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Vortex dynamics and zonal flows *
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Two-dimensional vortex dynamics have been studied in plasmas by exploiting the analogy between
fluid velocity and theEÃB drift velocity. The analogy extends to geophysical flows by including
physics that mimic zonal flows, dissipation and theb-effect due to the variation in the Coriolis
parameter. Vortices with the same sign as the ambient zonal shear are stable, while opposite-signed
vortices fragment. Rules for vortex merger derived by maximizing entropy or minimizing enstrophy
do not work for vortices embedded in zonal flows. New rules based on the minimization of energy
hold. When zonal flows are not imposed, and the flow is forced at small scales, large, coherent jet
streams or eddies form that co-exist with turbulence. Their sizes are determined by an energy
balance, not the length scales of the forcing or boundaries. The motivation for this work is to
understand atmospheric and ocean vortices: Gulf stream meanders and eddies, the Antarctic ozone
hole, the jet streams of Earth and Jupiter, and the Jovian Great Red Spot and White Ovals. ©2000
American Institute of Physics.@S1070-664X~00!96805-8#
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I. INTRODUCTION AND MOTIVATION

There is an analogy between two-dimensional~2-D!, in-
viscid, incompressible fluid dynamics and pure-electron p
mas: the fluid velocity acts like the (EÃB) drift velocity, the
vorticity like the electron density, the stream function lik
the potential, the fluid Poisson equation like the electri
Poisson equation, and the conservation of circulation like
conservation of charge. Exploiting this analogy, 2-D vort
dynamics have been studied in plasmas confined
Malmberg–Penning traps including vortex merger,1 Dio-
cotron instabilities~known as Kelvin–Helmholtz instabilities
in the hydrodynamics literature!2–11and the equilibration and
stability of arrays of vortices.12–14Fluid flows are rarely 2-D
unless strong rotation or stratification is present. These c
ditions prevail in atmospheres and oceans, so it is not
prising that 2-D flow is mostly of concern to geophysic
fluid dynamicists. Jovian vortices, such as the Great R
Spot, the White Ovals, and the numerous Ka´rmán vortex
streets, a primary interest of the authors, usually inte
strongly with the planetary zonal~east–west! jet streams or
are strongly influenced by theb-effect due to the north–
south gradient of the Coriolis force~see Ref. 15 and see Se
II ! or by dissipation. The analog of zonal flows can be c
ated in plasma experiments by imposing a radial poten
with a charged axial wire. Theb-effect can also be created i
a plasma trap,16 and the analog of a Rayleigh fluid dissip
tion ~see Sec. IV for definition! can possibly be induced in
plasma by introducing a gas into the trap with a high elect
affinity such as sulfur hexaflouride.

With these modifications, 2-D geophysical fluid dynam

*Paper IR1 1 Bull. Am. Phys. Soc.44, 159 ~1999!.
†Review speaker.
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ics can be studied in a plasma. In contrast 2-D fluid dyna
ics, with or without these additional effects, are difficult
study in laboratory experiments with real fluids. To keep t
flow 2-D, rapid rotation is necessary, but rotation creates
Ekman dissipation due to the drag of the top and bott
boundary layers.15 To be within the parameter regime whe
the rotation is strong enough to keep the flow 2-D but we
enough so that the Ekman dissipation time is much gre
than a vortex turn-around time requires that the diameter
rotating tank be greater~and usually much greater! than a
meter, which is both complicated and expensive.17 More-
over, in the rotating tank experiments, it is difficult to impo
arbitrary initial conditions, so they almost always begin w
solid-body rotation. In addition, it is difficult to force th
flow in a precise manner. Generally, it is forced by jets
either the side or bottom boundaries or by oscillating gri
In contrast, a plasma in a Malmberg-Penning trap can
forced by creating or destroying vorticity very precisely bo
as a function of space and time, and almost arbitrary ini
conditions can be created.~This includes the creation an
forcing of vortices with both signs by using a photocatho
source; see Ref. 18 and Sec. II.!

Two-dimensional fluid flow can be numerically simu
lated using contour dynamics or spectral methods, but si
lation works best for initial-value codes with short integr
tion times and for steady-state finders where the effects
numerical dissipation are unimportant.~These are the type
of numerical results reviewed here.! Typically, flows com-
puted with contour dynamics become unstable after sh
times unless ‘‘contour surgery’’ is used to remove the sm
filaments that form.19 After long integration times, the accu
racy of flows computed with contour surgery~or with nu-
merical dissipation in spectral or finite-difference method!
0 © 2000 American Institute of Physics

 or copyright; see http://pop.aip.org/about/rights_and_permissions



e
lts
r
s

er
a

u
ro
na
21

tia
o
o
e
a
s
y

s

s
th
ar
or

x-

-

-

w
e

al

l
nal

i-
set
be
e

ec-
m-

f

he

-
y

o-
s

ad-

1631Phys. Plasmas, Vol. 7, No. 5, May 2000 Vortex dynamics and zonal flows

Down
decreases and changes by order unity the values of som
the flow’s ‘‘conserved quantities’’ thereby making the resu
dubious. For these reasons plasma experments may offe
best method of studying the long-time evolution of 2-D flow
relevant to geophysics.

The purpose of this review paper is to provide an ov
view of the new physics that could be explored if zon
flows, Rayleigh dissipation, and/or ab-effect were included
in the plasma experiments. In Sec. II we present the eq
tions of motion and conserved quantities. In Sec. III we p
vide a tutorial on how vortex dynamics is altered by a zo
flow. More detailed reviews can be found in Refs. 20 and
These results require neither ab-effect nor a Rayleigh
dissipation—only a zonal flow imposed by a radial poten
created by a charged axial wire. We show how the zonal fl
breaks the degeneracy between positive and negative v
ces and how vortex merger is changed substantially. In S
IV we show how a turbulent, but coherent, long-lived, zon
flow forms spontaneously from an initial condition at re
when ab-effect, a random small-scale forcing and a Ra
leigh dissipation are included~with, of course, no imposed
zonal flow!. Using a theory based on the inverse cascade
energy from small to large scales, the strength and width
the resulting zonal jet streams are correctly predicted.22 It is
shown that the widths are independent of the length-scale
the forcing and boundaries. It is determined by balancing
energy input and dissipation rates. Thus, jets with arbitr
widths can be created by adjusting the magnitude of the f
ing or dissipation. Our Discussion is in Sec. V.

