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Two-dimensional vortex dynamics have been studied in plasmas by exploiting the analogy between
fluid velocity and theEXB drift velocity. The analogy extends to geophysical flows by including
physics that mimic zonal flows, dissipation and iBeffect due to the variation in the Coriolis
parameter. Vortices with the same sign as the ambient zonal shear are stable, while opposite-signed
vortices fragment. Rules for vortex merger derived by maximizing entropy or minimizing enstrophy
do not work for vortices embedded in zonal flows. New rules based on the minimization of energy
hold. When zonal flows are not imposed, and the flow is forced at small scales, large, coherent jet
streams or eddies form that co-exist with turbulence. Their sizes are determined by an energy
balance, not the length scales of the forcing or boundaries. The motivation for this work is to
understand atmospheric and ocean vortices: Gulf stream meanders and eddies, the Antarctic ozone
hole, the jet streams of Earth and Jupiter, and the Jovian Great Red Spot and White Ovat0 ©
American Institute of Physic§S1070-664X00)96805-9

I. INTRODUCTION AND MOTIVATION ics can be studied in a plasma. In contrast 2-D fluid dynam-
. . . ) ics, with or without these additional effects, are difficult to

There is an analogy between two-dimensiof2aD), in-  syydy in laboratory experiments with real fluids. To keep the

viscid, incompressible fluid dynamics and pure-electron plasg,, 2.p, rapid rotation is necessary, but rotation creates an

mas: the fluid velocity acts like thée<B) drift velocity, the gy man dissipation due to the drag of the top and bottom

vorticity like the electron density, the stream function like boundary layerd® To be within the parameter regime where

the potential, the fluid Poisson equation like the electricalthe rotation is strong enough to keep the flow 2-D but weak

Poisson equation, and the conservation of circulation like th%nough so that the Ekman dissipation time is much greater

conseryatlon of charge. Epr(_)ltlng. this analogy, Z'D. Vorte).(than a vortex turn-around time requires that the diameter of a
dynamics have been studied in plasmas confined in

aimbers Perning s g vorex e | 0211 1k be reasend sy much greseyn o
cotron instabilitiesknown as Kelvin—Helmholtz instabilities ’ P P

in the hydrodynamics literature **and the equilibration and  °VE" in the rotating tank experiments, it s difficult to impose
stability of arrays of vortice2-14Fluid flows are rarely 2-D arpnrary initial cpndltlons, s.o. they allmo'st.always begin with
unless strong rotation or stratification is present. These conS-OI'd',booIy rotgtlon. In addition, it is Q|ff|cult to forcg thg
ditions prevail in atmospheres and oceans, so it is not sufloW in @ precise manner. Generally, it is forced by jets in
prising that 2-D flow is mostly of concern to geophysical either the side or bottom boundaries or by qscnlatlng grids.
fluid dynamicists. Jovian vortices, such as the Great Red? contrast, a plasma in a Malmberg-Penning trap can be
Spot, the White Ovals, and the numerousrian vortex forced by creating or destroying vorticity very precisely both
streets, a primary interest of the authors, usually interacgs & function of space and time, and almost arbitrary initial
strongly with the planetary zon&kast—westjet streams or conditions can be createdThis includes the creation and
are Strong|y influenced by thﬁ.effect due to the north— forcing of vortices with both signs by using a photocathode
south gradient of the Coriolis fordsee Ref. 15 and see Sec. source; see Ref. 18 and Sec) II.
Il) or by dissipation. The analog of zonal flows can be cre-  Two-dimensional fluid flow can be numerically simu-
ated in plasma experiments by imposing a radial potentialated using contour dynamics or spectral methods, but simu-
with a charged axial wire. Thg-effect can also be created in lation works best for initial-value codes with short integra-
a plasma trap® and the analog of a Rayleigh fluid dissipa- tion times and for steady-state finders where the effects of
tion (see Sec. IV for definitioncan possibly be induced in a numerical dissipation are unimportaiThese are the types
plasma by introducing a gas into the trap with a high electrorof numerical results reviewed herelypically, flows com-
affinity such as sulfur hexaflouride. puted with contour dynamics become unstable after short
With these modifications, 2-D geophysical fluid dynam-times unless “contour surgery” is used to remove the small
filaments that fornt® After long integration times, the accu-

*Paper IR1 1 Bull. Am. Phys. Sod4, 159 (1999. racy of flows computed with contour surgefgr with nu-
"Review speaker. merical dissipation in spectral or finite-difference methods
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decreases and changes by order unity the values of some of q(r,¢,t)=q+q(r, 1), (5)
the flow’s “conserved quantities” thereby making the results
dubious. For these reasons plasma experments may offer
best method of studying the long-time evolution of 2-D flows
relevant to geophysics. g=o(r)+pgr. (6)
_ The purpose of th|§ review paper is to provide an over—We required to be constant, which makeg,(r)=c/r
view of the new physics that could be explored if Zonal+ar/2—[3r2/3 wherec is a constant. Note thﬁ((ﬁr 1) is
flows, Rayleigh dissipation, and/or@&effect were included homogeneous iff and ' e
in the plasma experiments. In Sec. Il we present the equa- 9
tions of motion and conserved quantities. In Sec. lll we pro-  G(r,¢,t)=w(r,¢,t)=2z- VXV. 7
vide a tutorial on how vortex dynamics is altered by a zonal : it
flow. More detailed reviews can be found in Refs. 20 and 21?n the absence of forcing and dissipation
These results require neither @-effect nor a Rayleigh D4 d -
dissipation—only a zonal flow imposed by a radial potential Dt (H v V) q- (8)
created by a charged axial wire. We show how the zonal flo . o .
breaks the degeneracy between positive and negative vort he advective velocity in Eq. (8) contains both the zonal
ces and how vortex merger is changed substantially. In Se@.nd non-zonal components,~whereas o_nly the non-zonal
IV we show how a turbulent, but coherent, long-lived, Zonalcomponent oly appears. Thufj advects with the fluid ve-
flow forms spontaneously from an initial condition at rest locity. . . . . :
when apg-effect, a random small-scale forcing and a Ray- Unlike 3-D .ﬂOWS‘ mcpmpresable 2D ﬂOW.S are invarl-
leigh dissipation are include@vith, of course, no imposed ant under rotation, so W't.ho.Ut IOTQ'S of generality we can set
zonal flow). Using a theory based on the inverse cascade 0(1;]:0. Note that due to this invariance any constant may be

