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Abstract

In early 1998 two of the three, long-lived anticyclonic, jovian white ovals merged. In 2000 the two remaining white ovals merged into
one. Here we examine that behavior, as well as the dynamics of three earlier epochs: the Formation Epoch (1939–1941), during which a
nearly axisymmetric band broke apart to form the vortices; the Ka´rmán Vortex Street Epoch (1941–1994), during which the white ovals
made up the southern half of two rows of vortices, and their locations oscillated in longitude such that the white ovals often closely
approached each other but did not merge; and the Pre-merger Epoch (1994–1997), during which the three white ovals traveled together with
intervening cyclones from the northern row of the Ka´rmán vortex street in a closely spaced group with little longitudinal oscillation. We
use a quasi-geostrophic model and large-scale numerical simulation to explain the dynamics. Our models and simulations are consistent with
the observations, but none of the observed behavior is even qualitatively possible without assuming that there are long-lived, coherent
cyclones longitudinally interspersed with the white ovals. Without them, the white ovals approach each other and merge on a fast, advective
timescale (4 months). A necessary ingredient that allows the vortices to travel together in a small packet without spreading apart is that the
strong, eastward-flowing jetstream south of the white ovals is coincident with a sharp gradient in background potential vorticity. The jet
forms a Rossby wave and a trough of the wave traps the white ovals. In our simulations, the three white ovals were trapped before they
merged. Without being trapped, the amount of energy needed to perturb two white ovals so that they merge exceeds the atmosphere’s
turbulent energy (which corresponds to velocities of�1 m s�1) by a factor of�100. The mergers of the white ovals BC and DE were not
observed directly, so there is ambiguity in labeling the surviving vortices and identifying which vortices might have exchanged locations.
The simulation and modeling make the identifications clear. They also predict the fate of the surviving white oval and of the other prominent
jovian vortex chains.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Prior to 1998 the three white ovals BC, DE, and FA,
shown in Fig. 1, were part of a chain of jovian anticyclones
located at approximately 33°S1 latitude and were the most
obvious features on the planet after the Great Red Spot
(GRS). The three white ovals formed in the late 1930s. They
are bright and compact, and like the GRS, they are embed-
ded in an anticyclonic, shearing east–west wind. Due to the
similarities in appearance and behavior, they were treated as

“mini Red Spots” and were therefore believed to be long-
lived and perhaps permanent. To the surprise of many, the
two white ovals BC and DE merged into a single anti-
cyclone some time between November 1997 and March
1998, and the combined vortex BC� DE merged with
FA in 2000. In this paper numerical simulations and theo-
retical analyses are used to explain the merger and the
events that led to it, as well as implications for the fate of
the surviving vortex. We believe that our study coupled with
the new observations will lead to a deeper understanding of
the jovian atmosphere, which has many rows of anticy-
clones.

The white ovals have exhibited four distinct types of
behavior over time, and the names that we use to describe
them are of our own coinage. The first is the Formation
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Epoch (1939–1941), during which a band of clouds in the
South Tropical Zone (STZ) broke apart to form three elon-
gated vortices. In the Kármán Vortex Street Epoch (1941–
1994), the locations of the white ovals had large east–west
oscillations during which there were nearly a dozen close
approaches between pairs of white ovals interspersed with
periods of large separations. During the Pre-merger Epoch
(1994–1997), the white ovals drifted toward each other and
traveled eastward together along with other vortices as a
tightly spaced packet without oscillations. The Merger Ep-
och (1997–2000) is characterized by the merger of white
ovals BC and DE and then BC � DE with FA.

Our paper is organized as follows. Section 2 contains a
summary of the observations that we believe are relevant to
the dynamics of the vortices such as drift speeds and wind
velocities. We do not discuss such things as color, compo-
sition, temperature, or albedo, which we do not believe play
causal roles in the dynamics. In Section 3 we review the
properties of planetary vortex dynamics that we believe are
fundamental in interpreting the white ovals, and in Section
4 we provide numerical illustrations of those dynamics. In
Section 5 we apply these to the white ovals. Our discussion,
predictions of future behavior, and suggestions for observa-
tions are in Section 6.

2. Observations

2.1. Formation epoch (1939–1941)

As summarized by Rogers (1995), before 1939 there
was an axisymmetric band of clouds that circled Jupiter
near 34°S latitude. During 1939, this band broke into
three approximately equal sections to form BC, DE, and
FA. These “proto-ovals” initially contracted rapidly in
longitude, and by late 1940 the average longitudinal
lengths of BC and DE were approximately 90° while that
of FA was approximately 75°. Since their creation in
1939, the white ovals have drifted eastward around the

planet at progressively slower speeds. In the early 1940s,
their speeds2 were �7 m s�1.

2.2. Kármán Vortex Street Epoch (1941–1994)

In this epoch, the anticyclones were arranged in a row at
the same latitude with intervening, cyclonic filamentary
regions (vortices) slightly to their north. A flow such as this,
where there are two parallel, staggered rows of vortices with
opposite senses of rotation, is known as a Kármán vortex
street. The cyclonic regions and white ovals were embedded
in a global east–west flow with strong shear such that the
clouds associated with the cyclonic regions were embedded
in a cyclonic belt while the anticyclonic white ovals were
embedded in an anticyclonic zone. This epoch was charac-
terized by large-amplitude oscillations of the longitudinal
positions of the white ovals.

After 1940, the white ovals continued to contract in
longitude, and by 1960, all three had east–west lengths of
�20° (Rogers, 1995). In 1979 the white oval BC, which had
generally been the largest of the three, had an east–west
diameter of 10° to 11.4° (12,000 to 14,000 km) and a
north–south diameter of 5° (6,200 km), giving it an aspect
ratio of about 2:1. Ovals BC and DE remained �8° long
throughout the 1980s, while FA shrank to �5° by 1988
(Rogers and Herbert, 1991). In contrast, throughout all
epochs, the latitudinal extent of each of the white ovals has
been constant, between 5° and 7° (Rogers, 1995).

The average eastward drift rate of the white ovals de-
creased steadily from �7 m s�1 in 1940 to �3 m s�1 in
1992. During that same time the white ovals moved north-
ward �2° and became rounder. The maximum rotational
velocity within BC during the 1979 Voyager encounters was
120 � 5 m s�1 (Mitchell et al., 1981). From a dynamical
point of view, the most striking aspect of the Kármán
Vortex Street Epoch was the large, but irregular oscillations

2 With respect to System III, a coordinate system rotating with the
interior of the planet, which has a period of 9h 55m 29.7s as determined
from radio observations.