II. EQUATIONS

The governing equations for 2-D fluid flow can be e
pressed in terms of the potential vorticityq

Dq

Dt
[S ]

]t
1v•¹ Dq5F1D ~1!

whereD/Dt is the advective derivative,v(r ,f,t) is the 2-D
velocity, F is the forcing, andD is the dissipation. The po
tential vorticity is defined as

q~r ,f,t ![v~r ,f,t !1br ~2!

wherev(r ,f,t)[z•“Ãv is the vorticity,z is a unit vector,
andb is the gradient in latitude of the Coriolis force~in the
laboratory, the topographicb-effect is due to the radially-
sloped bottom boundary—see Ref. 15!. In a plane-parallel
geometryq5v1by wherey is the local north–south coor
dinate. In the absence ofb, Eq. ~1! reduces to the Navier–
Stokes equation whenD5n¹2v where n is the kinematic
viscosity.

To more easily understand the effect of a zonal flow,
decompose the velocity into a time-independent, axisymm
ric zonal componentv̄(r )[ v̄f(r ) f ~where f is the unit
vector in the azimuthal direction! and the remainderṽ

v~r ,f,t ![ v̄~r !1 ṽ~r ,f,t ! ~3!

with similar decompositions for the vorticity and potenti
vorticity

v~r ,f,t ![v̄~r !1ṽ~r ,f,t !, ~4!
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q~r ,f,t ![q̄1q̃~r ,f,t !, ~5!

where v̄(r )5r 21d(r v̄f)/dr5z•¹3 v̄. The zonal compo-
nent of the potential vorticity is defined

q̄[v̄~r !1br . ~6!

We require q̄ to be constant, which makesv̄f(r )5c/r
1q̄r /22br 2/3 wherec is a constant. Note thatq̃(r ,f,t) is
homogeneous inṽ and

q̃~r ,f,t !5ṽ~r ,f,t !5z•“Ãṽ. ~7!

In the absence of forcing and dissipation

Dq̃

Dt
5S ]

]t
1v•¹ D q̃. ~8!

The advective velocityv in Eq. ~8! contains both the zona
and non-zonal components, whereas only the non-zo
component ofq appears. Thusq̃ advects with the fluid ve-
locity.

Unlike 3-D flows, incompressible 2-D flows are invar
ant under rotation, so without loss of generality we can
q̄50. Note that due to this invariance any constant may
added tov without changing the dynamics. Thus if only on
sign of vorticity ~or charge in the plasma trap! can be cre-
ated, a compact vortex of the opposite sign may be eff
tively created by creating a space-filling vortex with a co
pact ‘‘hole.’’ We define the zonal shear ass̄(r )
[rd( v̄f /r )/dr522c/r 22br /3. If b50 a central charged
wire in a trap produces a zonal flow withv̄}1/r and a non-
zero zonal shear. Equation~8! along with the computation o
ṽ from q̃ by using Eq.~7! and the Biot-Savart law form a
compete set of equations for determining the flow. At t
radial boundariesṽ50 for viscous flow andṽ r50 for invis-
cid flow. If the origin is included in the domain~i.e., there is
no central wire! analyticity of ṽ must be imposed there.

Equation ~8! with inviscid boundary conditions con
serves circulationG̃[* q̃dA; all moments of the enstroph
* q̃ndA for integersn.1; energy~see Sec. III C!; and angu-
lar momentum or, equivalently,

L[E q̃~r ,f,t !r 2dA. ~9!

Whenv̄50 and when the domain is unbounded, angular m
mentum aroundany point, not just the coordinate origin, i
conserved, i.e.,

L~r 8![E q̃~r ,t !ur2r 8u2dA ~10!

is conserved for allr 8.

III. EFFECTS OF THE ZONAL FLOW

A. Breaking sign degeneracy

Vortices with different signs ofq̃ behave as mirror im-
ages whenv̄50 but quite differently whenv̄Þ0. When a
compact region of potential vorticity has the sign of itsq̃ the
same sign as the shears̄ of its ambient zonal flow, it is
defined asprograde; if the signs are opposite it isadverse.
The breaking of the degeneracy between prograde and
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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verse vortices is important; for example, one needs to un
stand why all of the long-lived jovian vortices are prograd
When v̄50, steady vortices are round shaped, but when
bedded in a zonal flow, prograde vortices become ne
elliptically shaped with their major axis aligned in the dire
tion of the zonal flow. In fact, for compact vortices wit
spatially uniformq̃ ~which is a good approximation for man
geophysical vortices21,23!, embedded in Cartesian zonal flow
~i.e., with v̄ a function ofy and in thex direction! with a
constants̄, the steady-state equilibria are exactly elliptical
shape with aspect ratiol ~maximum extent inx divided by
extent iny! a function ofs̄/q̃24

l5S 11
s̄

q̃ D M ~ s̄/q̃! ~11!

where

M ~x![
11x6A116x1x2

212x
. ~12!

FIG. 1. Sketch of streamlines for an adverse vortex~shaded!. Two stagna-
tion points outside the vortex are joined by the last closed streamline~bro-
ken curve! that circumscribes the vortex and acts as a separatrix.
loaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license
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BecauseM (x).1 for x.0, the l of prograde vortices is
nearly proportional to (11s̄/q̃). There are no steady solu
tions for adverse vortices withs̄/q̃,(2&23).20.17. The
equilibrium shape of vortices in cylindrical zonal flow
and/or with non-uniformq̃ can be computed with contou
dynamics25,26 and show similar behavior with theirl a
monotonic function ofs̄/q̃ and no steady equilibria for ad
verse vortices with2s̄/q̃>O(1).