energy from small to large scales, the strength and widths o"i“,ddEd tow without changing the dynamics. Thus if only one

the resulting zonal jet streams are correctly prediétddis sign of vorticity (or charge in the plagma 'Fr}alpan be cre-
shown that the widths are independent of the length-scales ¢ ed, a compact vorte_x of the opppslte sign may be effec-
the forcing and boundaries. It is determined by balancing thgvely ?feate‘j' by creating a space-filling vortex with a com-
energy input and dissipation rates. Thus, jets with arbitrar)PaCt _hOIG' We dezfme the zonal shear as(r)
widths can be created by adjusting the magnitude of the forc-E.rd(.U¢/r)/dr: —2c/r"=fr/3. It =0 a central charged
ing or dissipation. Our Discussion is in Sec. V. wire in a trap produces a zonal “°W. withe 1fr and a non-
zero zonal shear. Equatid8) along with the computation of
V from @ by using Eqg.(7) and the Biot-Savart law form a
Il EQUATIONS compete set of equations for determining the flow. At the

The governing equations for 2-D fluid flow can be ex- radial boundarie§=0 for viscous flow an@,=0 for invis-

M\@ere E(r)zrfld(rv_¢)/dr=z-v><7 The zonal compo-
nent of the potential vorticity is defined

pressed in terms of the potential vorticity cid flow. If the origin is included in the domaié.e., there is
no central wirg analyticity of V. must be imposed there.
Dg (¢ ) A "
—E<—+V~V q=F+D (1) Equation (8) !wth inviscid boundary conditions con-
Dt ot serves circulatiod = [GdA; all moments of the enstrophy

whereD/Dt is the advective derivativey(r,¢,t) is the 2-D  [G§"dA for integersn>1; energy(see Sec. lll ¢ and angu-
velocity, F is the forcing, and is the dissipation. The po- lar momentum or, equivalently,
tential vorticity is defined as

q(r,¢.t)=w(r,¢,t)+Br 2) LEJﬁ(L(ﬁ,t)rsz. )

wherew(r,¢,t)=z- VXv is the vorticity,z is a unit vector, Whenv=0 and when the domain is unbounded, angular mo-
and B is the gradient in latitude of the Coriolis for¢e the  mentum aroundany point, not just the coordinate origin, is
laboratory, the topographig-effect is due to the radially- conserved, i.e.,
sloped bottom boundary—see Ref.)1% a plane-parallel
geometryq= w+ By wherey is the local north—south coor- L(r')= f Gr,0)|r—r'|2dA (10
dinate. In the absence @, Eq. (1) reduces to the Navier—
Stokes equation wheB = »V2v where v is the kinematic is conserved for alt’.
viscosity.
To more easily un_de_rstand _the (_affect of a zonal _flow, wem_ EFFECTS OF THE ZONAL FLOW
decompose the velocity into a time-independent, axisymmet-
ric zonal component/(r)=uv 4(r) ¢ (where ¢ is the unit  A. Breaking sign degeneracy

vector in the azimuthal directigrand the remaindev Vortices with different signs ofj behave as mirror im-

v(r,¢,t)=v(r)+v(r,¢,t) (3  ages wherv=0 but quite differently wherv#0. When a
compact region of potential vorticity has the sign ofgtshe
same sign as the shear of its ambient zonal flow, it is
defined agrograde if the signs are opposite it iadverse
o(r,¢H)=w(r)+o(r,o,t), (40  The breaking of the degeneracy between prograde and ad-

with similar decompositions for the vorticity and potential
vorticity
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BecauseM (x)=1 for x>0, the N\ of prograde vortices is
nearly proportional to (¥ ¢/q). There are no steady solu-
tions for adverse vortices with/g<(2v2—3)=—-0.17. The
equilibrium shape of vortices in cylindrical zonal flows
and/or with non-uniforni§ can be computed with contour
dynamic$®?® and show similar behavior with theik a
monotonic function ofs/§ and no steady equilibria for ad-
verse vortices with-a/G=0(1).

Numerical simulations show adverse vortices to be un-
stable to small, finite-amplitude perturbations. This can be
understood from the schematic of Fig. 1. Adverse vortices
have two stagnation points close-by connected by the last
closed streamline that circumscribes the vortex which acts
FIG. 1. Sketch of streamlines for an adverse vorhadedl Two stagna- 1K€ @ separatrix. Streamlines between the separatrix and the
tion points outside the vortex are joined by the last closed strearfiee ~ edge of the vortex also circumscribe the vortex. Those out-
ken curve that circumscribes the vortex and acts as a separatrix. side do not, and fluid on them is carried far from the vortex.
Small perturbations keep the vorteXjswithin the separatrix
and close to the vortex indefinitely. Large perturbations push

verse vortices is important; for example, one needs to undeth® vortex's perturbed outside the separatrix where it gets
stand why all of the long-lived jovian vortices are prograde.carried away and is unlikely to rejoin it. Numerical simula-
Whenv=0, steady vortices are round shaped, but when emtions verify that adverse vortices are finite-amplitude un-
bedded in a zonal flow, prograde vortices become nearlptable to Lagrangian perturbations with displacements bigger
elliptically shaped with their major axis aligned in the direc- than the distance between the vortex edge and the separatrix.
tion of the zonal flow. In fact, for compact vortices with In contrast, all streamlines circumscribe a prograde vortex
spatially unifornigj (which is a good approximation for many and there is no separatri_x. Numerical simulations show that
geophysical vorticés?), embedded in Cartesian zonal flows €ven when prograde vortices are perturbed so that they break
(i.e., with v a function ofy and in thex direction with a  into two or more pieces, the pieces often merge to reform the
constant, the steady-state equilibria are exactly elliptical in vortex. Figure 2 shows an initial condition of a prograde and
shape with aspect ratio (maximum extent irx divided by ~ adverse vortex. The prograde vortex relaxes to its equilib-

extent iny) a function ofa/G%* rium shape while the adverse vortex is stretchedobgind
destroyed.[The filaments are broken apart by a Kelvin-
\= ( 1+ g) M (o79) (12) Helmholtz instability in Figs. @)—2(f).] Laboratory experi-
q ments show that prograde vortices are stable even when the
where ambient zonal flow is turbulert. In our initial-value calcu-

lations prograde vortices arise from a variety of initial con-
ditions including unstable vortex rings, random vortex fields,
and solid-body rotation with random small-scale forcing;