Fig. 1. A cylindrical projection (Smith et al., 1979) of Jupiter extending around the entire planet taken by Voyager 1 on 1 February 1979. The image extends
from 60°S to 60°N in latitude.
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in the longitudinal locations of the white ovals. Several
times, two white ovals were separated by only a few of their
diameters; other times, they were nearly equally spaced
around the planet. For example, during the Voyager mis-
sions in 1979 the separations were large; FA was 55° to the
east of BC. By 1987, FA was 160° east of BC and DE was
60° west of BC (Beebe et al., 1989). Later the longitudinal
separations decreased. In 1988 the separation between the
centers of BC and DE shrank to �17° (Kuehn and Beebe,
1989), and that between BC and DE was 22° in 1988–1989
and 18° in 1990–1992.

During this epoch, each time two white ovals approached
each other they always appeared to “ repel” when their
separations became sufficiently close (although the times at
which a pair began to repel did not always correspond to a
small separation). Sato fitted the longitudinal separation S of
a pair of white ovals and their accelerations to Hooke’s law
superposed on a uniform repulsion: d2S/dt2 � �3.8 10�10 S
� 4.6 � 10�8, using MKS units (Sato, 1974). Sato’s data
were mostly for instances of widely separated vortices, and
his data had a great deal of scatter. Moreover, no theoretical
argument was postulated for choosing Hooke’s law (see
Section 3.5). The vortex oscillations raise an interesting
question: why did the white ovals repel each other (and not
merge until 1998), since simulation and theory of the quasi-

geostrophic (QG) equations show that two like-signed vor-
tices that are either in close proximity to each other or
embedded in the same east–west shear flow tend to attract
each other and merge (Ingersoll and Cuong, 1981; Marcus,
1993)? The fact that vortices at the same latitude computed
with the QG equations tend to all merge with each other
leaving only a single large vortex (cf. the Red Spot) was
cited as an advantage of the QG theory over other GRS
models in which the vortices did not merge, such as solitary
wave models (Ingersoll and Cuong, 1981). However, in
modeling the jovian vortex streets with the QG equations,
the apparent inability to prevent the vortices from merging
is a problem.

Theory and simulation show that vortices are influenced
by the winds in which they are embedded. The ambient
east–west wind velocity u(y) near the white ovals has a
shear �(y) � �du/dy that changes with latitude y. Fig. 2
shows that the centers of the white ovals are located near,
but just south of, the peak of a westward jet at 32.6°S with
velocity 21 m s�1 and well north of an eastward jet at
36.5°S with velocity of 32 m s�1. The cyclones that make
up the northern part of the Kármán vortex street are north of
the westward jet at 32.6°S and south of an eastward jet at
28.9°S (Limaye, 1986). Although �(y) changes sign at the
latitude of the westward jet, it is surprisingly uniform over

Fig. 2. The solid curve is the average jovian east–west velocity u(y) during the Voyager encounters as a function of latitude y (Limaye, 1986). The average
latitude of the three white ovals during this same time is shown with the dashed line.
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most latitudes spanned by the white ovals, with �(y) � 1.1
� 10�5 s�1. Over the latitudes spanned by the cyclones,
�(y) � �1.6 � 10�5 s�1.

Although there have been many observations of cyclonic
regions between and north of the white ovals, their inter-
pretation is controversial. The cyclones’ large east–west
extent, filamentary clouds, and rapid morphological changes
have cast doubts as to whether the regions are either long-
lived or even associated with coherent vortices. The general
consensus is that they are neither. Despite repeated obser-
vations of “cyclonic filamentary regions” in the Voyager
images, MacLow and Ingersoll (1986) concluded that “90%
of the stable long-lived spots [Jovian vortices] are anti-
cyclonic,” and this statement is consistently cited in the
literature, cf. Nezlin (1994), Sutyrin (1994), and Ingersoll
(1996). We challenged this interpretation earlier (Marcus,
1993) and shall rechallenge it again in Section 5 where we
argue that the white ovals would have quickly (within a
year) merged into one large vortex unless the three inter-
vening cyclonic regions were stable and long-lived (of order
the 60 years that the vortex street containing the white ovals
existed).

2.3. Pre-merger epoch (1994–1997)

During the years 1994–1997, the white ovals along with
other vortices at 33°S moved within a few diameters of each
other and maintained nearly constant spacing, traveling
eastward as a tight packet. This is the epoch-defining char-
acteristic. Fig. 3, taken on 21 October 1996, shows three
smaller anticyclones, labeled as WO1, WO2, and WO3, at
the same latitude as white ovals BC, DE, and FA. Also
shown are the intervening cyclonic regions labeled C1, C2,
C3, and C4 (our nomenclature), which exhibit the signature
filamentary structure of most other jovian cyclones.

In 1997, white oval BC was 8° (9800 km) in longitude by
6° (7400 km) in latitude (Simon et al., 1998). The Galileo
data showed that the maximum rotational velocities of BC
and C2, the cyclonic system between BC and DE, were 120
� 20 m s�1. The turnaround time for BC was approximately
3 days. (In comparison, the GRS is 24,000 � 14,500 km2

with a turnaround time of 6–8 days and a maximum rota-
tional velocity of 110 � 12 m s�1 (Mitchell et al., 1981).)
By 1997 the eastward drift velocity of all three white ovals
slowed to 1.6 ms�1 (Simon et al., 1998).

When the spacing between white ovals BC and DE
shrank to 18° in 1990–1992, they began traveling east as a
group with the cyclonic region C2 between them (Rogers,
1995). The small anticyclone WO1 also traveled with them,
and in late 1995 FA joined them. The remarkable dynamical
feature of this epoch is that the Kármán vortex street trav-
eled as a closely spaced unit for nearly four years without
spreading apart. The spacing between the centers of the
anticyclones was approximately 19,000 km (which is �10
Rossby deformation radii at this latitude).

The tight confinement of the Kármán vortex street and
the rapidly changing morphologies of the cyclones between
August 1994 and October 1996 are illustrated in Fig. 4. In
the top frame, the cyclone C4 between the anticyclones
WO1 and FA is a long, dark structure with a small, bright
spot at the center. The next image, taken 6 months later,
shows C4 as a compact, bright ring of clouds with a dark
center. The next two images in Fig. 4, taken 8 and 20
months later, show C4 as a wispy cloud with a fuzzy
boundary very similar in appearance to C2 and C3 in the
four frames.

Small, ephemeral anticyclones have occasionally ap-
peared in the row of white ovals, and they can exist for
months or years before they merge with another vortex. An
example is WO1, which is visible in the HST image from 21
October 1996 (Fig. 4), but is not visible in the HST image
on November 1997 (Fig. 5).