Numerical simulations show adverse vortices to be
stable to small, finite-amplitude perturbations. This can
understood from the schematic of Fig. 1. Adverse vortic
have two stagnation points close-by connected by the
closed streamline that circumscribes the vortex which a
like a separatrix. Streamlines between the separatrix and
edge of the vortex also circumscribe the vortex. Those o
side do not, and fluid on them is carried far from the vorte
Small perturbations keep the vortex’sq̃ within the separatrix
and close to the vortex indefinitely. Large perturbations pu
the vortex’s perturbedq̃ outside the separatrix where it ge
carried away and is unlikely to rejoin it. Numerical simul
tions verify that adverse vortices are finite-amplitude u
stable to Lagrangian perturbations with displacements big
than the distance between the vortex edge and the separ
In contrast, all streamlines circumscribe a prograde vor
and there is no separatrix. Numerical simulations show t
even when prograde vortices are perturbed so that they b
into two or more pieces, the pieces often merge to reform
vortex. Figure 2 shows an initial condition of a prograde a
adverse vortex. The prograde vortex relaxes to its equi
rium shape while the adverse vortex is stretched bys̄ and
destroyed.@The filaments are broken apart by a Kelvi
Helmholtz instability in Figs. 2~d!–2~f!.# Laboratory experi-
ments show that prograde vortices are stable even when
ambient zonal flow is turbulent.17 In our initial-value calcu-
lations prograde vortices arise from a variety of initial co
ditions including unstable vortex rings, random vortex field
and solid-body rotation with random small-scale forcin
d
in Figs.
FIG. 2. Simulation of a flow in an annulus with prograde~adverse! q̃ light ~dark! at 8 times. Only the progradeq̃ survives. The adverse vorticity is stretche
by the zonalv̄ into small enough filaments that it is destroyed by numerical dissipation. Kelvin–Helmholtz instabilities are seen in the light spirals
d–f.
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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while we never see adverse vortices form unless they
included as part of an initial condition and have2s̄/q̃!1.

Zonal flows alter vortex dynamics by preventing vortic
from having internal degrees of freedom. With no zon
flow, a steady-state round vortex can be perturbed int
time-dependent state that oscillates or has waves on
boundaries. The different temporal behaviors allow vortic
to have different energies although they have the same
culations, enstrophies and momenta as the steady states.
tices embedded in zonal flows withs̄/q̃>O(1) also have
time-dependent equilibria, but our numerical simulatio
show that they are finite-amplitude unstable; they quic
relax back to their~approximate! steady states~with very
weak time dependence! by shedding vorticity and remergin
with it. During the relaxation, energy is exchanged with t
ambient flow~see Sec. III C!. Thus whenv̄Þ0 a vortex’s
late-time shape and energy are determined uniquely by
circulation, momentum and ambient value ofs̄/q̃; whereas
when v̄50 a late-time vortex can be time-dependent a
have a range of energies. This distinction will be importa
in determining the rules of vortex merger in Sec. III C.

B. Expulsion of adverse vorticity

Another reason adverse vortices with2s̄/q̃>O(1) are
not observed is that they are stretched into filaments byv̄. If
the zonal flow alternates in direction so thats̄ changes sign
as a function ofr ~as it does for Jupiter and Saturn! then
adverseq̃ is expelled from its ambient zone into its neig
boring prograde zone where it rolls up and forms a sta
vortex. Figure 3 shows a numerical simulation that illustra
this in an annular, rather than cylindrical, geometry. He
v̄f(r )5(2 (r 2/6) „21(r 0 /r )3

…10.48r ), so s̄(r )
5 (r /3) „(r 0 /r )321… wherer 0 is midway between the inne
and outer radial boundaries. Notes̄(r ).0 for r ,r 0 , and
s̄(r ),0 for r .r 0 . Initially both the inner and outer zone
each contain one prograde and one adverse vortex, with
regions corresponding toq̃.0 and dark toq̃,0. In each
case the adverse vorticity is expelled in a spiral. Par
stretched to the small scales where it is destroyed~by nu-
merical dissipation! and part of the adverseq̃ crossesr 5r 0

where it becomes prograde and rolls up~see middle sequenc
of Fig. 3!, eventually settling into a stable equilibrium. I
contrast the two initial prograde vortices barely change.

To understand this, consider the schematic in Fig
which shows part of the first frame of Fig. 3. The dar
adverse, potential vortex withq̃,0 is drawn shaded, and
lies in a shear withs̄.0. The v̄(r ) is represented by heav
arrows. The figure is drawn in the rotating frame where
center of potential vorticity of the shaded vortex is at rest,
v̄(r ) is approximately zero at its center. An infinitesim
piece ofq̃ labeledA moves withv(r ,t)[ ṽ(r ,t)1 v̄(r ). The
Biot-Savart law givesṽ ~shown with thin solid arrows!; it is
clockwise around the vortex, and atA ṽf.2q̃Rr /2 where
Rr is the vortex semi-radius inr . Taylor expansion ofv̄
around the vortex center givesv̄; at A, v̄f.Rr s̄. Thus if
us̄/q̃u>O(1), fluid elementA is dragged to the right andB
to the left ~shown with broken arrows!. The clockwise mo-
tion of ṽ then pushesA downward and outward to the ad
loaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license
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joining zone andB upward towards the annulus’ boundar
If the sign of the shaded vortex were reversed so that it w
prograde, then bothv̄ andṽ initially move A to the right and
B to the left. Then the counter-clockwiseṽ would pull both
A andB away from the boundaries towards the center of
prograde zone. Thus fors̄/q̃5O(1), progradeq̃ is drawn in
towards the center of a prograde zone while adverseq̃ is
expelled.

FIG. 3. Six different times in the evolution of four potential vortices in a
annulus. The shears̄(r ) of the zonal flow changes sign at a radiusr 0

halfway between the inner and outer radial boundaries. Thes̄(r ) is negative
in the outer region. The light~dark! vortices haveq̃.0 (q̃,0), so light
vortices are prograde in the inner half and adverse in the outer half of
annulus. The pieces of vorticity that are initially adverse but cross over
5r 0 to become prograde develop tadpole-like heads, roll up, and surv
while those left behind continue to stretch and eventually decay du
numerical dissipation.

