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Turbulent Bursts in Couette-Taylor Flow
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We present a physical explanation of turbulent bursts in the flow between concentric, ro
cylinders (Couette-Taylor flow), based on fully resolved direct numerical calculations. The b
are a temporal oscillation between a spatially laminar flow and turbulence, discovered experime
by Hamill et al. The onset of turbulence is shown to be due to a linear instability of the spiral fl
discovered in our calculations and since confirmed experimentally. [S0031-9007(96)00971-4]

PACS numbers: 47.20.Ky, 47.20.Lz, 47.27.Cn, 47.27.Nz
n
in
a
g

d
th
s
n

o
ti
p
w

el

la
t
i

ti
le

e
w

r

ti
rs

d
ic

it
n

e

],
e

ks
w
d,
ad

2].
of
nce

r

by
tral
ith
en
s is

ces
[5];
ive.
rsts

a

s
to

r

e

the
We present a study of a flow with space-filling turbule
bursts, i.e., one that oscillates in time between lam
and turbulent states. Here, we use the terms laminar
turbulent to denote spatially coherent, slowly evolvin
ordered flow patterns vs spatially disordered, rapi
fluctuating states. Bursts are interesting because
provide an example, of phenomena typical of the on
of turbulence in shear flows—subcritical transition a
spatial and temporal intermittency. These phenomena
difficult to model realistically using the usual tools
perturbation theory, and so a general theory of transi
to turbulence has yet to be constructed. In this pa
by examining a simple but experimentally realizable flo
we show that turbulent bursts occur in cycles of a w
defined sequence of steps. We offer physical andyor
mathematical explanations for each step. In particu
we show that the onset of turbulence is directly linked
a secondary instability of the laminar flow, and expla
the repeated collapse of the turbulence. Our resul
conceptual model is general enough to apply to turbu
bursts in a much wider context.

The first experiments showing turbulent bursts (limit
in both space and time) in Couette-Taylor (CT) flo
were by Coles [1] and Anderecket al. [1]. Space-filling
turbulent bursts, the focus of this paper, were discove
experimentally by Hamillet al. [2]. In CT flow the fluid
is confined between two concentric, independently rota
cylinders. The flow geometry is defined by the cylinde
radius ratioh ­ ayb and aspect ratioG ­ H 0ysb 2 ad,
whereH 0, a, andb are the height and inner and outer ra
of the cylinders. Typically, CT flows are nearly period
in the axial direction, and nearly independent [1,2] ofG for
G * 20; hence, calculations that impose axial periodic
usually have good agreement with laboratory experime
[3,4]. The control parameters arem ; VayVb whereVa

and Vb are the inner and outer cylinder rotation rat
and a Reynolds numberR ; sb 2 adjbVb 2 aVajyn,
wheren is the kinematic viscosity. Experimentally [2
turbulent bursts were found for counterrotating cylind
with m ­ 22.797 andh ­ 0.799 and over a range ofR.
0031-9007y96y77(11)y2214(4)$10.00
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In this range, the laminar part of the flow’s cycle loo
and behaves like “interpenetrating spiral” (IPS) [1] flo
(described below). The IPS flow is spatially organize
but power spectra of scattered light intensity show bro
peaks, indicating that the flow is temporally chaotic [1,
The IPS flow is interrupted by space-filling bursts
turbulence, and the onset and collapse of this turbule
is cyclic in time. The mean durationT and standard
deviations of the cycle decrease with increasingR, and
for sufficiently largeR the flow remains turbulent fo
all time.

Numerically, we have calculated turbulent bursts
solving the Navier-Stokes equations using a spec
initial-value code which has excellent agreement w
laboratory flows [3,4]. The main difference betwe
the numerical calculations and laboratory experiment
that the former imposes wavelengthH in the axial szd
direction. As expected, this leads to some differen
between the laboratory and computed flow states
however, these are quantitative rather than qualitat
Thus, we can gain an understanding of turbulent bu
by examining the bifurcations that occur asR is increased
when axial periodicity is imposed.For R less than a
critical value Rc, the primary circular Couette flow is
function only of radiussrd and is stable withv ­ V srdêf,
where V srd is determined by the boundary condition
[6]. Circular Couette flow is centrifugally unstable
the formation of Taylor vortices whereverdL2ydr ,