2.4. Merger epoch (1997–2000)

Unfortunately, no images exist of the merger of white ovals
BC and DE, but the scenario of events leading to it is the
following: by July 1997, �7 months before merger, the vor-
tices in the Kármán vortex street were strongly interacting with
each other. Fig. 6a shows vortices BC and DE on 28 July 1997
with the cyclone C2 between them being squeezed and pulled
southward by BC. According to A. Simon (private communi-
cation, 1998), 3 or 4 months before the white oval merger
(September or October of 1997) there was a merger between
FA and WO1, creating the vortex in Fig. 5 labeled FA � WO1.
By November 1997, the C4 cyclone was no longer visible (it
was last seen in April 1997), and presumably it must have
merged with another cyclone or it was destroyed. Simon (pri-
vate communication, 1998) believes that C3 had disappeared
by this time, although we have tentatively identified a dark

Fig. 3. A mosaic (Simon et al., 1998) centered at 33°S latitude taken by the Hubble Space Telescope (HST) on 21 October 1996 showing the anticyclonic
white ovals (BC, DE, and FA), smaller anticyclones (WO1, WO2, and WO3), and the cyclonic regions between them (C1, C2, C3, and C4). The mosaic spans
�10° in latitude and 180° in longitude.
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elliptical region in a November 1997 HST image (Fig. 5) as
C3. (see Section 5.) Just prior to the merger, the eastward drift
speeds of white ovals FA and DE increased, and the merger
occurred in late 1997 or early 1998. Sánchez-Lavega et al.
(1999) used ground-based observations to argue that it oc-
curred in February 1998. Simon describes the merger as “cars
piling up at a stop light” with BC “slamming on its breaks” and
the rest of the vortices forcing DE to merge with BC (press
report, K. Chang, October 19, 1998, “Jupiter Storms Collide,”
ABC-NEWS.com). (Unlike cars, vortices have no inertia—
their densities are the same as the ambient fluid—and it is
misleading to apply one’s intuition about objects with mass to
vortices.) Fig. 7 taken in June 1998 shows that BC and DE had
merged to become the new vortex BC � DE. It also shows the
anticyclone made from FA and WO1, which merged between
September and October 1997. Simon (private communication,
1998) believes that the bright elliptical cyclone between FA �

WO1 and BC � DE in Fig. 7 is C2 (but we believe it is C2 �
C3—see Section 4). White oval FA merged with BC � DE in
2000 (Sánchez-Lavega and colleagues, 2000), although details
of the merger and the role of the intervening cyclone have not
yet been published. Obviously many questions remain about
the sequence of events that led to the merger, including the
identifications and positions of some of the surviving vortices.
We now turn to theory and numerical simulation to help
answer them.

3. Theoretical overview of planetary vortex dynamics

3.1. Assumptions

To understand the white ovals, it is important to review
the properties of planetary vortices. We assume that the

Fig. 4. HST mosaics (Simon et al., 1998) taken (from top to bottom) on 24 August 1994, 17 February 1995, 5 October 1995, and 21 October 1996 showing
the white ovals and the cyclonic systems between them. The images are centered at the eastern edge of BC as it traveled around the planet, and they span
360° in longitude.

Fig. 5. An HST mosaic (Simon, private communication 1998) taken in November 1997 showing that WO1 was no longer present and (in our opinion) has
merged with FA. The identification of the dark region as C3 is tentative. C4, formerly between FA and WO1, is no longer visible.
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weather layer of atmosphere containing the white ovals
obeys the shallow-water (SW) equations (Pedlosky, 1987),
although in some cases we further assume they they obey
the more restrictive QG equations (Marcus, 1993). We also
assume that the vortices are characterized by compact re-
gions of anomalous potential vorticity q (Pedlosky, 1987).
Most analyses of jovian vortices have used either the SW
(Cho and Polvani, 1996; Kim, 1996) or QG equations (In-
gersoll and Cuong, 1981; Marcus, 1988). Dowling and
Ingersoll (1988, 1989) used both in analyzing the GRS and
found little difference. Because the QG approximation is
more easily satisfied for small vortices than it is for large,
and more easily for vortices near the pole than the equator,

the fact that QG works well for the GRS suggests it should
work for the white ovals.

Numerical SW and QG simulations show that flows tend
to form regions in which q homogenizes to nearly uniform
values with large gradients of q at the interfaces between
them (McDowell et al., 1982; Marcus, 1988; Kim, 1996).
McDowell et al. noted that this phenomena is also observed
in the Earth’s atmosphere and oceans. The average q of the
jovian atmosphere decreases from the north to south, due to
the fact that f(y), the Coriolis parameter, decreases. Simu-
lations of flows with a jovian-like f(y) show homogenization
with an additional feature. The regions with near-uniform q
align as east–west bands that circumscribe the planet and

Fig. 6. (top) A Galileo spacecraft mosaic (Vasavada et al., 1998) from 28 July 1997 showing cyclone C2 being squeezed between white ovals BC and DE
approximately 6 months before the merger of BC and DE. (bottom) Numerical simulation of a cyclone squeezed between two anticyclones. This image is
a spatial blow-up of one of the frames, t � 41 days, in the numerical calculation illustrated in Fig. 23.
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the gradients of q are located at (and create) the eastward
jets (Marcus, 1993; Marcus and Lee, 1994; Cho and
Polvani, 1996; Marcus et al., 2000). Similar results are seen
in laboratory experiments that have a topographically pro-
duced �-effect (Sommeria et al., 1989; Solomon et al.,
1993). The same simulations and experiments also show
robust, compact vortices (characterized by local changes in
q) superposed on the bands. Based on these observations,
we characterize the q of the jovian weather layer as a step
function that decreases from north to south with the steps
(discontinuities in q) located at the eastward jets. Between
the eastward jets, q is nearly uniform with the exception of
the anomalies �q associated with the vortices.

3.2. Advection of potential vorticity

For both the SW and QG equations, the potential vortic-
ity is advectively conserved, Dq/Dt � 0, so if the white
ovals are potential vorticity anomalies superposed on an
east–west flow with nearly uniform q and if the conditions
for the SW approximation hold, then they cannot be de-
stroyed or even decay over time. Instead, they advect with
the local velocity, which is the sum of the ambient east–west
velocity u(y) (in Fig. 2) and the velocities created by other
potential vorticity anomalies. (However individual vortices
do not self-advect.) Those anomalies include any nearby
vortices as well as the discontinuities in q corresponding to
eastward jets. The velocity produced by a vortex is calcu-
lated with the Biot–Savart Law with anticyclones creating
counterclockwise circumferential flows about their centers
and clockwise flows for cyclones. (In this paper we assume
a southern hemisphere reference.) The velocities produced
by a vortex decrease exponentially away from it with an

e-folding length equal to the Rossby deformation radius, so
only nearby vortices are relevant for advection.