FIG. 4. Schematic of Fig. 3 showing adverseq̃ being expelled. The advers
q̃,0 is shaded; the zonal velocityv̄ is indicated with heavy arrows, the
self-inducedṽ computed with the Biot-Savart law with thin arrows, and th
total velocityv which advects theq̃ at A andB with broken arrows.
 or copyright; see http://pop.aip.org/about/rights_and_permissions



ite

ia
ng
er
a

i-
he
-
a
t
e

th

n

o

an

na
ve
-
se
ed

ne

rti

ia

e

ti-

g
o
e

la-
om
lly

tity
e
he
e, but
q.

of
s

s-
al
t
ti-
is

it
y
to

er

es,
on-

,
ach
ove
e

u-
rger
a
eir

o
t
x-
d

1634 Phys. Plasmas, Vol. 7, No. 5, May 2000 Marcus, Kundu, and Lee

Down
C. Vortex merger

Only vortices with like signs merge, but merger is qu
different and much more common whenv̄Þ0. It is important
to understand why this happens. For example in the jov
atmosphere, which is dominated by zonal winds, the lo
lived vortices survive by constantly merging with small
vortices that are continually created by the loc
‘‘weather.’’ 20 If merger were difficult, Jupiter’s ‘‘long-
lived’’ vortices would disappear.

When v̄50 vortices must be within approximately a d
ameter of each other to merge. When they do, they s
large filaments ofq̃ outward far from their center of vortic
ity, so the resulting merged vortex has much less area
circulation than that of the two initial vortices. Two poin
vortices~delta functions ofq! can never merge. They rotat
around their common center of vorticity~and interact with
the boundaries if there are any!. As shown below it takes
energy to push two like-signed vortices together, so in
absence ofv̄, it is necessary to throw large amounts ofq
outward in order to push together pieces of two differe
vortices in order to conserve energy. In the absence
boundaries, angular momentum, which is conserved ab
every point including the center of vorticity@see Eq.~10!#,
also prevents vortices from merging unless a signific
amount ofq is thrown outward.

Vortex merger is more common in the presence of zo
flows for several reasons. Angular momentum is conser
only with respect to the origin, andv̄ pushes vortices to
gether. So except at the origin, angular momentum con
vation is not a barrier to merger. Energy is still conserv
but now includes an interaction termEint betweenṽ and v̄
which can supply the energy needed to push two like-sig
vortices together. To see this write the energyE as a sum of
two pieces:Eself the self-energy andEint .

Eself[2
1

4p E E q̃~r ,t !q̃~r 8,t ! lnur2r 8udAdA8 ~13!

Eint[2E q̃~r ,t !c̄~r !dA ~14!

where the integrals are over area~s! of the domain andc̄(r )
is the stream function~electrical potential in the plasma! of
the zonal component of the flow:v̄f(r )5dc̄/dr. Not sur-
prisingly Eself is of the same form it would be for 2-D
patches of electric charge. Two charges or patches of vo
ity with the same sign increase their energy~and therefore
require it from some external source! if they are brought
together. We can approximate the changes inEself and Eint

due to the merger of two identical vortices with potent
vorticities q̃, circulationsG̃[* q̃dA and average radiiR. Let
the vortices be embedded inv̄5c/r , and assume that th
length over whichs̄ varies is large compared toR and that
R/D!1 whereD is the initial separation between the vor
ces. Letr 0 be the mean radial location of the vortices:r 0

2

[*r 2q̃dA/G̃, which is a constant of the motion. Assumin
that the two vortices merge, we can predict everything ab
the merged vortex:~1! its value ofq̃ is the same as that of th
initial vortices;~2! it is located at radiusr 0 ; ~3! it is approxi-
loaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license
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mately steady in time~see Sec. III A! and embedded in a
shears̄(r 0) with a nearly elliptical shape given by Eq.~11!;
and~4! its area is 2A and circulation is 2G̃ because they are
conserved quantities of the total flow, and numerical simu
tions show that even though circulation can be stripped fr
the vortices during violent mergers, most of it eventua
re-attaches~unlike mergers withv̄50!. To leading order, the
increase inEself after merger is

DEself5
G̃2

2p
ln~D/R!.0. ~15!

By Taylor expandings̄(r ) about r 0 and writing r[r 01y,
we find to leading order iny/r 0

Eint~ t !52
s̄~r 0!

2 E q̃~r ,f,t !y2dA ~16!

where we have ignored an additive constant. The quan
u* q̃(r ,f,t)y2dAu is a measure of the radial width of th
vortex or vortices. If the two initial vortices are located at t
same radius, then the merged vortex has the same shap
twice their area, so its radial width is larger. Thus from E
~16!, DEint(t) is negative~positive! after the merger of pro-
grade~adverse! vortices. The total change in energyDE is
positive for the merger of adverse vortices but could be
either sign for prograde vortices. If the two initial vortice
have a radial separationb, then the change in
u* q̃(r ,f,t)y2dAu due to merger is a monotonically decrea
ing function of b. For prograde vortices there is a critic
value bcrit.2R such thatDE50.27 A standard argumen
used in fluid dynamics is that a flow will undergo a kinema
cally allowable transition if the energy of the final state
less than the initial.28 As applied to the merger of vortices
means that ifDE,0, a merger will occur and the energ
uDEu is transferred from the large-scale coherent vortices
the turbulent, small-scale component of the flow. Merg
would only be possible forDE.0 if energy could be con-
trived to go from the turbulence into the coherent vortic
and this is not observed. Numerical experiments have c
firmed to within 5% that prograde vortices withb,bcrit

merge, and those with greater values do not.27 Two adverse
vortices with largeb could lower their energy by merging
but clearly it is necessary for the vortices to approach e
other before they could merge. Because the vortices m
with v, it is not obvious how they could do so and overcom
their large initial separation in radius. We know of no n
merical or observational examples of adverse vortex me
with us̄/q̃u.0.1. In fact, it is energetically favorable for
single adverse vortex to fission which explains, in part, th
finite-amplitude instability.