0, where Lsrd ­ rV srd is the angular momentum pe
unit mass of the fluid [6]. Whenm , 0, a nodal
surface exists atr ­ rp such thatV srpd ­ 0; this surface
divides the flow into two regions. Forr , rp (the
“inner region”) the gradientdL2ydr , 0, and the flow
is centrifugally unstable, while forr . rp (the “outer
region”), dL2ydr . 0, and the flow is stable. Form ­
22.797 and h ­ 0.799, our calculations show that ther
is a supercritical Hopf bifurcation atRc ­ 2116.6 [7].
The eigenmodes associated with this bifurcation have
form fsrdesteif2pzyl1msf2ctdg, where the growth rates and
phase speedc are real. Ifm ­ 0, then c ­ 0, but for
© 1996 The American Physical Society
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m , 0 the most unstable eigenmodes havem fi 0 and
c fi 0. Modes withm . 0 sm , 0d have the symmetry
of left- (right-) handed spirals. These left- and righ
handed spiral eigenmodes are degenerate, having the
fsrd, s, c, and critical valuesRc, lc, andjmcj. For m ­
22.797 andh ­ 0.799, mc ­ 4 andlc ­ 1.0856. [We
use dimensionless units where the fluid density, gap w
sb 2 ad, and inner cylinder speedjVaja are equal to
unity.] The phase speedc is positive and approximately
independent ofm, l, m, andR. For the most unstable
eigenmodes,c . 0.3Va which is approximately the value
of V srd at ther where the eigenmode has its maximu
amplitude. This radius is less thanrp (the eigenmode is
exponentially small forr . rp), so the spiral rotates in
the same direction as the inner cylinder.

Our calculations withR slightly greater thanRc show
that an initial condition consisting of a single eigenmo
evolves to nonlinear spiral Taylor vortex flow with th
form

vsv ­
X̀

n­2`

ansrdeinf2pzyl1msf2ctdg (1)

The helicity of the final flow (determined by the sig
of m) depends on the initial conditions, and on
established a spiral of one helicity is stable to p
turbations of opposite helicity. Spiral vortex flow
consists of a pair of counter-rotating vortices confin
to r , rp [Fig. 1(a)]. In the outer region the flow
remains approximately azimuthal, is not centrifuga
unstable, and physically resembles a parallel shear fl
We define a Reynolds number for this outer regio
Router ­ jVbjbsb 2 rpdyn, which has values betwee
1200 and 1500. This is in the same range where cha
flow is observed to be subcritically unstable to the onse
turbulence [8].

Numerically as R is increased, spiral vortex flow
becomes unstable to the temporally chaotic, but s
tially ordered, IPS flow. The chaos is due to mo
competition among the unstable eigenmodes of circu
Couette flow that have different values ofm andl. For
example, atR ­ 1.18Rc, eigenmodes withjmj ­ 2, 4,
and 6 (forl ­ 0.90) are unstable. A fully nonlinear cal
culation initialized with an arbitrary combination of thes
eigenmodes does not settle into a spiral vortex flow w
a unique spiral structure, although long sections of diff
ent spiral vortices interrupted by “defects” are evident
Fig. 1(a). The IPS flow pattern rotates approximately a
solid body with a speed,Vay3, roughly equal to theyf

at ther where the spirals have maximum amplitude. D
fects migrate slowly through the flow, and their advect
time-scale is comparable to the burst period. The aver
axial wavelength of a single vortex pair is,0.9, consis-
tent with nearly round vortices confined tor , rp and
with experimental values. These properties of interpe
trating spiral flow are independent of initial conditions.

In all of our calculations, once the IPS flow is esta
lished, cycles of turbulent bursts begin. The onset
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FIG. 1. Vorticity vf ; êf ? s= 3 vd at three times with
R ­ 1.18Rc and H ­ 3.68. In the left columnvf is plotted
in the sf, zd plane atr ­ a 1 0.15, and in the right column
vf is plotted in thesr , zd plane atf ­ 0. (a) Laminar spirals
at t ­ 1.25. (b) The flow just before onset of a burst a
t ­ 16.25. (c) The turbulent flow att ­ 45. Each frame is
scaled independently; black indicatesvf . 0, white vf , 0,
and all values ofjvfj less than 20% of the maximum ar
grey. In a movie, the secondary mode is visible in (b), in t
sf, zd plane as a “lump” on each vortex that travels in the2f
direction.

a turbulent burst is abrupt, bursting everywhere alm
simultaneously. Large fluctuations occur on sca
much smaller than the spiral vortices [Fig. 1(c)] and
time scales less thanTICy10, where TIC is the inner
cylinder rotation period. We quantify this as follows
the velocity is represented as a Fourier seriesv ­P

