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Turbulent Bursts in Couette-Taylor Flow
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We present a physical explanation of turbulent bursts in the flow between concentric, rotating
cylinders (Couette-Taylor flow), based on fully resolved direct numerical calculations. The bursts
are a temporal oscillation between a spatially laminar flow and turbulence, discovered experimentally
by Hamill et al. The onset of turbulence is shown to be due to a linear instability of the spiral flow,
discovered in our calculations and since confirmed experimentally. [S0031-9007(96)00971-4]

PACS numbers: 47.20.Ky, 47.20.Lz, 47.27.Cn, 47.27.Nz

We present a study of a flow with space-filling turbulentIn this range, the laminar part of the flow’s cycle looks
bursts, i.e., one that oscillates in time between laminaand behaves like “interpenetrating spiral” (IPS) [1] flow
and turbulent states. Here, we use the terms laminar ar{described below). The IPS flow is spatially organized,
turbulent to denote spatially coherent, slowly evolving,but power spectra of scattered light intensity show broad
ordered flow patterns vs spatially disordered, rapidlypeaks, indicating that the flow is temporally chaotic [1,2].
fluctuating states. Bursts are interesting because theljhe IPS flow is interrupted by space-filling bursts of
provide an example, of phenomena typical of the onseturbulence, and the onset and collapse of this turbulence
of turbulence in shear flows—subcritical transition andis cyclic in time. The mean duratio and standard
spatial and temporal intermittency. These phenomena amdeviationo of the cycle decrease with increasiRg and
difficult to model realistically using the usual tools of for sufficiently largeR the flow remains turbulent for
perturbation theory, and so a general theory of transitiomll time.
to turbulence has yet to be constructed. In this paper, Numerically, we have calculated turbulent bursts by
by examining a simple but experimentally realizable flow,solving the Navier-Stokes equations using a spectral
we show that turbulent bursts occur in cycles of a well-initial-value code which has excellent agreement with
defined sequence of steps. We offer physical /and laboratory flows [3,4]. The main difference between
mathematical explanations for each step. In particularthe numerical calculations and laboratory experiments is
we show that the onset of turbulence is directly linked tothat the former imposes wavelength in the axial (z)

a secondary instability of the laminar flow, and explaindirection. As expected, this leads to some differences
the repeated collapse of the turbulence. Our resultinppetween the laboratory and computed flow states [5];
conceptual model is general enough to apply to turbulenthowever, these are quantitative rather than qualitative.
bursts in a much wider context. Thus, we can gain an understanding of turbulent bursts

The first experiments showing turbulent bursts (limitedby examining the bifurcations that occur Rss increased
in both space and time) in Couette-Taylor (CT) flowwhen axial periodicity is imposedFor R less than a
were by Coles [1] and Anderealt al. [1]. Space-filling critical value R., the primary circular Couette flow is a
turbulent bursts, the focus of this paper, were discoveretlnction only of radiugr) and is stable witlv = V(r)é,
experimentally by Hamilet al. [2]. In CT flow the fluid  where V(r) is determined by the boundary conditions
is confined between two concentric, independently rotating6]. Circular Couette flow is centrifugally unstable to
cylinders. The flow geometry is defined by the cylinders’the formation of Taylor vortices wherevetL?/dr <
radius ration = a/b and aspect ratid’ = H'/(b — a), 0, where L(r) = rV(r) is the angular momentum per
whereH’, a, andb are the height and inner and outer radii unit mass of the fluid [6]. Whenu < 0, a nodal
of the cylinders. Typically, CT flows are nearly periodic surface exists at = r* such thatV(r*) = 0; this surface
in the axial direction, and nearly independent [1,2]'dbr  divides the flow into two regions. For < r* (the
I' = 20; hence, calculations that impose axial periodicity“inner region”) the gradient/L?>/dr < 0, and the flow
usually have good agreement with laboratory experiments centrifugally unstable, while for > r* (the “outer
[3,4]. The control parameters age= Q,/Q, whereQ,  region”), dL?/dr > 0, and the flow is stable. Fou =
and ), are the inner and outer cylinder rotation rates,—2.797 and n = 0.799, our calculations show that there
and a Reynolds numbek = (b — a)|bQ, — aQ,|/v, is a supercritical Hopf bifurcation ak. = 2116.6 [7].
where v is the kinematic viscosity. Experimentally [2], The eigenmodes associated with this bifurcation have the
turbulent bursts were found for counterrotating cylindersform f(r)e* ¢il272/A+m(é=ct] ‘\where the growth rateand
with u = —2.797 andn = 0.799 and over arange ad®.  phase speed are real. Ifm = 0, thenc = 0, but for
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© < 0 the most unstable eigenmodes haxe+ 0 and H
¢ # 0. Modes withm > 0 (m < 0) have the symmetry
of left- (right-) handed spirals. These left- and right-
handed spiral eigenmodes are degenerate, having the same
f(r), s, ¢, and critical valueR., A., and|m.|. Foru =
—2.797 andn = 0.799, m, = 4 and A, = 1.0856. [We
use dimensionless units where the fluid density, gap width
(b — a), and inner cylinder speefl),|a are equal to
unity.] The phase speedis positive and approximately
independent ofn, A, w, andR. For the most unstable
eigenmodes; = 0.3(Q), which is approximately the value
of V(r) at ther where the eigenmode has its maximum
amplitude. This radius is less thaii (the eigenmode is
exponentially small forr > r*), so the spiral rotates in
the same direction as the inner cylinder.