Ll xEVI+6x+

2+2x (12)

M(x

FIG. 2. Simulation of a flow in an annulus with progra@elverse light (dark) at 8 times. Only the progradgsurvives. The adverse vorticity is stretched
by the zonalv into small enough filaments that it is destroyed by numerical dissipation. Kelvin—Helmholtz instabilities are seen in the light spirals in Figs.
d—f.
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while we never see adverse vortices form unless they are
included as part of an initial condition and haver/g<1.
Zonal flows alter vortex dynamics by preventing vortices
from having internal degrees of freedom. With no zonal
flow, a steady-state round vortex can be perturbed into a . \
time-dependent state that oscillates or has waves on its £ \\..
boundaries. The different temporal behaviors allow vortices
to have different energies although they have the same cir-
culations, enstrophies and momenta as the steady states. Vor-
tices embedded in zonal flows wi#/g=0(1) also have
time-dependent equilibria, but our numerical simulations

show that they are finite-amplitude unstable; they quickly / ‘
relax back to theirlapproximate steady stategwith very p /
weak time dependengby shedding vorticity and remerging S
with it. During the relaxation, energy is exchanged with the \

ambient flow(see Sec. Il ¢ Thus whenv#0 a vortex's
late-time shape and energy are determined uniquely by its
circulation, momentum and ambient value @fj; whereas %
whenv=0 a late-time vortex can be time-dependent and
have a range of energies. This distinction will be important
in determining the rules of vortex merger in Sec. Il C.
o \

B. Expulsion of adverse vorticity - ’

Another reason adverse vortices WWﬁ;O(l) are FIG. 3. Six different times in the evolution of four potential vortices in an
not observed is that they gre ,Stret_Ched mtgfllaments.b_j/ annulus. The sheas(r) of the zonal flow changes sign at a radiug
the zonal flow alternates in direction so thathanges sign  haifway between the inner and outer radial boundaries aTing is negative
as a function ofr (as it does for Jupiter and Satyirthen  in the outer region. The lightdark) vortices have§>0 (G<0), so light
adverseq is expelled from its ambient zone into its neigh- vortices are prqgrade in the_ir_mer half an_d_e_tdverse in the outer half of the
boring prograde zone where it rolls up and forms a stablé””“'“s' The pieces of vorticity that are initially adverse but cross over

. . . . . =r, to become prograde develop tadpole-like heads, roll up, and survive;

vortex. Figure 3 shows a numerical simulation that IIIUStrateslvhile those left behind continue to stretch and eventually decay due to
this in an annular, rather than cylindrical, geometry. Herenumerical dissipation.
vy(r)=(— (r?6) (2+(rq/r)®+0.48), so a(r)

_ 3 i« i :
= (r/3) ((ro/r)°—1) wherer, is midway between the inner jqining zone andd upward towards the annulus’ boundary.

ind outer radial bou.n.daries. NoE{r_)>0 for r<ro, and If the sign of the shaded vortex were reversed so that it were
o(r)<0 forr>r. Initially both the inner and outer zOnes oarade then botlandV initially move A to the right and
each contain one prograde and one adverse vortex, with ligf 5 the |eft. Then the counter-clockwisewould pull both
regions corresponding >0 and dark t6q4<0. In each A an4B away from the boundaries towards the center of the

case the adverse vorticity is expelle_d_in a spiral. Part iﬁ)rograde zone. Thus far/g=0(1), prograde is drawn in
stretched to the small scales where it is destrofmdnu- towards the center of a prograde zone while advérse
merical dissipationand part of the adversg crosses =r, expelled.

where it becomes prograde and rolls(gpe middle sequence
of Fig. 3, eventually settling into a stable equilibrium. In
contrast the two initial prograde vortices barely change.

To understand this, consider the schematic in Fig. 4
which shows part of the first frame of Fig. 3. The dark,
adverse, potential vortex wif§<<0 is drawn shaded, and it
lies in a shear withr>0. Thev(r) is represented by heavy
arrows. The figure is drawn in the rotating frame where the
center of potential vorticity of the shaded vortex is at rest, so
v(r) is approximately zero at its center. An infinitesimal V<0 <0
piece ofq labeledA moves withv(r,t)=V(r,t) +Vv(r). The
Biot-Savart law give§ (shown with thin solid arrows it is
clockwise around the vortex, and At7 ,=—qR,/2 where
R, is the vortex semi-radius im. Taylor expansion ol

around the vortex center givag at A, v,=R,o. Thus if ) ) ] o
FIG. 4. Schematic of Fig. 3 showing advets®eing expelled. The adverse

|a'/q|>O(1), fluid e!ementA IS dragged to the ”ght and T<O0 is shaded; the zonal velocity is indicated with heavy arrows, the
to the left(shown with broken arrows The clockwise Mo-  seit.induced computed with the Biot-Savart law with thin arrows, and the

tion of V then pushe®\ downward and outward to the ad- total velocityv which advects th@ at A andB with broken arrows.

V¢ <0
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C. Vortex merger mately steady in timdsee Sec. Ill A and embedded in a
Only vortices with like signs merge, but merger is quite shearcr(_ro) With_a hearly e_IIiptica_ll shap~e given by E@L1);
different and much more common whew 0. It is important ~ @nd(4) its area is 2 and circulation is ' because they are
to understand why this happens. For example in the joviaﬁonserved quantities of the tot.al rovy, and numengal simula-
atmosphere, which is dominated by zonal winds, the longlions show that even though circulation can be stripped from
lived vortices survive by constantly merging with smaller the vortices during violent mergers, most of it eventually
vortices that are continually created by the local _re-attach(_a$unllke mergers Wlltfvz 0). To leading order, the
“weather.” 2 If merger were difficult, Jupiter's “long- Increase inEq after merger is
lived” vortices would disappear. 72
Whenv=0 vortices must be within approximately a di- _
ameter of each other to merge. When they do, they shed Ese”—ﬂln(D/R)>O. (19
large filaments ofj outward far from their center of vortic- .
ity, so the resulting merged vortex has much less area andy Taylor expandings(r) aboutry and writingr=rq+y,
circulation than that of the two initial vortices. Two point We find to leading order iy/ry
vortices(delta functions ofj) can never merge. They rotate _
around their_ common center of vorticitand interapt with E(t)=— a(ro) fﬁ(h(b,t)ysz (16)
the boundaries if there are anyAs shown below it takes 2
energy to push two like-signed vortices together, so in the , . i
absence oF, it is necessary to throw large amounts gf where we have ignored an additive constant. The quantity