3.3. Vortices embedded in shearing flows

Numerically it has been shown that both cyclonic and
anticyclonic vortices exist in the SW equations. In fact for
the QG equations, cyclones and anticyclones behave iden-
tically (except the signs of their velocities are reversed).
However, when a vortex with a characteristic potential vor-
ticity anomaly �q is embedded in a flow with shear �, then
the vortices are robust only if �q and � have the same sign
(or when the zonal shear is very weak, i.e., ��� � ��q�).
When they have opposite sign, the wind rips the vortex apart
on a fast, advective timescale (Marcus, 1993). Thus anticy-
clones are embedded in anticyclonic zones, and cyclones are
embedded in cyclonic belts (Marcus, 1990, 1993). This
theoretical result is consistent with all catalogued jovian
vortices — whether they are identified as robust, ephemeral,
or cyclonic filamentary regions (MacLow and Ingersoll,
1986). Eastward and westward jets (i.e., the locations where
� changes sign) can be deflected by vortices. Fig. 8 shows
a numerical simulation of a Kármán vortex street (Hum-
phreys, 2000). The westward jet threading between oppo-
site-signed vortices is distorted by the vortices from its
usual longitude-independent location. North (south) of the
westward jet, both the vortices and the shear due to the
east–west wind are cyclonic (anticyclonic). Stronger vorti-
ces distort the westward jet even more than in Fig. 8, so the
centers of vortices of different sign can be nearly at the
same latitude yet lie in shears with the same signs as the
vortices. An example of this is the chain of jovian vortices
at 41°S latitude (Humphreys, 2000).

Fig. 7. An HST mosaic (Simon, private communication, 1998) from June 1998 showing the merged vortex BC�DE.

Fig. 8. A numerically computed (using contour dynamics) Kármán vortex street with eastward jets to its north and south. A westward jet, shown as a heavy
broken curve, threads between the rows of opposite-signed vortices.
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3.4. Kármán vortex streets

The white ovals are just one example in which two or
more long-lived anticyclones coexist at the same latitude. It
had been conjectured (Marcus, 1993), and here we show
numerically, that one way this can happen is if the vortices
are part of a Kármán vortex street. After carrying out many
numerical experiments (with the QG and SW equations as
well as the full 3D Navier–Stokes equation), we still know
of no other way to stabilize a row of like-signed, finite-area
vortices. Consider the difficulties. Fig. 9 shows schemati-
cally a row of anticyclones embedded in an anticyclonic
shearing flow. It can be shown that a steady equilibrium
exists only if the vortices all have the same ��q� and area,
and are equally separated. In that case, the row is unstable
and the vortices approach each other and merge. To see this,
choose a reference frame moving with the vortices such that
u(y*) � 0 where anticyclones A1 and A2 are at latitude y*.
If either small perturbations or the velocities due to the other
vortices displace vortex A2 upward where u(y) 	 0, then
both u(y) and the velocities due to the other vortices cause
A2 to move to the left. The velocity produced by A2 then
causes A1 to move downward where u(y) 
 0. The u(y) at
this latitude then advects A1 to the right toward A2, which
is still moving to the left. In other words, once the two
vortices are at different latitudes, the differential velocity of
u(y) causes the two vortices to approach each other. Nu-
merical simulations show that when like-signed vortices get
within approximately a diameter of each other, they merge
within two or three vortex turn-around times (Marcus,
1993).

Now consider the same anticyclones as part of a Kármán
vortex street. The staggered cyclones C1 and C2 are north
of the anticyclones and are embedded in cyclonic shear (Fig.
10). This configuration is stable even if the vortices have
different ��q�, area, or initial separations. The vortices typ-
ically oscillate in longitude while maintaining nearly con-
stant latitude. Like-signed vortices never come close to each
other and therefore never merge. To see this, consider vor-
tex A2 in Fig. 10. If it is perturbed upward, it is pushed to
the left by u(y) as before. However, now as it approaches
C1, it is pushed downward where u(y) pushes it back to the

right toward its original location. A2 is repelled by C1 and
is therefore prevented from getting close to A1. An inter-
vening cyclone between two anticyclones prevents them
from getting close. The vortices reverse direction when they
encounter an opposite-signed vortex from the other row not
a like-signed vortex from their own row.

Recently, Humphreys has shown that the vortices within
a Kármán vortex street slowly evolve over thousands of
vortex turn-around times by accreting smaller vortices and
shedding filaments (Humphreys, 2000). For a vortex street
in which the rows of cyclones and anticyclones are initially
far apart in latitude, the two rows move closer together until
the westward jet between them is nearly pinched off (Fig.
8), and then they stop moving in latitude. In the southern
hemisphere this would be observed as a slow northward
drift of a row of anticyclones until their northern edges
protrude north of the latitude traditionally associated with
the westward jet, the demarcation of the southern side of a
belt (or northern side of a zone). This northward drift of the
white ovals was observed (Rogers, 1995).

3.5. The repulsion of opposite-sign vortices

The repulsion between opposite-signed vortices strad-
dling a westward jet can be quantified by considering the
vortices C and A in Fig. 11, where C is a cyclone and A is
an anticyclone, with centers of vorticity located at (xC(t),
yC(t)) and (xA(t), yA(t)), respectively. The vortices
have potential circulations �A � ��qA dxdy and �C � �
�qCdxdy, where the integrals are taken over the respective

Fig. 9. Four like-signed anticyclones in a row that is unstable to vortex mergers. Solid curves represent fluid flow, and broken curves show the movement
of the vortices. The average east–west velocity u(y) with a westward jet at y � 0 is also shown.

Fig. 10. Vortices in a Kármán street. This configuration is stable to vortex
mergers. Solid and broken curves are as described in the legend to Fig. 9.

81A. Youssef, P.S. Marcus / Icarus 162 (2003) 74–93



areas of the vortices. Assuming the absolute value of the
longitudinal separation X between the two vortices is large
compared to their sizes and to their latitudinal separation,
and that the vortices are acted on only by the zonal wind and
each other, the mutual acceleration between the two vortices
Ẍ is approximately

Ẍ �
��A�C � �C�A�

2�Lr
K1X/Lr�, (1)

while the acceleration on the anticyclone alone due to the
repulsion is

�ẍA� �
��A�C�
2�Lr

K1X/Lr�, (2)

where Km is the modified Bessel function of the second kind
of order m (which for m � 1 decreases exponentially for
large arguments and acts as the inverse of its argument for
small arguments) and Lr is the Rossby deformation radius.
Eq. (1) shows a repulsion that decreases with distance, quite
different from Sato’s Hooke’s-law inspired fit in Section
2.2, which is between two anticyclones rather than a cy-
clone/anticyclone pair and which increases rather than de-
creases with the separation between the vortices.