Our calculations withR slightly greater tharR,. show
that an initial condition consisting of a single eigenmode
evolves to nonlinear spiral Taylor vortex flow with the
form " FIG. 1.  Vorticity wy = &4 - (V X v) at three times with

R = 1.18R. and H = 3.68. In the left columnw, is plotted

Voy = Z an(’”)em[%d“m(qﬁfcﬁ] (1) in the (¢,z) plane atr = a + 0.15, and in the right column
n=— w, is plotted in the(r, z) plane at¢ = 0. (a) Laminar spirals

= ; ; .~ atr= 125 (b) The flow just before onset of a burst at
The helicity of the final flow (determined by the sign ! = 1625. (c) The turbulent flow at — 45. Each frame is

of m) depends on the initial conditions, and oncescaled independently; black indicates, > 0, white w4 < 0,

established a spiral of one helicity is stable to per-and all values oflws| less than 20% of the maximum are

turbations of opposite helicity. Spiral vortex flow grey. In a movie, the secondary mode is visible in (b), in the

consists of a pair of counter-rotating vortices confined®.z) plane as a “lump” on each vortex that travels in the

to r < r* [Fig. 1(@)]. In the outer region the flow direction.

remains approximately azimuthal, is not centrifugally

unstable, and physically resembles a parallel shear flow.

We define a Reynolds number for this outer region, ] ]

Rower = 1Q,16(b — r*)/v, which has values between @ turbulent burst is abrupt, burs_tlng everywhere almost

1200 and 1500. This is in the same range where chann&/multaneously. Large fluctuations occur on scales

flow is observed to be subcritically unstable to the onset oftuch smaller than the spiral vortices [Fig. 1(c)] and on

turbulence [8]. time scales I_ess tha}m"lc/lo, where Tic is the inner
Numerically asR is increased, spiral vortex flow cylinder rotation period. We quantify this as follows:

becomes unstable to the temporally chaotic, but spdhe Velocity is represented as a Fourier series-

tially ordered, IPS flow. The chaos is due to modeX;k Vi €XPijp)explik2mz/H). We define a “large-

competition among the unstable eigenmodes of circulagcale” energy Ep = 3, <j <k [, Ivil*rdr and a

Couette flow that have different valuesefandA. For  “small-scale” energyes = > ;=5 =k [, [Vje|*dr, with

example, atR = 1.18R., eigenmodes witHm| =2, 4, J and K chosen to correspond to the scale of a single

and 6 (forA = 0.90) are unstable. A fully nonlinear cal- vortex. The distribution of energy over small vs large

culation initialized with an arbitrary combination of these scales is obtained by compariiy andE; to their time-

eigenmodes does not settle into a spiral vortex flow wittaveraged value&s and £;,. At R = 1.2R. and during

a unique spiral structure, although long sections of differthe laminar part of the cycles; ~ E; andEg ~ 0.1E.

ent spiral vortices interrupted by “defects” are evident inDuring the turbulent partE; = 0.1E; and Es = 10Es.

