the thin limit, y2m approaches e-2a. The 
stability limits and fastest growing eigenmode as a function of a and ( (2 )  + w ) / o  
are shown in figure 9. The unstable linear eigenmode changes the location of the 
edges of the vortex layer from to ~ + 6 1 e i a ( z - c t ) ' ( ~ ~ - ~ i )  and from P 2 to 
% + 6, eia(z-ct)'(F2-F1). For unstable eigenmodes 

Equation (A 5 )  shows that 16,/S2( = 1, so the perturbation's amplitudes at the two 
edges of the layer are equal regardless of the value of 6,(y). The perturbations of the 
annular vortex layer do not have equal amplitudes at  the two edges except in the 
limit y --f 1. 

The stability analysis of a piecewise-constant vortex layer in a zonal flow is a 
special case of the analysis of a zonal flow superposed on a vortex with w = w1 for 
r < R,, with w = w, for R, < r < R, and w = 0 for r > R,. This vortex (referred to in 
$4) is unstable if and only if 
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for some positive integer m where ( 3 )  is defined by (4.6). A vortex with w l / w 2  < 1 
and ( ( 6 ) + w , - w , ) / w ,  > 0 is, in general, unstable. In particular, the vortex is 
unstable to the eigenmode with wavenumber 

Though the m defined by (A 7) is positive for the constraints mentioned above, it 
may not be an integer and therefore physically allowable. Generally, the integers 
closest to this m make the left-hand side of (A 6) negative and the vortex unstable. 
However, for some very small values of y, the left-hand side of (A 6) is positive for 
all positive integers m, and the vortex is linearly stable. 

A.2. Stabilization of vortex layers with ( $ ) / w  < - 1 

The above analysis shows that an annular or planar vortex layer is linearly stable if 
( 6 ) / w  < - 1, and it is worthwhile to show both mathematically and physically how 
a zonal flow with ($) opposite in sign to and greater in magnitude than w stabilizes 
the layer. Fjortoft’s theorem and the inflection theorem can be used to determine 
linear stability. The inflection theorem is : In  an annular geometry with arbitrary h(r)  
and BQ(r), a necessary condition for linear instability (in the form of discrete spectrum 
eigenmodes) of an axisymmetric azimuthal flow u&r) = G&r) + w $ ( T )  is that w has an 
extremum somewhere in the flow’s interior not including the radial boundaries. 
Fjortofts’s theorem is : If the extremum occurs at re, then to  be unstable there must 
be at  least one point in the flow where [ ~ ~ ( r ) / r - u ~ ( r , ) / r , ] a w / a r  < 0. (NB Rayleigh’s 
test for centrifugal instability - linear instability is equivalent to the radial decrease 
of the absolute value of the angular momentum per unit mass - is not valid for two- 
dimensional flows.) To see mathematically how a zonal flow with S / w  < - 1 stabilizes 
a vortex layer, consider an axisymmetric vortex layer in which w is continuous, 
differentiable, positive, and has a single maximum a t  re such that R,, < re < Rout. In  
addition let v,(R,,) 2 0. If B, = 0, then the flow could be either stable or unstable 
depending upon the exact form of w ( r ) .  However, if G4 =!= 0, we claim that a sufficient 
condition for linear stability is that  

$ ( r ) / w ( r )  < - 1 (A 8) 

for all R,, < T < Rout. To prove this statement, we need to show that 

for all r .  By assumption there is a single maximum in w ,  so aw/ar > 0 for r < re, and 
< 0 for r > re. Therefore a sufficient condition for linear stability is that 

a(u,/r)/ar < 0 for all r,  or equivalently B + w - 2 v 4 / r  < 0, or equivalently 

B / w  < - 1 +2v,/wr (A 9) 
for all r .  However 

v4(r) = v p ( R i n ) r + y  wrdr ,  
Rin l L” 

so if v4(R4) 2 0, then v,(r) > 0 for all r. Therefore condition (A 8) sufficiently satisfies 
(A 9). Clearly, the stability condition of (A 8) applies also to vortex layers with 
w < 0 and with a single minimum in w .  
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To obtain a more physical understanding of how the zonal flow stabilizes a vortex 
layer, we note that in the thin-layer limit an annular vortex layer has the same 
stability properties as a thin planar vortex layer, which in turn has the same 
properties as a planar vortex sheet. The vortex sheet in turn has the same stability 
properties of a row of discrete vortices. Therefore we shall demonstrate the physical 
mechanism by which a shearing zonal flow stabilizes a vortex layer by examining 
how it affects a row of vortices. However, we must first relate the stability of a vortex 
sheet to a vortex layer. Consider a vortex sheet with a jump in the velocity across 
the sheet equal to Av. Define (6) to be the shear of the zonal flow a t  the location of 
the sheet, and let ( w )  = -$aAv, where a is the wavenumber of the perturbation of 
the sheet. Although the vorticity of the sheet is singular ( w )  is well-defined, has the 
same dimensional units, and plays a role in the linear dynamics of a vortex sheet that 
is analogous to the role w plays in the vortex layer. In  particular, it is trivial to 
show that the sheet is stable to linear perturbations with wavenumber a when 
( G ) / ( w )  < - 1. Now model the vortex sheet with a row of discrete potential vortices 
(Lamb 1932), each with circulation -hAv,  and each equally spaced a distance h 
apart as shown in figure 13(a). To see that this row of vartiees has the same long- 
wavelength (i.e. wavelength greater than A )  instabilities as the vortex sheet, observe 
that the coordinates of the j t h  vortex obey 