'~ 2 . . .
outward in order to push together pieces of two different /(1. #.)y O_IAl is a measure of the radial width of the
vortices in order to conserve energy. In the absence ofortex or vortices. If the two initial vortices are located at the
boundaries, angular momentum, which is conserved abo@Me radius, then the merged vortex has the same shape, but

every point including the center of vorticifisee Eq.(10)], twice their area, so it_s radial_ \_Nidth is larger. Thus from Eq.
also prevents vortices from merging unless a significanf1®: AEin(t) is negative(positive) after the merger of pro-
amount ofq is thrown outward. grade(adverseg vortices. The total change in enerdye is

Vortex merger is more common in the presence of zonaPositive for the merger of adverse vortices but could be of
flows for several reasons. Angular momentum is conservefither sign for prograde vortices. If the two initial vortices
only with respect to the origin, and pushes vortices to- Nave a rzadlal separationb, then the change in
gether. So except at the origin, angular momentum conset/d(":¢.t)y“dA| due to merger is a monotonically decreas-

vation is not a barrier to merger. Energy is still conserved!nd function ofb. For prograde vortices there is a critical
but now includes an interaction terk,; betweenv andv

value bg=2R such thatAE=02" A standard argument

which can supply the energy needed to push two Iike—signeb‘sed in fluid dynamics is that a flow will undergo a kinemati-

vortices together. To see this write the eneEggs a sum of cally allowable transition if the energy of the final state is
two piecesE. the self-energy ané, less than the initiaf® As applied to the merger of vortices it
—se Int-

means that ifAE<O, a merger will occur and the energy
1 — — , , AE]| is transferred from the large-scale coherent vortices to
Ese'fz_ﬂf f G(r.T(r O Injr—r'|dAdA” (13 Lhe |turbulent, small-scale component of the flow. Merger
would only be possible foAE>O0 if energy could be con-
— = yy trived to go from the turbulence into the coherent vortices,
Ein= f a(r.¢(rydA a4 and this g not observed. Numerical experiments have con-
where the integrals are over afsiaof the domain andj(r) firmed to évitr? in 50/(.’ r:hat progra<|je vzrti%es witlb1d< i
is the stream functioffelectrical potential in the plasmaf Merge, an those with greater va ues do otwo a Verse
_ — vortices with largeb could lower their energy by merging,
the zonal component of the flow:,(r) =dy/dr. Not sur- ¢ clearly it is necessary for the vortices to approach each
prisingly Eseyr is of the same form it would be for 2-D her pefore they could merge. Because the vortices move
patches of electric charge. Two charges or patches of vortiGgith v, it is not obvious how they could do so and overcome
ity with the same sign increase their ener@nd therefore  eir |arge initial separation in radius. We know of no nu-
require it from some external souicé they are brought \herical or observational examples of adverse vortex merger
together. We can approximate the change&dgs andEine  ith |o7g|>0.1. In fact, it is energetically favorable for a
due to the merger of two identical vortices with potential gingie adverse vortex to fission which explains, in part, their
vorticities, circulationsI'= [GdA and average radR. Let finite-amplitude instability.
the vortices be embedded in=c/r, and assume that the Various hypotheses based on entropy maximizatiorr
length over whicho varies is large compared ® and that  enstrophy minimizatiod**®> and statistical mechanités3®
R/D<1 whereD is the initial separation between the vorti- have been developed to predict vortex mergerd the equi-
ces. Letry be the mean radial location of the vortices: libria of arrays of vortices However, these predictions do
= [r?§dA/T, which is a constant of the motion. Assuming not appear to work fov 0. This may be due to the fact that
that the two vortices merge, we can predict everything abouthe theories depend on the flows’ ergodicity. Numerical ex-
the merged vortex?) its value off is the same as that of the periments with fov#0 show the flows are not ergodic and
initial vortices;(2) it is located at radiusy; (3) it is approxi-  have strong “memories” of their initial conditiorf.
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IV. SPONTANEOUS GENERATION OF ZONAL FLOWS 9

w w . .
. . L. —=—Vv-Vo— — —+(A/2 e'(kf/‘/i)xel(kf/‘/i)y
A. Physical and mathematical description ot @ Puy T (A2)]

Zonal winds and jet streams occur not only on Earth but + el (ke V2)xg=i(k V2)y 4 ¢ c ]+ phypeny 12, (17
also on all of our solar system’s large gaseous platieisi- over a computational domain afxL. Ideally, we would

ter, Saturn, Uranus and Nep_tl)n!et is still an open ques_t|on like to solve this flow over an infinite domain, but as long as
as to what created and maintains them for long periods of js nch |arger than the largest-scale features of the system,
time. Jupiter's zonal jet stream@r more accurately, the oy g6 effects are unimportant. When the largest features
cloud patterns that we associate with theimave been ob-  555r6ach the size of the computational domain, finite-area
served for more than 350 years. effects become importarisee Ref. 21

When a zonal flow is not imposed on the fluid and when  For all flows, the initial velocity is machine zero. There
the fluid starts at rest, a small-scale forcing can lead to th% a 5-dimensional3-nondimensional parameter space to
creation of large coherent structures such as zonal wiieds explore: 8, L, r, ki, andA, though we postpone choosing
an inverse energy cascadender the right conditionsin non-dimensional units until Sec. IV E.
this section we consider the effects ofBaterm and large-
scale dissipation on the cascade and the resulting coherent
structures. To simplify the presentation we use Cartesian cd>: EN€rgy spectra

ordinates withy acting like the radial direction andlike the The arguments for the Kolmogorov energy spectrum are
azimuthal. We do not use the decomposition of variables intéthe same for 2- and 3-D flows and independent of whether
their zonal and nonzonal components. the energy forward cascades from large to small scales or