Various hypotheses based on entropy maximization,29–33

enstrophy minimization,34,35 and statistical mechanics36–38

have been developed to predict vortex merger~and the equi-
libria of arrays of vortices!. However, these predictions d
not appear to work forv̄Þ0. This may be due to the fact tha
the theories depend on the flows’ ergodicity. Numerical e
periments with forv̄Þ0 show the flows are not ergodic an
have strong ‘‘memories’’ of their initial conditions.27
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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IV. SPONTANEOUS GENERATION OF ZONAL FLOWS

A. Physical and mathematical description

Zonal winds and jet streams occur not only on Earth
also on all of our solar system’s large gaseous planets~Jupi-
ter, Saturn, Uranus and Neptune!. It is still an open question
as to what created and maintains them for long periods
time. Jupiter’s zonal jet streams~or more accurately, the
cloud patterns that we associate with them! have been ob-
served for more than 350 years.

When a zonal flow is not imposed on the fluid and wh
the fluid starts at rest, a small-scale forcing can lead to
creation of large coherent structures such as zonal windsvia
an inverse energy cascade—under the right conditions. In
this section we consider the effects of ab term and large-
scale dissipation on the cascade and the resulting cohe
structures. To simplify the presentation we use Cartesian
ordinates withy acting like the radial direction andx like the
azimuthal. We do not use the decomposition of variables
their zonal and nonzonal components.

We begin with Eq.~1! but now explicitly consider the
roles of the forcingF(x,y) and dissipationD. The forcing in
a rotating atmosphere isF52V]vz(x,y)/]z, whereV is the
angular velocity of the rotating fluid layer andz is the verti-
cal coordinate.15 An atmosphere, such as the weather laye
Jupiter ~which contains the visible clouds!, would be ex-
pected to have large~negative! values of]vz(x,y)/]z at the
locations where vertical plumes of fluid rise from the und
lying convective layer and abruptly stop at the tropopa
~which we take to be the upper ‘lid’ of our Jovian atm
spheric model, where the atmosphere becomes strongly
tically stratified and severely inhibiting to vertical motion!.20

Both theory and the limited observations of plumes indic
that they occur on small scales~less than 500 km—compare
with zonal widths of order 10 000 km! over a narrow range
of length scale. Thus we modelF with forcing at a pair of
high-wavenumber kf Fourier modes: F5(A/2)
3@ei (kf /&)xei (kf /&)y1ei (kf /&)xe2 i (kf /&)y1c.c.#. The dissi-
pationD52v/t1nhyper¹12v in Eq. ~1! has two terms. One
is hyperviscosity whose purpose is to prevent a numer
instability and whose numerical coefficientnhyper¹12 is self-
normalizing ~with no pre-assigned values! and designed to
prevent enstrophy from piling up at the smallest numerica
resolvable scale. All 2-D calculations, even ‘run-down’ e
periments,~defined as those withF[0, t→` and nonzero
initial conditions! include this term or an equivalent ‘turbu
lent viscosity’ to prevent instability~see Ref. 21!. The other
term in D is a Rayleigh friction or Ekman dissipation.
models any phenomena that dissipates potential circula
or momentum in the layer on time scalet ~which dissipation
terms that can be written as a horizontal divergence can
do! such as oblique Rossby waves, secondary circulat
with a vertical component, or turbulent upper or low
boundaries.22 Unlike molecular viscosity or hyperviscosity
this term mostly dissipates energy at large scales if the
ergy spectrum decreases with wavenumber.

Thus in this section we are interested in solutions to
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1ei (kf /&)xe2 i (kf /&)y1c.c.#1nhyper¹12v ~17!

over a computational domain ofL3L. Ideally, we would
like to solve this flow over an infinite domain, but as long
L is much larger than the largest-scale features of the sys
box-size effects are unimportant. When the largest featu
approach the size of the computational domain, finite-a
effects become important~see Ref. 21!.

For all flows, the initial velocity is machine zero. The
is a 5-dimensional~3-nondimensional! parameter space to
explore:b, L, t, kf , and A, though we postpone choosin
non-dimensional units until Sec. IV E.

B. Energy spectra

The arguments for the Kolmogorov energy spectrum
the same for 2- and 3-D flows and independent of whet
the energy forward cascades from large to small scale
inverse cascades.39 The argument depends only on the a
sumption that the energy transfer in Fourier space~k! is local
and conservative

E~k!5ckg~Ėup!
2/3k25/3 ~18!

where the kinetic energy per unit mass isE[*0
`E(k)dk, and

Ėup is the rate of transfer up~or down! the spectrum. The
dimensionless Kolmogorov constantckg in 3-D flow is ap-
proximately 1.5.39 It is convenient to use the notion of a
‘eddy’ as the coherent component of the velocity made up
a band of Fourier modes with wavenumbers betweenuku/2
and uku with energy

«eddy~k!5E
k/2

k

E~k!dk. ~19!

C. Overview of numerical results

Unlike ‘run-down’ experiments in which all initial con
ditions and all parameter values~with bÞ0! that we tried
produced zonal flows, very few choices of parameters for
~17! did. For an inverse cascade to occur, certain inequali
of the five parameters must be met. Discussion of these c
ditions will follow. Only when these conditions are met d
our calculations produce coherent structures. Most regi
within our 5-dimensional parameter space do not satisfy
necessary conditions for a nonlinear cascade, so most o
calculations never produced large-scale features and res
instead in energy spectra confined to a delta function atkf .

When an inverse cascade of energy occurred, it p
duced a final, statistically steady state that had east–w
zonal jets or eddies. For runs which formed east–west j
there was a wide range in their number and size. For r
which formed eddies, there was also a wide range, though
each numerical calculation in which there was an inve
cascade there was always one well-defined size.