j,k ṽjk expsijfd expsik2pzyHd. We define a “large-
scale” energy EL ­

P
jjj,Ĵ,jkj,K̂

R
r jvjkj2rdr and a

“small-scale” energyES ­
P

jjj$Ĵ,jkj$K̂

R
r jvjkj2dr, with

Ĵ and K̂ chosen to correspond to the scale of a sin
vortex. The distribution of energy over small vs larg
scales is obtained by comparingES andEL to their time-
averaged values̃ES and ẼL. At R ­ 1.2Rc and during
the laminar part of the cycle,EL , ẼL andES , 0.1ẼS.
During the turbulent part,EL . 0.1ẼL and ES . 10ẼS.
Because the small scales of the burst are efficient
dissipating energy, the rate of viscous dissipationÙEdissstd
also serves as a good signature of a burst; it rises at on
peaks when the turbulence is at a maximum, and dr
when the turbulence collapses (Fig. 2). Once the bu
begins to collapse, it quickly disappears throughout
entire flow. The flow re-establishes its laminar IPS sp
tial structure and the burst cycle repeats. AtR ­ 1.18Rc,
our calculations show that the period of the cycle
T ­ 2.2TIC with s ­ 0.8TIC (based on computations o
15 burst cycles).
2215



VOLUME 77, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER1996

les.
FIG. 2. ÙEdiss (solid), ÙEa (dashed), andÙEb (dotted), all defined in the text, as functions of time during three burst cyc
R ­ 1.16Rc; H ­ 3.68. The increased values ofÙEdiss correspond to the turbulent bursts.ÙEby ÙEa . 3 becausejmh23j . 3.
n
h
a
ra
h

ll

c
il

i
e
tr
m

ri
it

l
y

o

is

is
he
rst,
ith

tic
of
rst.
ity,
e

on
t
e
ri-
are
he
lly,
the

nd

It
w

e

t
ode
on
Careful analysis of the flow just before the burst begi
supported by numerical experiment [5], has shown t
the onset of turbulence is correlated with a second
instability of the IPS. Based on symmetry, the spi
flow in Eq. (1) has linear Floquet eigenmodes of t
form es0teim0sf2c0tdei2pzyl0

g where g has the symmetry
of the spiral flow. We have confirmed this numerica
and shown that atR ­ 1.2Rc, the spiral vortex flow
with H ­ 3.68, l ­ Hy4, and m ­ 4 is supercritically
unstable to a Floquet mode withm0 ­ 4, l0 ­ H, and
c0 ­ 20.366Va. A new equilibrium that is quasiperiodi
in time should branch from the bifurcation point and w
be of the form [4]

vqpsr , z, f, td ­
X̀

n­2`

X̀
k­2`

an,ksrdeinf2pzyl1msf2ctdg

3 eikf2pzyl01m0sf2c0tdg. (2)

This flow isnotobserved in laboratory experiments, nor
numerical experiments that are not artificially constrain
For example, if we impose four-fold, azimuthal symme
thenvqp as given by Eq. (2) becomes a stable equilibriu
When the symmetry constraint is removed, turbule
bursts begin, implying that the quasiperiodic equilib
are unstable. To pursue this, we prepared an in
condition atR ­ 1.20Rc with H ­ 3.68 consisting of a
spiral vortex (withl ­ 0.92 andm ­ 4) added to a smal
amount of noise. The flow (with no imposed symmetr
grows into a spiral vortex flowvsv and develops a
modulation due to an unstable Floquet mode. The fl
is of the form given by Eq. (2), but the coefficientsan,k

continue to grow in time. Note that if the modulation
of order e, then to ordere2 the unstable spiral vortex
flow vsv is given by thek ­ 0 terms (the setan,0) in
Eq. (2), and the linear Floquet mode is given by thek ­ 1
2216
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terms (thean,1). We found thean,0srd are localized in
the inner region, while the Floquet components,an,1srd,
are localized atr slightly greater thanrp. Thean,k grow
until an,1 reaches a critical value at which point there
a turbulent burst. This burst is indistinguishable from t
bursts that appear in the chaotic IPS flow. After the bu
the flow relaminarizes to IPS, and the cycle repeats w
no memory that the initial condition was a nonchao
flow. From this calculation we conclude that the chaos
the IPS flow is not necessary to create a turbulent bu
It also establishes the form of the secondary instabil
which can then be compared with the instability of th
more complex IPS.

We argue that when the quasiperiodic modulati
an,1srd, which peaks nearrp, excedes a critical value, i
“triggers” the finite-amplitude unstable shear flow in th
outer region. In support of this argument, in our nume
cal calculations we have found that turbulent bursts
alwaysimmediately preceded by a modulation having t
same characteristics as the Floquet mode in (2). Visua
the modulation appears as a wavy deformation of
spiral vortices that travels in the2f direction, i.e., in
the same direction as the flow in the outer region, a
has its maximum amplitude just outsiderp [Fig. 1(b)].
This modulation has not been reported previously.
can be identified quantitatively by decomposing the flo
into the form of Eq. (2). (This is complicated by th
fact that the IPS is made of competingvqp with different
values of m, m0, l, and l0; however, for the larges
amplitude spiral modes, the corresponding Floquet m
can generally be identified.) Using this decompositi
at R ­ 1.18Rc, the phase speedc0 of the modulation is
, 20.4Va, roughly independent ofm, m0, l, andl0, and
once again corresponds to the value ofyf at the radius
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where the modulations have maximum amplitude.
produces a peak in the flow’s power spectrum at freque
,2py0.6TIC at R ­ 1.18Rc. After being identified in
our calculations, this peak (and corresponding spa
modulation) has been tentatively confirmed in laborat
experiments [2] as appearing prior to each turbul
burst.