The integral of Eq. (1) gives the relative velocity V
between the anticyclone and cyclone as a function of X: V
� Ẋ, where

V2 � � ��A�C � �C�A�
� � �K0�Xca

Lr
� � K0� X

Lr
��

� V�
2 � � ��A�C � �C�A�

� �K0� X

Lr
� , (3)

where Xca is the value of X at the closest approach between
the cyclone and anticyclone, and

V� � � ���A�C � �C�A�K0Xca/Lr�/� (4)

is the value of V as X becomes large compared with Lr (both
before and after the encounter). K0 decreases exponentially
for large arguments and is proportional to log for small
arguments.

As the anticyclone oscillates in longitude between one or
more cyclones it makes an elongated counterclockwise orbit
with its northern- and southern-most latitudes relatively
close together. Similarly, a cyclone follows an elongated
clockwise orbit. The shift in latitude of an anticyclone after
it is repelled by a cyclone (measured when X/Lr is large
before and after the encounter) is

��yA� � 2��C� �K0Xca/Lr�/���A�C � �C�A� , (5)

and the change in its velocity ��vA� is

��vA� � 2��A�CV��/��A�C � �C�A�

� 2��A�C� �K0Xca/Lr�/���A�C � �C�A� . (6)

The latitude of the anticyclones is more northerly (south-
erly) after a close approach with a cyclone to its east (west).
The distance of closest approach Xca decreases with increas-
ing �V��. Unfortunately, locations of the jovian cyclones are
difficult to determine. Neither their locations nor their trans-
lational velocities were recorded historically, so the distance
of closest approach cannot be determined and used to verify
or refute Eqs. (1)–(5). However, Xca may be eliminated from
Eqs. (1)–(6) to obtain equations for quantities that have been
observed and recorded,

��yA� � ��vA/�A� (7)

and

�ẍA�max � ��A��yA�2��A�C � �C�A�/8Lr��C� , (8)

wherePẍA�max is the maximum east–west acceleration of an
anticyclone during a repulsion (which occurs at closest
approach).

3.6. Rossby wave trapping

The repulsion mechanism in the proceeding section
shows that neither a Kármán vortex street nor a fragment of
it could, in general, be confined in a tight packet. An
initially tight packet of vortices will spread apart, moving its
end vortices outward with a velocity

���A�C � �C�A�K0S/Lr�/� , (9)

Fig. 11. A schematic showing how anticyclones and cyclones repel when they straddle a westward jet. Solid and broken curves are as described in the legend
to Fig. 9.
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where S is the distance between the end vortex and its
nearest neighbor. We now report a new mechanism that
prevents spreading and confines a Kármán vortex street. As
discussed in Section 3.1 the eastward jets are associated
with discontinuities of q. A discontinuity of strength �Qjet

supports a Rossby wave. We reported previously that a
Rossby wave can trap a vortex so that the vortex is carried
along at the same speed as the wave (Marcus and Lee,
1994). This is schematically shown in Fig. 12a, which
shows a vortex lying in the trough of a Rossby wave, which
is guided along the deformed eastward jet (i.e., the locus of
the discontinuity �Qjet). Our numerical calculations showed
that the Rossby wave trapping was robust with respect to
large perturbations. The same trapping phenomena have
also been observed in laboratory experiments (Sommeria et
al., 1989). Rossby-wave trapping can be understood by
examining the schematic in Fig. 12. The flow south of the
eastward jet is more cyclonic than that to the north. Part of
the advection of the anticyclone is due to the �Qjet of the
eastward jet, and it is this part that traps the vortex. The two
sides of the Rossby wave’s trough (to the immediate east
and west of the anticyclone and just south of the eastward
jet) contain flow that is more cyclonic than the flow imme-
diately surrounding the anticyclone. To see the trough’s
effect, we replace its two sides with two virtual cyclones as
in Fig. 12c. Using the repulsion mechanism discussed in the
previous section, we see that if the two virtual cyclones
were constrained to remain a fixed distance apart from each
other, then an anticyclone between them would be trapped,
oscillating back and forth between them but not escaping. A
Rossby wave on an eastward jet can trap more than one
vortex. It can trap a Kármán vortex street with any odd

number of vortices (Fig. 12c). If the street is on the northern
(southern) side of the Rossby wave, then the two end vor-
tices must be anticyclones (cyclones).

4. Numerical illustrations of planetary vortex dynamics

To illustrate the trapping and merger of vortices we
carried out several dozen numerical calculations. Typical
examples are shown in Figs. 21–23. (The descriptions of
these particular simulations are in Section 5.3.) They were
computed using the QG equations solved with a high-reso-
lution spectral code whose details have been described else-
where (Marcus and Lee, 1994). From these simulations we
were able to examine the individual steps needed to allow
vortex mergers under the unusual condition that the vortices
were initially members of a Kármán vortex street embedded
in a shearing zonal flow.

4.1. Hops as a prelude to merger

It would appear that Kármán vortex streets are so stable,
and the cyclone/anticyclone repulsion so strong that the
vortices in the street never merge. However, if a cyclone
and an adjacent anticyclone were to exchange longitudinal
locations in a street by “hopping” over each other, then a
pair of cyclones would be adjacent with no intervening
anticyclone, and a pair of anticyclones would be adjacent
with no intervening cyclone. The two anticyclones would
then approach and merge on an advective timescale, as
would the two cyclones. (The advective timescale is �x/
��y, where � is the ambient shear, �x is the longitudinal
separation between the adjacent, like-signed vortices, and
�y is their latitudinal separation.) In all of our numerical
simulations of Kármán vortex streets we found that mergers
come in pairs—two anticyclones merge and two cyclones
merge—and that mergers are preceded by a “hop.” This
observation has allowed us to determine the prerequisites
for a merger by computing the necessary conditions for a
hop. Eq. (1) shows that the cyclone/anticyclone repulsion
mechanism requires that the vortices be embedded in shear
flow; if the shear is sufficiently small, or equivalently if the
approach velocity of the two vortices V� is sufficiently
large, then the repulsion can be overcome and the vortices
hop. Numerically we have shown that for vortices with
potential circulations and ambient shears like the white
ovals and their associated cyclones, a hop occurs if the
distance of closest approach Xca between a cyclone and an
anticyclone is less than �3Lr. When vortices come this
close, they exert tides on each other, distort, and slide past
one another. Requiring that Xca 	 3Lr, Eq. (4) shows that a
hop occurs when

u yC� � u yA�

� V� 
 ���A�C � �C�A�K03�/��1/ 2 (10)

Fig. 12. (a) Schematic of an anticyclone trapped in the trough of a Rossby
wave. The eastward jet south of the anticyclone is associated with a jump
in q of strength �Qjet. The flow south of the jet is more cyclonic. (b) Same
as (a) but with three trapped vortices. (c) Same as (b) but with the cyclonic
flow making up the two sides of the trough replaced by virtual cyclones.
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or equivalently, using Eq. (6)

�vA 
 2��A�C� �K03�/���A�C � �C�A��1/ 2, (11)

where yA and yC are the vortex latitudes when they are far
from each other. Eq. (11) means that we would not expect
to see an anticyclone reverse direction with a velocity
change that satisfies the inequality; instead, the anticyclone
would hop over the cyclone rather than be repelled by it.