We begin with Eq.(1) but now explicitly consider the inverse cascadeés. The argument depends only on the as-
roles of the forcing=(x,y) and dissipatiorD. The forcingin ~ sumption that the energy transfer in Fourier spéoés local
a rotating atmosphere B=2Qdv,(x,y)/dz, whereQ) is the ~ and conservative
angular velocity of the rotating fluid layer azds the verti- _ = \2/3,—5/3
cal coordinaté® An atmosphere, such as the weather layer of Ek) = Cig( Eup) Tk (18)
Jupiter (which contains the visible clougiswould be ex- ~Where the kinetic energy per unit massis [ E(k)dk, and
pected to have largemegative values ofdv,(x,y)/dz at the  E, is the rate of transfer upor down the spectrum. The
locations where vertical plumes of fluid rise from the under-dimensionless Kolmogorov constagyy in 3-D flow is ap-
lying convective layer and abruptly stop at the tropopaus@rOXimateW 1.5% It is convenient to use the notion of an
(which we take to be the upper ‘lid’ of our Jovian atmo- ‘€ddy’ as the coherent component of the velocity made up of
spheric model, where the atmosphere becomes strongly vei-band of Fourier modes with wavenumbers betwief2
tically stratified and severely inhibiting to vertical motigi ~ and|k| with energy
Both theory and the limited observations of plumes indicate k
that they occur on small scaléess than 500 km—compared Eeddy K) = j k/zE(k)dk' (19
with zonal widths of order 10 000 knover a narrow range
of length scale. Thus we modE&l with forcing at a pair of
high-wavenumber k;  Fourier modes: F=(A/2)
X[ el kiV2)xgi (ki V2)y 4 gl (ki VD)X =i(kiV2)Y 4 ¢ c]. The dissi- Unlike ‘run-down’ experiments in which all initial con-
pationD = — w/ 7+ ¥PeNV 12 in Eq. (1) has two terms. One ditions and all parameter valuéwith 3+0) that we tried
is hyperviscosity whose purpose is to prevent a numericaproduced zonal flows, very few choices of parameters for Eq.
instability and whose numerical coefficient?®V 12 is self- (17 dld_. For an inverse cascade to occur, certam inequalities
normalizing (with no pre-assigned valiesnd designed to of _the flvg parameters must be met. DISCU.S.SIOI’] of these con-
prevent enstrophy from piling up at the smallest numericallydItlonS will f.O”OW' Only when these conditions are met QO
resolvable scale. All 2-D calculations, even ‘run-down’ ex-OUr calculations produce coherent structures. Most regions
) . o within our 5-dimensional parameter space do not satisfy the
periments,(defined as those witk=0, — and nonzero iy .
- . . . . ) necessary conditions for a nonlinear cascade, so most of our
initial 'COI’ld.I'[IOHS include Fhls terrn or an equivalent ‘turbu- calculations never produced large-scale features and resulted
lent viscosity’ to prevent instabilitysee Ref. 2L The other

. . . - L instead in energy spectra confined to a delta functioky at
term in D is a Rayleigh friction or Ekman dissipation. It When an inverse cascade of energy occurred, it pro-

models any phenomena that dissipates potential circulationy,ceq a final, statistically steady state that had east—west
or momentum in the layer on time scaté¢which dissipation  ;ong jets or eddies. For runs which formed east—west jets,
terms that can be written as a horizontal divergence cann@here was a wide range in their number and size. For runs
do) such as oblique Rossby waves, secondary circulationghich formed eddies, there was also a wide range, though for
with a vertical component, or turbulent upper or lower each numerical calculation in which there was an inverse

boundarie$? Unlike molecular viscosity or hyperviscosity, cascade there was always one well-defined size.

this term mostly dissipates energy at large scales if the en- Some examples of runs which establish an inverse cas-
ergy spectrum decreases with wavenumber. cade and produce coherent features are given in Figs. 5-7. In

Thus in this section we are interested in solutions to  parts(a) of Figs. 5 and 6, we have plotted the east—weast (

C. Overview of numerical results
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(b)

FIG. 6. Same as Fig. 5, but fef* =44.0,k} =195, andL* =454. Here the
FIG. 5. (a) The east—west velocity as a function of latitudat 10 different ~ zonal flow is much more regular and there are many more zones.
values of longitude; i.ey,(x;,y) atx;=(i/10)L for i=1,2,..,10; and(b)
stream functiony(x,y) for a numerical simulation withr* =73.2, kf
=1.17, and_* =273. (See Sec IV. for our definition of dimensionless units

indicated by a.) These figures are computed at a late tirtie £) after the D. Determination of the size of coherent features
flow has come to a statistically steady state.

It is possible to produce flows withny number of zones.
(This is not just due to our re-scaling the length—all of the
runs were computed on domains with= 1.0.) In this section
we consider balance between the energy input and dissipa-
velocity as a function of latitudey( at 10 different longi-  tion rates in Eq(17) and from it derive the conditions under
tudes &). Note that in Figs. &) and Ga) the east-west \which zones or other large-scale coherent features form and
extrema of the jets correlate remarkably well even though theéheir characteristic wavenumbeks,,. We shall show that
flow is highly turbulent, indicating that these flows have be-dissipation-forcing balance sets the scéiet 8, since the
come zonal. It is important to note that even with the sameheory works even with3=0).
values ofg these flows can have a different number of zones  Multiplying both sides of Eq(17) by the stream function
(five for Fig. 5 but ten for Fig. § The zonal jets can vary in ¢ (where v=—V X z) and integrating over the domain
appearance; they are very laminar-looking in Figg)@ut  gives an equation foE:
much more turbulent-looking in Fig.(&. This contrast in
appearance can also be seen in the stream functions plotted ﬁ — ;ZE —E.+E (20)
in Figs. 5b) and &b). The flow in Fig. b) consists of much at e
more turbulence, waves, and eddies, and although this is

L o . wher
taken at one moment in time, it is representative of the fea- ere

tures of the syst_em once the statistically-steady equilibriurrEin(t)E — 2T12A[ ik IV2, K IVE) + k2, — ke IV2) + €.c]

has been established. (21)
Figure 7 represents a run where zones are never estab-

lished. Large-scale, isotropic eddies are embedded within Where a ‘hat’ over a quantity means the discrete Fourier

turbulent flow, but there is no evidence of east—west jets. Foiransform of that quantity? and whereE,, is the energy loss

Fig. 7 in particular, the wavenumber associated with largerate per unit mass due to hyper-viscosity. In general we find

scale coherent featuresks=58, but other numerical experi- that the numerical calculations have little loss from hyper-

ments yielded eddies of different scales as well. viscosity (typically, EH<O.082in) because energy inverse
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FIG. 7. Stream functiony(x,y) for a numerical simulation with7*
=1484, ki =1.37, andL*=936. Here the flow shows a well-defined
prominent wavenumberk(,=58) but the flow produces an isotropic eddy
field rather than east—west zones.

cascades to large scales rather than forward cascading to the
small scales where hyper-viscosity is effective. Thus, to a

first approximation the upward energy transfer rate in Eq
(18) is

. 2E .