Some examples of runs which establish an inverse c
cade and produce coherent features are given in Figs. 5–
parts~a! of Figs. 5 and 6, we have plotted the east–westx)
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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velocity as a function of latitude (y) at 10 different longi-
tudes (x). Note that in Figs. 5~a! and 6~a! the east–wes
extrema of the jets correlate remarkably well even though
flow is highly turbulent, indicating that these flows have b
come zonal. It is important to note that even with the sa
values ofb these flows can have a different number of zon
~five for Fig. 5 but ten for Fig. 6!. The zonal jets can vary in
appearance; they are very laminar-looking in Fig. 6~a! but
much more turbulent-looking in Fig. 5~a!. This contrast in
appearance can also be seen in the stream functions pl
in Figs. 5~b! and 6~b!. The flow in Fig. 5~b! consists of much
more turbulence, waves, and eddies, and although thi
taken at one moment in time, it is representative of the f
tures of the system once the statistically-steady equilibr
has been established.

Figure 7 represents a run where zones are never e
lished. Large-scale, isotropic eddies are embedded with
turbulent flow, but there is no evidence of east–west jets.
Fig. 7 in particular, the wavenumber associated with lar
scale coherent features isk.58, but other numerical experi
ments yielded eddies of different scales as well.

FIG. 5. ~a! The east–west velocity as a function of latitudey at 10 different
values of longitude; i.e.,vx(xi ,y) at xi5( i /10)L for i 51,2,...,10; and~b!
stream functionc(x,y) for a numerical simulation witht* 573.2, kf*
51.17, andL* 5273. ~See Sec IV. for our definition of dimensionless un
indicated by a* .! These figures are computed at a late time (t@t) after the
flow has come to a statistically steady state.
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D. Determination of the size of coherent features

It is possible to produce flows withanynumber of zones.
~This is not just due to our re-scaling the length—all of t
runs were computed on domains withL51.0.! In this section
we consider balance between the energy input and diss
tion rates in Eq.~17! and from it derive the conditions unde
which zones or other large-scale coherent features form
their characteristic wavenumberskmin . We shall show that
dissipation-forcing balance sets the scale~not b, since the
theory works even withb50!.

Multiplying both sides of Eq.~17! by the stream function
c ~where v[2¹3cz! and integrating over the domai
gives an equation forE:

]E

]t
5

22E

t
2ĖH1Ėin ~20!

where

Ėin~ t ![22P2A@ĉ~kf /&,kf /& !1ĉ~kf&,2kf /& !1c.c.#
~21!

where a ‘hat’ over a quantity means the discrete Fou
transform of that quantity,22 and whereĖH is the energy loss
rate per unit mass due to hyper-viscosity. In general we fi
that the numerical calculations have little loss from hyp
viscosity ~typically, ĖH,0.08Ėin! because energy invers

FIG. 6. Same as Fig. 5, but fort* 544.0, kf* 5195, andL* 5454. Here the
zonal flow is much more regular and there are many more zones.
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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cascades to large scales rather than forward cascading t
small scales where hyper-viscosity is effective. Thus, t
first approximation the upward energy transfer rate in E
~18! is

Ėup5
2E

t
'Ėin . ~22!

We consider the energy balance atk5kf by examining
the kf -Fourier component of Eq.~17!:

]v̂~kf!/]t52@~v•¹̂ !v#ukf
2b v̂y~kf!1A/21Ĥukf

2v̂~kf!/t ~23!

where a vertical bar with subscript indicates the wavevec
of the transformed quantity. When Eq.~23! is multiplied by
2ĉu2kf

it determines the time evolution of the energy in t
kf -Fourier mode. We would expect, and our numerical c
culations verify, that there is a dominant balance betw
two terms in Eq.~23! for the parameter range where th
solutions form large-scale flows. The forcing due to theA/2
term in Eq. ~23! not only supplies the energy to th
kf -Fourier mode but also to the entire flow. For the flow n
to run down, this must be one of the two dominant term
The linear terms in Eq.~23! cannot balance the forcing term
e.g., if either of the two dissipation terms~i.e., 2v̂/t or Ĥ!
did, then the energy would go into thekf mode, dissipate
there, and be incapable of creating a zonal or other la
spatial-scale flow. Nor can theb term balanceA/2 because
then there would be no dissipation, and the flow would cre
Rossby waves15 with wavevectorkf that would build in am-
plitude until there was a numerical blow-up. The balan
must be by the nonlinear term because this is the only t
that can transfer energy out of thekf mode to other~larger!
modes. This argues that three inequalities and one equa
are necessary conditions to create zonal or any other typ
large scale flow:

FIG. 7. Stream functionc(x,y) for a numerical simulation witht*
51484, kf* 51.37, andL* 5936. Here the flow shows a well-define
prominent wavenumber (kpk.58) but the flow produces an isotropic edd
field rather than east–west zones.
loaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license
the
a
.

r

l-
n

t
.

e

te

e
m

ion
of

uAu@ub v̂~kf!u ~24!

uAu@ut21v̂~kf!u ~25!

uAu@uĤU
kf

u ~26!

uAu.u@~v•¹̂ !v#U
kf

u. ~27!

These relations have been verified numerically.
By writing the right-hand side of Eq.~27! as a convolu-

tion sum ink it can be shown22 that it is approximately equa
to kf

2«eddy(kf). Using this approximation with Eqs.~19! and
~27! allows us to writeĖup in terms of the control parameter

Ėup[cpA
3/2kf

22 ~28!

where cp is a dimensionless constant of order unity. O
numerical experiments show thatcp is universal likeckg , in
the sense that it is nearly independent of the values ofb, L,
t, kf , andA.

The constraint inequalities~24! and ~25! can now be
written in terms of the control parameters:22

A1/2kf@b ~29!

and

A@t2. ~30!

Inequality~26! is a constraint on the numerics, not the phy
ics, so we disregard it in our discussion. All of the numeric
results presented in Sec. IV B that form large-scale flo
either zones or eddy fields~e.g., the flows in Figs. 5–7!,
satisfy the constraint inequalities~29! and ~30!, and all nu-
merical calculations that we carried out for which either
equality was not satisfied failed to produce large-scales flo
and the energy remained in Fourier modes withk>kf .