The analysis leading to Eqs. (1)–(4) and Eqs. (10) and
(11) includes only the leading-order terms. The next-order
correction, which takes into account the finite area of the
vortices, shows that the two types of hops shown in Figs. 13
and 14 are not equivalent. The self-advection of a cyclone/
anticyclone pair (calculated with the Biot–Savart law) both
translates and rotates it. The direction of rotation has the
same sign as the vortex with the larger potential circulation.
The white ovals have larger circulations than their associ-
ated cyclones (see Appendix B), so the self-advection of the
cyclone/anticyclone pair tries to rotate it counterclockwise
about its geometric center. The counterclockwise hop in
Fig. 13, where the cyclone approaches the anticyclone from
the east and passes westward to the north of it, is aided by
the self-advection, while the clockwise hop in Fig. 14 is
inhibited. If a 2-body hop were to occur in the Kármán
vortex street containing the white ovals, we would expect it
to be counterclockwise.

Using Eqs. (10) and (11) and our best estimates (see
Appendix B) for the circulations of the white ovals BC and
DE and of the intervening cyclone C2, for C2 to hop DE and
allow the merger of BC and DE, requires V� 
 30 ms�1, or
�vA 
 3.0 ms�1, or (yC � yA) 
 2000 km. This is con-
firmed by a series of numerical experiments in which an
anticyclone and a cyclone were initially placed close to each
other in latitude but separated by several Lr in longitude.
Due to the shear of the average jovian east–west velocity
u(y) (Fig. 2) the vortices initially approach each other with
velocity V�. Table 1 along with Fig. 19 summarizes exper-

iments in which V� and the circulations of the vortices were
varied. The table was compiled using our best estimate (see
Appendix B) of the circulations in the white ovals. Table 2
is similar to Table 1 but uses a smaller value of circulation.
The hop looks qualitatively like that shown in the fourth
frame of Fig. 23 and Fig. 13. The numerical experiments
also show that the nonpreferred hop in Fig. 14 requires a
value of V� approximately 15% larger than the preferred
hop. Therefore, there is a range of values of V� for which a
cyclone approaches an anticyclone from the east, is repelled
by it, travels around the planet, reapproaches the anticy-
clone (or another anticyclone in the vortex street) from the
west (the preferred hop direction), and then hops.

The 2-vortex hop calculations summarized in Figs. 19
and 20 show that even for the smallest plausible values of
the circulations of the cyclones (see Appendix B), the ob-
served approach speeds and latitudinal separations of the

Fig. 13. Preferred 2-body counterclockwise hop.

Fig. 14. Nonpreferred, 2-body clockwise hop.

Table 1
Two-vortex interactions computed with �A � 5.0 � 103 km2/s�1

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

34.60 3000 km � 2.60° 19.5 R R R R R R
35.11 3600 km � 3.11° 25.9 F F R R R R
35.24 3750 km � 3.24° 27.7 FH F F F FR R
35.37 3900 km � 3.37° 29.4 H H H H H R
35.63 4200 km � 3.63° 33.4 H H H H H R
35.88 4500 km � 3.88° 38.7 H H H H H H
36.14 4800 km � 4.14° 43.4 H H H H H H

Note. The initial vortices have nearly uniform value of q with qA � 1.1
� 10�4 s�1 and qC � 4.7 � 10�5 s�1. These are our best estimates of the
jovian values. The initial shapes of the vortices are that of isolated equi-
libria. The vortices are embedded in the shearing flow u(y) shown in Fig.
2. The first column shows the initial latitude yA of the anticyclone. The
second shows that of the (more northern) cyclone with yC � yA � �b. V�

� u(yA) � u(yC). The value of �C/�A was changed in each numerical
experiment by adjusting the initial value of the cyclone’s area. The result
of each experiment is labeled with: R, indicating that the vortices repelled
rather than hopped; H, indicating that they hopped; FH, indicating that the
vortices collided, fractured into several pieces and that most of the pieces
hopped; or FR, indicating that they fractured and that most of the pieces
repelled. In Tables 1–6, yC is at 32°S.

Table 2
Two-vortex interactions with all parameters the same as in Table 1 but
with smaller area anticyclones such that �A � 6.3 � 102 km2 s�1

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

34.60 3000 km � 2.60° 19.5 R R R R R R
35.11 3600 km � 3.11° 25.9 H H R R R R
35.24 3750 km � 3.24° 27.7 H H H H H R
35.37 3900 km � 3.37° 29.4 H H H H H R
35.63 4200 km � 3.63° 33.4 H H H H H H
35.88 4500 km � 3.88° 38.7 H H H H H H
36.14 4800 km � 4.14° 43.4 H H H H H H
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white ovals, �vA 	 1 ms�1 and (yC � yA) 	 1000 km, were
far too small to hop by the theoretical and numerical criteria
listed above. We know of no atmospheric event that could
perturb the atmosphere with such violence that it would
satisfy these criteria. For example, the Shoemaker–Levy
comet impact caused no observable changes in either the
velocities or positions of the vortices in the weather layer.