Euwp= = Ein. (22

We consider the energy balancekat k; by examining
the k¢-Fourier component of Eq17):

(k) at=—[(v-V)w]|,— Biy(ke)+ A2+ F]y,

—a(kyl T (23

where a vertical bar with subscript indicates the wavevector

of the transformed quantity. When E@3) is multiplied by
- ¢://|,kf it determines the time evolution of the energy in the

k¢-Fourier mode. We would expect, and our numerical cal-
culations verify, that there is a dominant balance between

two terms in Eq.(23) for the parameter range where the
solutions form large-scale flows. The forcing due to &g
term in Eqg. (23) not only supplies the energy to the
k;-Fourier mode but also to the entire flow. For the flow not
to run down, this must be one of the two dominant terms
The linear terms in Eq23) cannot balance the forcing term,
e.g., if either of the two dissipation terntise., — &/ 7 or H)
did, then the energy would go into the mode, dissipate
there, and be incapable of creating a zonal or other larg
spatial-scale flow. Nor can th@ term balanceA/2 because

Vortex dynamics and zonal flows 1637

|A[>]B0 (ko) (24)

Al>[7" o (k)| (25

A=) | (26)
K

Al=[[(v-V)o]| | (27)

K

These relations have been verified numerically.

By writing the right-hand side of Eq27) as a convolu-
tion sum ink it can be showf? that it is approximately equal
to kfzsedd}(kf). Using this approximation with Eq$19) and

(27) allows us to Write'Eup in terms of the control parameters
(28)

where c,, is a dimensionless constant of order unity. Our
numerical experiments show thgj is universal likec,g, in
the sense that it is nearly independent of the valueg, &f,
7, ks, andA.

The constraint inequalitie$24) and (25) can now be
written in terms of the control parametéfs:

A1/2kf> :8

EupE C ATk 2

(29
and

A> 72, (30)

Inequality (26) is a constraint on the numerics, not the phys-
ics, so we disregard it in our discussion. All of the numerical
results presented in Sec. IV B that form large-scale flows,
either zones or eddy field&.g., the flows in Figs. 597
satisfy the constraint inequaliti€®9) and (30), and all nu-
merical calculations that we carried out for which either in-
equality was not satisfied failed to produce large-scales flows
and the energy remained in Fourier modes vkithk; .

If we ignore the effect of3, then according to Eq22),

the kinetic energy inverse cascades frio larger length
scales until it reaches wavenumbel,, where

E=fT_ E(k)dk= 7E,/2. (3D

If the Kolmogorov scaling18) is valid for k<k;, then
Eom 2 [ cu(Eu) ¥k 32
up— ; kTmiang( up) ( )

3 ) kT S\ 213
= ;Ckg( Eup) X kTmin)m[ 1- (klf'”) (33
€ - 2131, T 2/3

= ;Ckg( Eup) (Kmin) ~ < (34

then there would be no dissipation, and the flow would create

Rossby wave's with wavevectork; that would build in am-

plitude until there was a numerical blow-up. The balance
must be by the nonlinear term because this is the only term  k

that can transfer energy out of the mode to otherlargen

The large coherent structures have wavenunkier

—3/2
T :
Tminz(g) CPE o= \27C Jo,r Y A (35)

modes. This argues that three inequalities and one equatiavhere we used Eq4$22), (28), and (34). This predicts the
are necessary conditions to create zonal or any other type dbminant scale for eddies in the case of non-zonal flows.

large scale flow:
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consider this to be a constraint inequality in addition to those
already listed. However, it is trivially satisfied if inequality 10
(30) is satisfied.

For small values of3, once the value of the dimension-
less, order-unity constants, and ¢,y are determined, our
scaling laws correctly predict all of the gross features of the
numerical simulations in terms of the input paramei@rs R
ki, andA: E,, [from Eq. (28)], E=c, A®*32)7/2k? [from
Eq. (22)], andk;rnin [from Eq.(35)]. Note that the results are
independent of (as we argued in Sec. IV A on the assump-
tion that 2m/k! . <L—although when &/k!. =L, the nu-
merical results depend dr?). The expressions foE, E,, 1
andk!. depend only orrand the combination of parameters
(A¥%; ?) but not onA or k; independently. This is due to 5

10° 10°

the fact that the value of{®*%; ) determine<t,,,. Whether e

the energy spectruri(k) begins atk; or some other value . . R . i

has very litle effect O, or ki, if kil [This is Math- ey srodunes soral ows. For ol o e, rome e et vanges of

ematically equivalent to ignoring thé;/k)%® term on the  E*,_(k*) (solid lines andE},,(k*) (broken lineg collapse to the same two

right-most side of Eq(33).] It may define the range over curves, though the endpoints of the inertial ranges, kfgandky,, where

which the spectrum extends, but thkm depends primarily the spectra sharply fall off, differ. See text for details.

on the values oEup and 7. Note though that constraint in-

equalitiesdo depend separately on the valueskefand A.