Fig. 1(a). The IPS flow pattern rotates approximately as 8ecause the small scales of the burst are efficient at

solid body with a speed-Q,/3, roughly equal to thery,  dissipating energy, the rate of viscous dissipatifn;(r)

at ther where the spirals have maximum amplitude. De-also serves as a good signature of a burst; it rises at onset,

fects migrate slowly through the flow, and their advectivepeaks when the turbulence is at a maximum, and drops

time-scale is comparable to the burst period. The averagehen the turbulence collapses (Fig. 2). Once the burst

axial wavelength of a single vortex pair 180.9, consis- begins to collapse, it quickly disappears throughout the

tent with nearly round vortices confined o< r* and entire flow. The flow re-establishes its laminar IPS spa-

with experimental values. These properties of interpenetial structure and the burst cycle repeats. RA&= 1.18R..,

trating spiral flow are independent of initial conditions.  our calculations show that the period of the cycle is
In all of our calculations, once the IPS flow is estab-T = 2.2Tj¢ with o = 0.8Tc (based on computations of

lished, cycles of turbulent bursts begin. The onset ofl5 burst cycles).
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FIG. 2. Egss (solid), E, (dashed), andg, (dotted), all defined in the text, as functions of time during three burst cycles.
R = 1.16R.; H = 3.68. The increased values &, correspond to the turbulent burstg, /E, = 3 becausdun 3| = 3.

Careful analysis of the flow just before the burst beginsterms (thea, ;). We found thea, o(r) are localized in
supported by numerical experiment [5], has shown thathe inner region, while the Floquet components, (r),
the onset of turbulence is correlated with a secondaryre localized at slightly greater than*. Thea,; grow
instability of the IPS. Based on symmetry, the spiraluntil a,; reaches a critical value at which point there is
flow in Eq. (1) has linear Floquet eigenmodes of thea turbulent burst. This burst is indistinguishable from the
form e’ (@=cei2m:/X g where g has the symmetry pursts that appear in the chaotic IPS flow. After the burst,
of the spiral flow. We have confirmed this numerically the flow relaminarizes to IPS, and the cycle repeats with
and shown that aR = 1.2R., the spiral vortex flow no memory that the initial condition was a nonchaotic
with H = 3.68, A = H/4, andm = 4 is supercritically  flow. From this calculation we conclude that the chaos of
unstable to a Floquet mode with’ = 4, A’ = H, and  the IPS flow is not necessary to create a turbulent burst.

¢’ = —0.366(),. A new equilibrium that is quasiperiodic |t also establishes the form of the secondary instability,
in time should branch from the bifurcation point and will which can then be compared with the instability of the
be of the form [4] more complex IPS.
i i : We argue that when the quasiperiodic modulation
_ in[2mz/A+m(dp—ct)] . ) . .
Vop(r, 2, ,1) = :Z_w k_z a,(r)e : oot a, (r), which peaks near”, excedes a critical value, it
o TN (B=c'] o triggers” the finite-amplitude unstable shear flow in the

outer region. In support of this argument, in our numeri-
This flow isnotobserved in laboratory experiments, nor in cal calculations we have found that turbulent bursts are
numerical experiments that are not artificially constrainedalwaysimmediately preceded by a modulation having the
For example, if we impose four-fold, azimuthal symmetrysame characteristics as the Floquet mode in (2). Visually,
thenv,, as given by Eq. (2) becomes a stable equilibriumthe modulation appears as a wavy deformation of the
When the symmetry constraint is removed, turbulentspiral vortices that travels in the-¢ direction, i.e., in
bursts begin, implying that the quasiperiodic equilibriathe same direction as the flow in the outer region, and
are unstable. To pursue this, we prepared an initiahas its maximum amplitude just outsidé [Fig. 1(b)].
condition atR = 1.20R. with H = 3.68 consisting of a This modulation has not been reported previously. It
spiral vortex (withA = 0.92 andm = 4) added to a small can be identified quantitatively by decomposing the flow
amount of noise. The flow (with no imposed symmetry)into the form of Eq. (2). (This is complicated by the
grows into a spiral vortex flowv,, and develops a fact that the IPS is made of competimg, with different
modulation due to an unstable Floquet mode. The flowalues of m, m/, A, and A’; however, for the largest