Due to the implausibility of a 2-body hop, we consider
next the four types of 3-body hops shown schematically in
Figs. 15–18. An analytic expression for the necessary con-
ditions for a 3-body hop is complicated and not very illu-
minating. Instead, we present heuristic arguments and sum-
marize our numerical experiments. Assuming that the
anticyclones have larger potential circulations ��A� than the
cyclones ��C�, the hops in Figs. 15 and 18 are preferred (i.e.,
require less V�) to those in Figs. 16 and 17 because the
hopping cyclone/anticyclone pairs in the preferred cases
rotate counterclockwise like the anticyclones. To see that
the hop in Fig. 15 is preferred over the hop in Fig. 18,
consider the role of the third, “nonhopping” vortex, and
assume it primarily affects only its nearer neighbor because
its influence decreases exponentially at distances greater
than Lr. In Fig. 15 the velocity created by the nonhopping
vortex A2 pushes the adjacent cyclone C to the west, which
facilitates the hop. Secondly, and more importantly (as we
can show numerically) A2 pushes C to the south toward the
westward jet where the ambient u(y) becomes more west-
ward and further pushes C to the west. The latter contribu-
tion to the westward velocity of C is proportional to ��C�A�.
In Fig. 18 the velocity created by the nonhopping vortex C1
pushes the adjacent anticyclone A to the west, which inhib-
its its hop around C2. C1 also pushes A to the south where
the ambient u(y) becomes more eastward and helps push A
to the east, facilitating the hop. However, this eastward push
is small (compared to the westward push from the nonhop-
ping vortex in Fig. 18) because it is proportional to ��A�C�.

Thus, for the white ovals, we would expect that the hop in
Fig. 15 is preferred and requires a smaller V� than any of the
other 3- or 2-body hops. The numerical experiments sum-
marized in Tables 3 and 4 confirm these heuristic argu-
ments.

It might be argued that it would be unlikely that three
vortices would all approach each other simultaneously and
therefore unlikely 3-body hops on Jupiter would occur.
However, if three or more vortices are trapped in a single
Rossby wave trough, then there are many opportunities for
3-body hops. Moreover, as we show below, the sides of the
trough squeeze the 3 vortices together and lower signifi-
cantly the required V� needed for a hop.

We carried out numerical experiments to determine the
critical, minimum values of V� needed for a 3-body hop
with the vortices trapped in a Rossby wave. The results are
summarized in Tables 5 and 6 and Figs. 19 and 20 . For the
figures and Tables 3 and 5, �A � 5.0 � 103km2 s�1. For
calculations that included a Rossby wave along the eastward
jet, we set �Qjet � 3.9 � 10�5 s�1. These values are based
on our best estimates of the jovian values. (See Appendix
B.) In Fig. 19, the initial areas of the anticyclones and
cyclones were 4.5 � 107 and 8.2 � 106 km2, respectively.
These are our best estimates for the white ovals and the
intervening cyclones. The initial latitude of the anticyclones
were chosen to be their observed locations. The observed
latitudes of the cyclones are somewhat uncertain because
their clouds do not necessarily correspond to the location of
their q anomalies (see Appendix A). Their initial locations
are always near their approximate observed locations, but
their precise values yC are input parameters into our calcu-
lations. The initial values of yC determine the initial values
of [u(yA) � u(yC)]. We start with vortices sufficiently sep-
arated in longitude so that V� is nearly the same as [u(yA �
u(yC)]. In fact, the values of V� used in Fig. 19 are the initial
values of [u(yA � u(yC)]. In the 3-body numerical experi-
ments, the two anticyclones were initially 20,000 km or
�11Lr apart in longitude, which is approximately equal to
the separation between BC and DE in August 1997. The

Fig. 16. Three-body clockwise hop of a central cyclone.

Fig. 17. Three-body clockwise hop of a central anticyclone.

Fig. 18. Three-body counterclockwise hop of a central anticyclone.

Fig. 15. Preferred, 3-body counterclockwise hop of a central cyclone. The
“hopping” vortices are denoted with long dashed arrows.
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cyclone in our 3-body calculations was initially longitudi-
nally centered between the anticyclones. Like the 2-body
hop calculations, the initial positions of the vortices are
sufficiently far apart that V� is well approximated by the
initial value of �u(yA) � u(yC)�.

Using a QG, initial-value code (Marcus, 1990) we de-
termined whether a specified initial condition led to hopping
or repulsion as a function of �C. Because the value of �C is
difficult to determine from the observations, we shall use
Figs. 19 and 20 to help establish its value. Fig. 20 is the
same as Fig. 19, with the exception that it was computed
with vortices with smaller areas (5.7 � 106 km2 � 2L2

r) for
both the cyclones and anticyclones and with the same cir-
culations as in Fig. 19. Figs. 19 and 20 were computed with
the “preferred” 2- and 3-body hops (i.e., those in Figs. 13
and 15). An example of one of our numerically computed,
“preferred,” 3-body hops is illustrated in Fig. 23.

Several things can be learned from Figs. 19 and 20. Most
importantly, they show that a trapping Rossby wave greatly
reduces the V� needed for a hop. Typically, the closing
velocity between the intervening cyclones and the white
ovals has been less than 1 ms�1 during the Kármán Vortex
Street and Pre-merger Epochs (1941–1997). Fig. 19 shows
that without a trapping Rossby wave, the required V� is too
high to allow the merger. Secondly, they confirm our heu-
ristic arguments that the preferred 3-body hop requires less

V� than the preferred 2-body hop. Thirdly, a comparison of
Figs. 19 and 20 shows that the values of the vortex areas
have almost no effect and that the important parameters for
determining whether vortices repel or hop are �C and the
presence of a confining Rossby wave. Fourthly, the critical
value of V� for the preferred 2-body hop was well predicted
by Eq. (4), with V� increasing with �C.

The fact that the left-hand endpoints of the solid curves
in Figs. 19 and 20 do not extend to �C/�A � 0 is indicative
that if the circulation of the intervening vortex is too small,
the noise in the numerical calculation is sufficient to allow
the vortices to hop and merge without supplying an initial
approach velocity of the vortices. The right-hand endpoints
of the solid curves show that if the circulation of the inter-
vening vortex is too large (�C/�A 
 (�C/�A)crit � 0.26) it
pushes the two anticyclones apart with such violence that
they escape the Rossby-wave trap. If the three vortices are
initially close together, but initially untrapped and the cir-
culation of the intervening cyclone decays by �10% below
(�C/�A)crit, the vortices become trapped. However, these
dynamics are outside the scope of this paper.

5. Application of theory to the observations

Here, we will use results from previous sections to ex-
plain the white ovals’ behaviors during their last three
epochs. The physics during the Formation Epoch were
probably ageostrophic, and therefore not explainable using
our nearly geostrophic (SW or QG) models.