Based on our numerical findings thay is approximately

constant, we nondimensionalize our resitslicated by an  wherec; is a dimensionless constant of order-unity. Our

asterisi by choosing units of length and time such tlgt  numerically computed value is;=0.08+0.015. Thek 5

A¥%; ?=E,,=1 andB=1. The input variables can then be scaling in Eq.(37) is illustrated in Fig. 8. Heuristically this

written as7*, L*, andk{ , soif an inverse cascades forms, can be explained by noting that the term proportionasto

the gross features will depend only e, but the constraint and the nonlinear term in E§23) scale differently withk.

inequalities will depend also okf andL*. Multiplying the equation byg(k) and averaging over all
wave numbers betwednandk/2 makes the3 term approxi-
mately BecqqfK) and the nonlinear term approximately

E. Effect of B kzse_ddx(lf)s%f“‘(k). Balancing these two terms gives the
scaling in Eq.(39).

The preceding analysis of the size of coherent structures  Numerical simulationgsee Fig. 8 show thatEegqy(K)
was independent g8 and appears to be in conflict with the gheys Kolmogorovk~>? scaling over a wide range d,
generally accepted belief that it does dependsdfi To re-  while E, (k) simultaneously obeys E¢37). The total en-

solve this, define a ban@nalogous to an eddips a coherent  ergy spectrum is the sum &egay(K) and E ond K), or
feature made of Fourier components wikb=0 wherek/2

<ky=<k. Modes withk,=0 have velocities only in the s S
direction, so they contribute to the zonal component of the E(k)=Cyg(Eyp) k> +CpBk . (39
flow and not to eddies. Consider the componégpy,{k) of

the total energy spectrur(k) due only to Fourier modes For k<k, the second term dominates and vice versa, where
with k,=0, and defineEqqqf(K) =E(K) —E ond k). Then the
energy of a band of wavenumbleris

) kbE CEQSIlOCglOEJpl/E’ﬂyS: Ci:gS/lOC%/lOC; 1/5kf2/5A7 3/10B(Z/C5).)
£0nd K) = J’klezon(.( k)dk. (36)

For choices of input parameters such thg k!, the Kol-
mogrov scaling law is a good approximation to E8), but

for k,>k!. , the correct approximation is

We found numerically that the scaling of the amplitudes of
the Fourier modes changes whgns included in the calcu-
lation. For large(and ‘large’ will be defined beloythe scal-
ing of E¢qqy(k) remains unchanged and proportionakc 3,
However, our numerical calculations show that the scaling of e Cig B K52 ky<k<k;
E,ondK) changes whei is included and yields ) cB,BZk*E’ Ko<k <Kp.

Ezone(k)zcﬁﬂzk75! (37)

or equivalently

(41

In Eq. (41), Kyin is the smallest wavenumber of the flow and
is determined as in Eq31) by balancing the energy dissi-
&2ond K) = (15/4)c 3%k 4 (38)  pation rate with the input rate
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Eup=(2/7')E (42) pation. Because there is an analogy between 2-D fluid flow
and theEXB drift velocity in a plasma, there is an opportu-

nity of using plasma traps as an “analog computer” for ex-
amining these flows. We have shown here that 2-D vortex
dynamics are different when zonal flows, large-scale
(Rayleigh-like dissipation, or g3-effect are included. These
are some of the leading physical processes in jet streams,
ozone holes, and the Great Red Spot. All of these effects are
plausible additions to existing plasma experiments that
Kinin=(Cgl2c,) Y47~ VA2 /2n ~ 38 (45 mimic 2-D fluid flow. Because these additional effects are
important to geophysical flows, which represent the majority
of 2-D flows of interest to hydrodynamicists, it would be
useful to include these effects in future generations of plasma
experiments. When zonal flows are included, adverse and
Kenin=Tkp *+ (27C,A¥%k; 2= 60,2 Ak Ky, #)(c43)] Y. prograde vortices behave differently. It is energetically fa-
vorable for adverse vorticgshose with opposite sign of the
ambient zonal sheato fragment. If the adverse vortices are
embedded in zonal flows that alternate in directisuch as
375, CpCyB2 TPATK 2> 1. (47)  the winds of Jupiter and Satyrrthe fragments are expelled
into neighboring regions where the zonal shear is prograde
(same sigh with respect to the vorticity. When the zonal
7 >3cprc, =15~ 26, (48)  shear and the potential vorticity of the vortices are of the
same order, there are no known equilibrium solutions of ad-
verse vortices. Rules governing vortex merger and the relax-
ation to equilibrium change when zonal flows are present.
They do not appear to be governed by the principle of maxi-
mizing the flow’s entropy or minimizing its enstrophy. In-
stead, merger and relaxation to new equilibria occur if they
allow the energy of the coherent vortices to decrdgseng
their excess energy to the turbulent component of the veloc-
ity).

When zonal flows are not imposed, but the flow is ran-
domly forced at small scales, dissipated at large scales, and a

S . . I,L%—effect is included, an inverse cascade of energy from small
This is extraordinary when one considers that some runs arg . . o
to large scales is set up. When the appropriate conditions

very turbulent in appearance while others look fairly laminar. : o
. o ) outlined in Sec. IV. are satisfied, large-scale structures form
Note the endpoints of the inertial ranges are different for

. ..~ and co-exist with turbulence. The size of the structures is
each run. Beyond the endpoints the spectra fall off rap|dly.determined by a balance of enerav input and dissipation
The right endpoint at largk* is k* =ki which is different y gy 1np P

o r . This is un I in m wher heren
for each run. FoEZ, (k*) the left endpoint i* = (k[ )* ates S 1S unusua because ost cases where coherent
which is also differc:ant for each run. Fa*, (k*) the left structures co-exist with turbulence.g., the Great Red Spot,

dooint isk* —k* . Fi 8 b. efé“(t luate th solar granulation, turbulent Couette-Taylor vortices, ocean
endpoint Isk™= b lgure © can be used to evaluate € g jjies the sizes are determined by the length-scale of the
universal constarky ~0.30.

. . . forcing, the boundaries, or the Rhines lendfttBy varying
In summary, our analyses and numerical simulation

e . . Yhe dissipation time or forcing rate in the numerical simula-
sh?w tth?t '; et|:]her |°f the twr(]) |ne(t;1u?llt|e§§9) agd(303 far;n tions (and hopefully in the experimentshe size of the co-
not salistied, then farge, conerent Sructures do no afm. herent structures can be continuously varied from the length
B is large, Rossby waves with length scales equal to

; . : o of the small-scale forcing to the size of the entire domain.
the forcing length dominate the flowlf both inequalities . : .

e . . . o The magnitude of3 only has a secondary role in setting the
are satisfied but inequalit{47) is not satisfied, then nearly 9 B only y g

. . . . " .7 lengths of the coherent structurésy changing the shape of
isotropic eddies form. If all three inequalities are satisfied hegenergy spectrumThe value ofB prim%rilgi/ determiFr)1es
then large coherent zonal flows form. In any case, the lengt

i hether the forcing creates an isotropic eddy field, jet
scale of the large structures is set by the energy baIanCsetreams or Rossby waves. Our analytic theories for the cri-
in Eq. (31). ’ .