is of the form given by Eqg. (2), but the coefficienis; =~ amplitude spiral modes, the corresponding Floquet mode
continue to grow in time. Note that if the modulation is can generally be identified.) Using this decomposition
of order €, then to ordere’ the unstable spiral vortex at R = 1.18R., the phase speed of the modulation is
flow vy is given by thek = 0 terms (the set, o) in  ~ —0.4Q,, roughly independent of:, m’, A, andA’, and
Eq. (2), and the linear Floquet mode is given bythe 1 once again corresponds to the valuewgf at the radius
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where the modulations have maximum amplitude. It This model leads to quantitative predictions for the du-
produces a peak in the flow's power spectrum at frequencyations of the laminar part; and the turbulent party
~2m/0.6T1c at R = 1.18R.. After being identified in of the cycle. 7, is determined by the linear growth rate
our calculations, this peak (and corresponding spatiat’ of the Floquet mode; hencg, o« 1/s’ « (R — R.)™!,
modulation) has been tentatively confirmed in laboratorywhereR!. is the critical value where the spiral vortex flow
experiments [2] as appearing prior to each turbulenbecomes unstable to quasiperiodic Floquet modes. (Note
burst. R!. = R..) 77 depends on the available energy stored in
The collapse of the burst is explained by Fig. 2 whichthe flow’s differential rotationv,(r) which is approxi-
shows the dissipation ratBy(r) and the energy input mately independent ok — R/. Laboratory measure-
rates from the torques at the inner and outer cylindersnents [1] following the original submission of this Letter
E, andE,. Here,E, « —9,0 andE, « —(un3)9,Q, have verified these predictions as well as the existence of
where Q = v, /r, the derivatives are evaluated at the@ growing Floquet mode just prior to each burst.
respective boundaries, and a bar over a quantity indicates In our model, the flow in the inner region acts as a
an average ovep andz. The total rate of change of energy low-dimensional dynamical system that is coupled to and
is E, + E, — Egiss. Figure 2 shows that during a burst friggers a sec_onq dynaml_cal system governing the outer
E. + Ey < Egs, so the flow loses energy. Moreover, Shear flow which is high-dimensional and turbulent. This
E, + E, does not rise until after the burst collapses. Topicture differs substantially from other models, such as
understand the burst's source of energy, define the velocitjat of Aubryet al. [9] for bursts in wall-bounded flows,
fluctuationv’ = v — ¥, its energy as’ = % [ V' Par?, ased on a single Iow-d.lmensmnal system. In the latter,
— 1 (=243 large amplitude fluctuations (bursts) may appear due to
the r)wean_ energy as = 5 / [v|’dr’, and total ENeT9Y  heteroclinic cycles, but use of the word “turbulence” is
faf‘ g t;eg;' t;l;gee torques ;t t(r;e Waf”S doonototilret(i;tly unrealistic as the low-dimensional system cannot produce
Fevia nonli1near inr:g:ggtilc:]ns, Csomt(re]Zt r(;:?/ i(n(r:rgas:Ei'n) any §patia| disqrder. .Our conceptual merI of bursts. also
corresponds to a decreasefin However,E' decreases g? glrl)zzgﬁytggr;gg?énlﬁ:g;;yﬁéﬁsfﬁg rllg]mwrig?%t?aﬁ]ns
B e eeana®) 1 e Eapater haue been argued 3] 1 be good models of e spally
. - . ’ . . intermittent turbulent bursts seen generically in boundary
rapidly d|ssgateEl, hen_ce_, there_ is a rapid tran_sfer of layers. Thus, our conceptual model is likely to be
energy fromE to E. This 1S possible because_durlng_the representative of the general phenomenon of formation
laminar part of the cyclé is large due to the differential and breakdown of structures in shear flows
rotation ofv(r). For a fixed value of angular momentum, )

the mini flow | id bodv rotati bout th We thank F. Hamill, H.L. Swinney, and S. Ed-
€ minimum energy O,W IS Solid body rotation about e, »4s  our work was supported by NSF-CTS-8906343,
z axis. During a burst’ stirs the fluid which mixes and

homogenizes thé&(r), makingv, rotate more like a solid by NSERC-WFA0138795, and by a Cray Grant Award at

body. This allows energy to be transferred fr@hto E’ the San Diego Supercomputer Center.
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