If we ignore the effect ofb, then according to Eq.~22!,
the kinetic energy inverse cascades fromkf to larger length
scales until it reaches wavenumberkmin

† where

E5E
kmin

†

`

E~k!dk5tĖup/2. ~31!

If the Kolmogorov scaling~18! is valid for k,kf , then

Ėup.
2

t Ekmin
†

kf
ckg~Ėup!

2/3k25/3dk ~32!

.
3

t
ckg~Ėup!

2/3~kmin
† !22/3F12S kmin

†

kf
D 2/3G ~33!

.
3

t
ckg~Ėup!

2/3~kmin
† !22/3. ~34!

The large coherent structures have wavenumberkmin
†

kmin
† .S t

3D 23/2

ckg
3/2Ėup

21/25A27ckg
3 /cpt

23/2kf A23/4 ~35!

where we used Eqs.~22!, ~28!, and ~34!. This predicts the
dominant scale for eddies in the case of non-zonal flo
Equation~35! can only make sense ifkmin

† <kf so we might
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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consider this to be a constraint inequality in addition to tho
already listed. However, it is trivially satisfied if inequalit
~30! is satisfied.

For small values ofb, once the value of the dimension
less, order-unity constantscp and ckg are determined, ou
scaling laws correctly predict all of the gross features of
numerical simulations in terms of the input parametersb, t

kf , and A: Ėup @from Eq. ~28!#, E5cp A(13/2)t/2kf
2 @from

Eq. ~22!#, andkmin
† @from Eq. ~35!#. Note that the results ar

independent ofL ~as we argued in Sec. IV A on the assum
tion that 2p/kmin

† !L—although when 2p/kmin
† .L, the nu-

merical results depend onL21!. The expressions forE, Ėup

andkmin
† depend only ont and the combination of paramete

(A3/2kf
22) but not onA or kf independently. This is due to

the fact that the value of (A3/2kf
22) determinesĖup. Whether

the energy spectrumE(k) begins atkf or some other value
has very little effect onE, or kmin

† if kf@kmin
† . @This is math-

ematically equivalent to ignoring the (kmin
† /kf)

2/3 term on the
right-most side of Eq.~33!.# It may define the range ove
which the spectrum extends, but thekmin

† depends primarily
on the values ofĖup and t. Note though that constraint in
equalitiesdo depend separately on the values ofkf and A.
Based on our numerical findings thatcp is approximately
constant, we nondimensionalize our results~indicated by an
asterisk! by choosing units of length and time such thatcp

A3/2kf
22[Ėup51 andb51. The input variables can then b

written ast* , L* , andkf* , so if an inverse cascades form
the gross features will depend only ont* , but the constraint
inequalities will depend also onkf* andL* .

E. Effect of b

The preceding analysis of the size of coherent structu
was independent ofb and appears to be in conflict with th
generally accepted belief that it does depend onb.40 To re-
solve this, define a band~analogous to an eddy! as a coheren
feature made of Fourier components withkx[0 wherek/2
,ky<k. Modes with kx50 have velocities only in thex
direction, so they contribute to the zonal component of
flow and not to eddies. Consider the componentEzone(k) of
the total energy spectrumE(k) due only to Fourier modes
with kx[0, and defineEeddy(k)[E(k)2Ezone(k). Then the
energy of a band of wavenumberk is

«zone~k!5E
k/2

k

Ezone~k!dk. ~36!

We found numerically that the scaling of the amplitudes
the Fourier modes changes whenb is included in the calcu-
lation. For large~and ‘large’ will be defined below! the scal-
ing of Eeddy(k) remains unchanged and proportional tok25/3.
However, our numerical calculations show that the scaling
Ezone(k) changes whenb is included and yields

Ezone~k!5cbb2k25, ~37!

or equivalently

«zone~k!5~15/4!cbb2k24 ~38!
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where cb is a dimensionless constant of order-unity. O
numerically computed value iscb50.0860.015. Thek25

scaling in Eq.~37! is illustrated in Fig. 8. Heuristically this
can be explained by noting that the term proportional tob
and the nonlinear term in Eq.~23! scale differently withk.
Multiplying the equation byĉ(k) and averaging over al
wave numbers betweenk andk/2 makes theb term approxi-
mately b«eddy(k) and the nonlinear term approximate
k2«eddy(k)«zone

1/2 (k). Balancing these two terms gives th
scaling in Eq.~38!.

Numerical simulations~see Fig. 8! show thatEeddy(k)
obeys Kolmogorovk25/3 scaling over a wide range ofk,
while Ezone(k) simultaneously obeys Eq.~37!. The total en-
ergy spectrum is the sum ofEeddy(k) andEzone(k), or

E~k!5ckg~Ėup!
2/3k25/31cbb2k25. ~39!

For k,kb the second term dominates and vice versa, wh

kb[ckg
23/10cb

3/10Ėup
21/5b3/55ckg

23/10cb
3/10cp

21/5kf
2/5A23/10b3/5.

~40!

For choices of input parameters such thatkb,kmin
† , the Kol-

mogrov scaling law is a good approximation to Eq.~39!, but
for kb.kmin

† , the correct approximation is

E~k!.H ckg~Ėup!
2/3k25/3 kb,k,kf

cbb2k25 kmin<k,kb .
~41!

In Eq. ~41!, kmin is the smallest wavenumber of the flow an
is determined as in Eq.~31! by balancing the energy diss
pation rate with the input rate

FIG. 8. Composite showing the spectraEzone* (k* ) andEeddy* (k* ) for all runs
that produced zonal flows. For all of the runs, the inertial ranges
Ezone* (k* ) ~solid lines! andEeddy* (k* ) ~broken lines! collapse to the same two
curves, though the endpoints of the inertial ranges, e.g.,kf* andkmin* , where
the spectra sharply fall off, differ. See text for details.
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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Ėup5~2/t!E ~42!