teria for what types of structures form, for their length scales
and velocity scales, and for the rules of merger and relax-
V. DISCUSSION ation were shown to be verified by numerical results. How-
ever the numerical results, which are only formally valid for
It is difficult to study nearly-inviscid, turbulent, 2-D fluid short time integrations, have not been rigorously tested by
flows in the laboratory and it is hard to numerically simulatelaboratory experiments. Plasma traps may well be the best
them for long times due to numerical instabilities and dissi-way to test them, as well as their application to the vortices

zszb c BZk—5dk+3fkfc (Ep) ¥ 5%k (43)
B T kgl =up

T kmln kb
=~ ic Bk (44)
2r B min?

or using Eq.(29)

where we have assumed thas ky, and k> K. In many
of our calculations the former is true but not the latter, in
which case

According to our theory, zones will form whek..
=<k,, or

In terms of nondimensional quantities, zones form when

which is good agreement with the numerical simulations.
Figure 8 is a composite figure displayir@*ddxk*),
Elondk*), andE* (k*) for all of the runs which produced
zones. Note how well the inertial ranges B§,,{k*) and
Ex(k*) correlate withk* % and k* ~** scaling, respec-
tively. In contrast, for runs which produced eddy fields, the
spectraEx . (k*) did not exhibitk* ~® scaling. In fact, for
eddy fields, bottE}, {k*) andEy,(k*) scaled ak* ~>?,
i.e., the presence @ was never felt. It is also important to
note how well the inertial ranges d&,,(k*) collapse to
single curve for all the runs. The same is true Edgq(k*).
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and jet streams of the earth and Jupiter, environments th&D. Durkin and J. Fajans, Phys. Fluidg, 298 (2000.
are difficult to reproduce in the laboratory but which are the'*J. PedloskyGeophysical Fluid DynamicéSpringer-Verlag, New York,

1979.

authors’ motivation for our study of vortex dynamics. It is
Y y 16J. M. Finn, D. del Castillo-Negrete, and D. C. Barnes, Phys. Plaginas

our hope that this Review provides encouragement and guid-
7). Sommeria, S. D. Meyers, and H. L. Swinney, Nailuendon 331, 689

ance to build geophysically relevant plasma experiments.

ACKNOWLEDGMENTS

3744(1999.

(1988.

D, Durkin and J. Fajans, Rev. Sci. Instrufi0, 4539 (1999.
19D, G. Dritschel, Comput. Phys. Rep0, 77 (1989.

We thank Joel Fajans for many fruitful conversations?°p. s. Marcus, Annu. Rev. Astron. Astrophyd, 523 (1993.
and thank the Stanford Center for Turbulence Research, NSﬂi‘P S. Marcus and C. Lee, Chaés269(1994.

22T Kundu, P. S. Marcus, and C. Lee, J. Fluid Mech., submitted.

Planetary Astronomy Program and the NASA Program in,

P. S. Marcus, Naturé_ondon 331, 693(1988.
Planetary Atmospheres for support. Computations were dOnﬁD W. Moore and P. G. SaffmaRjrcraft Wake TurbulencéPlenum, New
through an NPACI award at the San Diego Supercomputer vork, 1973, pp. 339-354.

Center.

K. S. Fine, C. F. Driscoll, J. H. Malmberg, and T. B. Mitchell, Phys. Rev.
Lett. 67, 588 (1991).

2K. S. Fine, Ph.D. thesis, University of California, San Diego, 1988.

3K. S. Fine, C. F. Driscoll, and J. H. Malmberg, Phys. Rev. L&%.2232
(1989.

4C. F. Driscoll, Phys. Rev. Let64, 645 (1990.

K. S. Fine, Bull. Am. Phys. So@6, 2331(1991).

N. J. Zabusky, M. H. Hughes, and K. V. Roberts, J. Comput. P3§s96
(1979.

26R. D. V. Buskirk and P. S. Marcus, J. Comp. Physids, 302(1994.

27p_ S, Marcus, J. Fluid Mecl215, 393 (1990.

2p, G. Drazin and W. H. Reidilydrodynamic StabilitfCambridge Uni-
versity Press, Cambridge, 198pp. 424—-435.

2%R. Robert, J. Stat. Phy$5, 531 (1991).

30N, Whitaker and B. Turkington, Phys. Fluidis 3963(1994.

31D Jin and D. Dubin, Bull. Am. Phys. Sod1, 1605(1996.

®R. Chu, J. Wurtele, J. Notte, and J. Fajans, in 1992 International Confer °D. Z. Jin and D. H. E. Dubin, Phys. Rev. Le80, 4434(1998.

ence on Plasma Physi¢&uropean Physical Society, 199pp. 111-1811.
"A. Peurrung, J. Notte, and J. Fajans, Bull. Am. Phys. S8¢1803(1992.
8A. J. Peurrung and J. Fajans, Phys. Fluid5,A4193(1993.

%J. Fajans and L. Friedland, Bull. Am. Phys. S48, 1927(1998.
10K, S. Fine and C. F. Driscoll, Phys. Plasnm&s501 (1998.

11). Fajans, E. Gilson, and L. Friedland, Phys. Rev. 182t.4444(1999.
12K, Fine, A. Cass, W. Flynn, and C. Driscoll, Phys. Rev. L&, 3277
(1995.

18D, A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll, Phys.

Fluids 11, 905 (1999.

3%H. Brands, P. H. Chavanis, R. Pasmanter, and J. Sommeria, Phys. Fluids
11, 3465(1999.

34C. E. Leith, Phys. Fluid27, 1388(1984.

35X. P. Huang and C. F. Driscoll, Phys. Rev. Letg, 2187(1994.

363, Miller, Phys. Rev. Lett65, 2137(1990.

S’R. Robert and J. Sommeria, J. Fluid Me&29, 291 (1991).

383, Miller, P. Weichman, and M. C. Cross, Phys. Rev43\ 2328(1992.

3%H. Tennekes and J. L. Lumle First Course in TurbulencéMassachu-
setts Institute of Technology Press, Cambridge, 1972

40p. B. Rhines, J. Fluid Mect89, 417 (1975.

Downloaded 12 Jul 2011 to 169.229.32.136. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