Equations (A 10) and (A 11) have linear eigenmodes 

where (6) is the shear of the zonal flow a t  the row of vortices, and now (to) is defined 
as 

(with the restriction that 2n/h > a > 0 ) ,  and where j h  acts like the x-coordinate in 
the vortex sheet. The eigenvalues are (NB the signs in (A 13)) 

c=&+-+1- Av . A v (  1+-- <$)r( 1-- , ;:) 
2 - 2 (0 )  

where 8, is the zonal velocity at the row of vortices. In  the limit that l/a is much 
greater than A, the definitions of ( w ) ,  the dispersion relations, and the conditions for 
linear stability are the same for the row of discrete potential vortices and the vortex 
sheet. We therefore argue that the dynamics of a row of discrete vortices, a vortex 
sheet, and a vortex layer are all controlled by the same physics. To understand this 
physics consider the rows of potential vortices in figure 13. Let the potential vortices 
all have the same strength and sign (in this case positive), so Av < 0. Figure 13 is in 
the frame of reference of an observer moving with velocity $,++AD. Now perturb 
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FIGURE 13. Sketch showing the instabilities of a row of vortices separated from each other by a 
distance h (a). The third vortex is displaced upward a distance 6 ( b ) .  If d is zero or has the same 
sign as the vortices in the sheet, vortex 3 is advected to the left, and its nearest neighbour, vortex 
2, will push it upward further away from the original location of the vortex sheet. The flow is 
unstable (c). If d is opposite in sign to and greater in magnitude than the vortices in the sheet, 
vortex 3 is pushed to the right. Vortex 4 becomes the nearest neighbour and pushes vortex 3 
downward back into the sheet. The flow is stable (d) .  

vortex number 3 upward a distance 6. If this vortex is forced downwards back into 
the sheet the flow is stable, and if i t  is advected further upward it is unstable. Vortex 
3 is always advected to the left by the other vortices in the sheet. It is advected either 
to  the left or the right by 8 depending on the sign of (3 ) .  Vortex 3 is not advected 
initially in the y-direction. If vortex 3 were advected to the left it would interact 
most strongly with vortex 2 which pushes it upward away from the sheet (figure 13c). 
Therefore advection to  the left is equivalent to unstable flow. If vortex 3 were 
advected to the right, then vortex 4 would push it downward back into the sheet the 
flow would be stable. If (6) is positive, then both the advection due to the row of 
vortices and due to 8 push vortex 3 to the left, and the flow is unstable (figure 13c). 
If ( 2 )  at the sheet is negative, then 8 pushes vortex 3 to the right with velocity 
\((;)\S (to first order in 6). The velocity exerted on vortex 3 due to  the row is well- 
approximated by the velocity due to just the two nearest neighbours, vortices 
numbers 2 and 4. To first order in 6, this velocity is to the left and has magnitude 
(6Av/nh(. Therefore if 

& 2 
( w )  < - nah( 1 - ah/2n)  

then vortex 3 moves to the right, and the flow is stable. The stability condition given 
by (A 16) only approximates the stability condition given by (A 8) because we have 
limited our analysis to nearest neighbours. However, the key point of our physical 
analysis is that instability (or stability) is equivalent to vortex 3 being advected to the left 
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(or right). This point is not a consequence of the fact that we used only the influence 
of the nearest neighbours in determining the motion of vortex 3; indeed, it is verified 
by the analysis of the linear perturbations of the infinite row of potential vortices: 
A t  time t = 0+, let all of the vortices in the row be perturbed from their equilibrium 
positions by a linear eigenmode, and chose  its phase and amplitude such that vortex 
3 is displaced upward a distance 6 but is not displaced to the left or right. Then if 
($)I(@) < - 1, so that the flow is stable, the position of vortex 3 a t  later times is 
(when viewed in a frame moving with velocity S,+iAv) 

x 3 ( t )  = ~ ~ ~ ( - l - ~ ~ ~ i n [ ~ ~ A v ~ ( l - ~ ) ( - l - ~ ~ ~ ~ ] + ~ ~ ( O ) ,  (A 17) 

If ( $ ) / ( w )  > -1, so that the row is unstable, then 

These eigenmode solutions show that in a stable row of vortices, vortex 3 is advected 
initially to the right, and in an unstable row initially to the left. This verifies the key 
point of the nearest-neighbour analysis, and it shows that for 6, to stabilize a vortex 
layer it must overcome the circulation of the vortex layer and advect the 
perturbations of the sheet or layer in the direction opposite to the circulation. 
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