.
2

t Ekmin

kb
cbb2k25dk1

2

t Ekb

kf
ckg~Ėup!

2/3k25/3dk ~43!

.
1

2t
cbb2kmin

24, ~44!

or using Eq.~28!

kmin.~cb/2cp!
1/4t21/4b1/2kf

1/2A23/8 ~45!

where we have assumed thatkf@kb and kb@kmin . In many
of our calculations the former is true but not the latter,
which case

kmin.@kb
241~2tcpA3/2kf

2226ckgcp
2/3Akf

4/3kb
22/3!/~cbb2!#21/4.

According to our theory, zones will form whenkmin
†

<kb , or

325ckg
26cbcpb

2t5A3/2kf
22.1. ~47!

In terms of nondimensional quantities, zones form when

t* .3ckg
6/5cb

21/5[tcrit* '26 , ~48!

which is good agreement with the numerical simulations
Figure 8 is a composite figure displayingEeddy* (k* ),

Ezone* (k* ), and E* (k* ) for all of the runs which produced
zones. Note how well the inertial ranges ofEzone* (k* ) and
Eeddy* (k* ) correlate withk* 25 and k* 25/3 scaling, respec-
tively. In contrast, for runs which produced eddy fields, t
spectraEzone* (k* ) did not exhibitk* 25 scaling. In fact, for
eddy fields, bothEzone* (k* ) andEeddy* (k* ) scaled ask* 25/3,
i.e., the presence ofb was never felt. It is also important t
note how well the inertial ranges ofEzone* (k* ) collapse to
single curve for all the runs. The same is true forEeddy* (k* ).
This is extraordinary when one considers that some runs
very turbulent in appearance while others look fairly lamin
Note the endpoints of the inertial ranges are different
each run. Beyond the endpoints the spectra fall off rapid
The right endpoint at largek* is k* 5kf* which is different
for each run. ForEzone* (k* ) the left endpoint isk* 5(kmin

† )*
which is also different for each run. ForEeddy* (k* ) the left
endpoint isk* 5kb* . Figure 8 can be used to evaluate t
universal constantkb* '0.30.

In summary, our analyses and numerical simulatio
show that if either of the two inequalities~29! and ~30! are
not satisfied, then large, coherent structures do not form~If
b is large, Rossby waves with length scales equal
the forcing length dominate the flow.! If both inequalities
are satisfied but inequality~47! is not satisfied, then nearl
isotropic eddies form. If all three inequalities are satisfi
then large coherent zonal flows form. In any case, the len
scale of the large structures is set by the energy bala
in Eq. ~31!.

V. DISCUSSION

It is difficult to study nearly-inviscid, turbulent, 2-D fluid
flows in the laboratory and it is hard to numerically simula
them for long times due to numerical instabilities and dis
loaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license
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pation. Because there is an analogy between 2-D fluid fl
and theEÃB drift velocity in a plasma, there is an opportu
nity of using plasma traps as an ‘‘analog computer’’ for e
amining these flows. We have shown here that 2-D vor
dynamics are different when zonal flows, large-sc
~Rayleigh-like! dissipation, or ab-effect are included. These
are some of the leading physical processes in jet strea
ozone holes, and the Great Red Spot. All of these effects
plausible additions to existing plasma experiments t
mimic 2-D fluid flow. Because these additional effects a
important to geophysical flows, which represent the majo
of 2-D flows of interest to hydrodynamicists, it would b
useful to include these effects in future generations of plas
experiments. When zonal flows are included, adverse
prograde vortices behave differently. It is energetically
vorable for adverse vortices~those with opposite sign of the
ambient zonal shear! to fragment. If the adverse vortices a
embedded in zonal flows that alternate in direction~such as
the winds of Jupiter and Saturn!, the fragments are expelle
into neighboring regions where the zonal shear is progr
~same sign! with respect to the vorticity. When the zona
shear and the potential vorticity of the vortices are of t
same order, there are no known equilibrium solutions of
verse vortices. Rules governing vortex merger and the re
ation to equilibrium change when zonal flows are prese
They do not appear to be governed by the principle of ma
mizing the flow’s entropy or minimizing its enstrophy. In
stead, merger and relaxation to new equilibria occur if th
allow the energy of the coherent vortices to decrease~giving
their excess energy to the turbulent component of the ve
ity!.

When zonal flows are not imposed, but the flow is ra
domly forced at small scales, dissipated at large scales, a
b-effect is included, an inverse cascade of energy from sm
to large scales is set up. When the appropriate conditi
outlined in Sec. IV. are satisfied, large-scale structures fo
and co-exist with turbulence. The size of the structures
determined by a balance of energy input and dissipa
rates. This is unusual because in most cases where coh
structures co-exist with turbulence~e.g., the Great Red Spo
solar granulation, turbulent Couette-Taylor vortices, oce
eddies! the sizes are determined by the length-scale of
forcing, the boundaries, or the Rhines length.40 By varying
the dissipation time or forcing rate in the numerical simu
tions ~and hopefully in the experiments! the size of the co-
herent structures can be continuously varied from the len
of the small-scale forcing to the size of the entire doma
The magnitude ofb only has a secondary role in setting th
lengths of the coherent structures~by changing the shape o
the energy spectrum!. The value ofb primarily determines
whether the forcing creates an isotropic eddy field,
streams, or Rossby waves. Our analytic theories for the
teria for what types of structures form, for their length sca
and velocity scales, and for the rules of merger and rel
ation were shown to be verified by numerical results. Ho
ever the numerical results, which are only formally valid f
short time integrations, have not been rigorously tested
laboratory experiments. Plasma traps may well be the b
way to test them, as well as their application to the vortic
 or copyright; see http://pop.aip.org/about/rights_and_permissions
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and jet streams of the earth and Jupiter, environments
are difficult to reproduce in the laboratory but which are t
authors’ motivation for our study of vortex dynamics. It
our hope that this Review provides encouragement and g
ance to build geophysically relevant plasma experiments
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