The collapse of the burst is explained by Fig. 2 whi
shows the dissipation rateÙEdissstd and the energy inpu
rates from the torques at the inner and outer cylinde
ÙEa and ÙEb. Here, ÙEa ~ 2≠rV and ÙEb ~ 2smh23d≠rV,
where V ; yfyr, the derivatives are evaluated at th
respective boundaries, and a bar over a quantity indic
an average overf andz. The total rate of change of energ
is ÙEa 1 ÙEb 2 ÙEdiss. Figure 2 shows that during a bur
ÙEa 1 ÙEb , ÙEdiss, so the flow loses energy. Moreove
ÙEa 1 ÙEb does not rise until after the burst collapses.
understand the burst’s source of energy, define the velo
fluctuationv 0 ; v 2 v, its energy asE0 ; 1

2

R
jv 0j2dr3,

the mean energy asE ; 1
2

R
jvj2dr3, and total energy

as E0 1 E. The torques at the walls do not direct
feed theE0; the energy inE0 comes from (or goes to
E via nonlinear interactions, so that any increase inE0

corresponds to a decrease inE. However,E0 decreases
directly (i.e., without changingE) via viscous dissipation
During a burstE0 increases, yet the small scales inv 0

rapidly dissipateE0; hence, there is a rapid transfer
energy fromE to E0. This is possible because during th
laminar part of the cycleE is large due to the differentia
rotation ofvsrd. For a fixed value of angular momentum
the minimum energy flow is solid body rotation about t
z axis. During a burstv 0 stirs the fluid which mixes and
homogenizes theLsrd, makingyf rotate more like a solid
body. This allows energy to be transferred fromE to E0

and is the burst’s energy source. Only a finite amoun
energy is stored in the flow’s differential rotation, so aft
it is exhausted the burst collapses, the flow relaminariz
and the cycle begins again.

To summarize, our conceptual model of turbulent bur
divides the flow into inner and outer regions. The ou
region is centrifugally stable and physically similar to
plane-parallel shear flow. It contains most of the to
flow’s energy, and its local Reynolds number suggests
it is subcritically unstable. The inner region is centrif
gally unstable to the formation of IPS, a chaotic flow co
sisting of spiral Taylor vortices with different helicitie
and wave numbers. The IPS flow is linearly unstable
quasiperiodic modulations (Floquet modes) which pea
radii just greater thanrp, the interface between the tw
regions. When the growing modulation exceeds a cr
cal value, it acts as a finite-amplitude trigger for the ou
flow. Once triggered, the entire flow bursts into turb
lence. The burst collapses because its small scales d
pate energy quicker than it can be replenished. The fl
relaminarizes, the instabilities are re-established, and
cycle repeats.
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This model leads to quantitative predictions for the du
rations of the laminar parttL and the turbulent parttT

of the cycle. tL is determined by the linear growth rate
s0 of the Floquet mode; hencetL ~ 1ys0 ~ sR 2 R0

cd21,
whereR0

c is the critical value where the spiral vortex flow
becomes unstable to quasiperiodic Floquet modes. (No
R0

c . Rc.) tT depends on the available energy stored
the flow’s differential rotationyfsrd which is approxi-
mately independent ofR 2 R0

c. Laboratory measure-
ments [1] following the original submission of this Letter
have verified these predictions as well as the existence
a growing Floquet mode just prior to each burst.

In our model, the flow in the inner region acts as
low-dimensional dynamical system that is coupled to an
triggers a second dynamical system governing the ou
shear flow which is high-dimensional and turbulent. Thi
picture differs substantially from other models, such a
that of Aubryet al. [9] for bursts in wall-bounded flows,
based on a single low-dimensional system. In the latte
large amplitude fluctuations (bursts) may appear due
heteroclinic cycles, but use of the word “turbulence” i
unrealistic as the low-dimensional system cannot produ
any spatial disorder. Our conceptual model of bursts al
applies to the intermittent cycles found in computation
of spatially periodic channel flows [8,10] which, in turn,
have been argued [8] to be good models of the spatia
intermittent turbulent bursts seen generically in bounda
layers. Thus, our conceptual model is likely to b
representative of the general phenomenon of formati
and breakdown of structures in shear flows.
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