As must be obvious to the reader, we need cyclones to
explain the dynamics of the anticyclones. As stated in our
Introduction, the consensus opinion is that cyclones are
neither long-lived nor coherent. In Appendix A we outline
why we think they are both. While the longevity of cyclones
is not essential to our explanation of the dynamics of the
white ovals, the alternative is less appealing. We would

Table 5
Interactions of three vortices trapped in a Rossby Wave

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

33.04 1200 km � 1.04° �1.7 H R R R R R
33.56 1800 km � 1.56° 6.7 H R R R R R
34.10 2400 km � 2.10° 13.8 H H R R R R
34.60 3000 km � 2.60° 19.5 H H H R R R
35.11 3600 km � 3.11° 25.9 H H H H R R
35.24 3750 km � 3.24° 27.7 H H H H R R
35.37 3900 km � 3.37° 29.4 H H H H H R
35.63 4200 km � 3.63° 33.4 H H H H H R
35.88 4500 km � 3.88° 38.7 H H H H H R
36.14 4800 km � 4.14° 43.4 H H H H H R

Note. The initial conditions are the same as in Table 3. The Rossby wave
has a �Qjet � 3.9 � 10�5 s�1, our best estimate of the jovian value. The
flow is as described in the legend to Fig. 22.

Table 3
Three-vortex interactions with same parameters as in Table 1

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

34.10 2400 km � 2.10° 13.8 R R R R R R
34.60 3000 km � 2.60° 19.5 FH FR R R R R
35.11 3600 km � 3.11° 25.9 FH H H H H R
35.24 3750 km � 3.24° 27.7 H H H H H R
35.37 3900 km � 3.37° 29.4 H H H H H R
35.63 4200 km � 3.63° 33.4 H H H H H H
35.88 4500 km � 3.88° 38.7 H H H H H H

Note. Both anticyclones initially have the same q, circulation, latitude,
and shape.

Table 4
Three-vortex interactions as in Table 3, but with the initial circulations
of the anticyclones as in Table 2

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

34.60 3000 km � 2.60° 19.5 R R R R R R
34.85 3300 km � 2.85° 22.5 FH R R R R R
34.98 3450 km � 2.98° 24.1 H H H R R R
35.11 3600 km � 3.11° 25.9 H H H H H R
35.24 3750 km � 3.24° 27.7 H H H H H R
35.37 3900 km � 3.37° 29.4 H H H H H R
35.63 4200 km � 3.63° 33.4 H H H H H H
35.88 4500 km � 3.88° 38.7 H H H H H H
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require that over the past 60 years, short-lived cyclones just
happened to be present each time a pair of anticyclones
appeared to repel each other, each time that a pair got close
to each other and might have merged, and each time there
were satellite observations of Jupiter. (Satellite images have
enough resolution to reveal the velocity fields. No satellite
image has failed to reveal that the white ovals are staggered
with cyclones.)

We remind the reader that there have been many obser-
vations of jovian cyclones. For example during the Voyager
fly-by, there were 12 anticyclones in a row at 41°S, and
between almost all pairs there was a “fi lamentary region” of
clouds that was associated with cyclonic flow. The anticy-
clones were classified as long-lived, while the cyclones
were not. Here, as in in most cases, the classification of a
jovian vortex as short- or long-lived was based on cloud
morphology and color, rather than on a direct observation of
the velocity. We believe that this classification is incorrect
and that using clouds as indicators of the dynamics is risky.
Currently, there are 6 anticyclones at 41°S staggered with 6
“fi lamentary regions.” We see no reason to classify the
cyclones as any less coherent or long-lived as the anticy-
clones—either at 41°S or at latitudes near the white ovals.
We believe that coherent cyclones have lifetimes much
longer than the color and morphologies of their associated
clouds. We now show that these cyclones have a key role in
controlling the dynamics of the white ovals.

5.1. Kármán vortex street epoch (1941–1994)

Between 1941 and 1994 we believe the three white
ovals were the southern row of a Kármán vortex street.
Their northern, cyclonic counterparts were visible during
the Voyager fly-by as elongated clouds with scalloped
edges. The vortices straddled a westward jet so that the
the cyclones (anticyclones) were embedded in an ambient
cyclonic (anticyclonic) zonal wind. Over this 50-year
period the white ovals drifted northward �2°, which is
consistent with the findings of Humphreys who found
that a Kármán vortex street with an initially wide sepa-
ration between the rows slowly narrows the separation
(Humphreys, 2000). The observed, average eastward drift
speed of the white ovals also changed during this time.
We have argued that, with the exceptions of encounters
with cyclones, the white ovals drift with the ambient u(y).
This is consistent with observations; moreover, this im-
plies that the ratio of the change in drift speed to the
change in latitude of a white oval should be equal to
du/dy. The former value is �1.0 � 10�5 s�1 (based on
Figs. 11.10, 11.11, and 11.16 in Rogers 1995), while the
latter was �1.1 � 10�5 s�1 at the latitude of the white
ovals at the time of the Voyager fly-by. This shows that
the white ovals drift at the velocity of the local zonal
velocity in accord with QG and SW theory (and in dis-

Fig. 19. The critical value of V� above which vortices will hop over each other rather than repel. The dotted line is the theoretical curve based on Eq. (10),
the dotted–dashed curve is from the simulations of 2-body hops, the dashed curve of 3-body hops, and the solid curve of 3-body hops with Rossby wave
trapping. When �C/�A is greater than the value at the right-hand endpoint of the solid curve, the vortices escape from the Rossby wave trough; when it is
less than the left-hand endpoint, our simulations show that the vortices always hop and the anticyclones merge.
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agreement with other approximations, such as the inter-
mediate geostrophic equations).

During this epoch, the white ovals approached each other
with closing velocities �vA of �1.0 m s�1. (For widely
separated vortices, if �yA is due to the differential velocity
in u(y), then the typical difference in latitudes of the white
ovals is �0.06°.) Based on this closing velocity, if the
cyclones had not been present during this time, the white
ovals would have encountered each other and merged into a
single vortex in only four years. Moreover, the observed
values of the relative velocities between the white ovals,
�vA � 1.0 m s�1, agree with our picture in two ways. First,
they are sufficiently small that according to Fig. 19, the
cyclones repel the white ovals rather than allowing them to

hop over them and merge. Secondly, the value of �yA is
accurately predicted by Eq. (5) based on the observed values
of the cyclonic circulation �C (see Appendix B).

Jovian observations in (Rogers, 1995) show that the
relative velocities between white ovals changed signs (i.e.,
the ovals “ repelled” each other) on a number of occasions
and that for many of them, the white ovals were more than
10,000 km (5Lr) apart. What physics other than an encoun-
ter with an unseen or unreported cyclone could cause the
mutual velocities between widely separated pairs of white
ovals to suddenly change sign? Since the velocity of a
vortex falls off exponentially with e-folding length Lr, it is
difficult to imagine the repulsion was due to an interaction
between the white ovals.

Moreover, the values of the accelerations ẍA between the
white ovals (from Fig. 1.10 in Rogers, 1995) is �1.3 �
10�5 m s�2, which is consistent with our predicted values
from Eq. (8) based on the observed values of �C.

5.2. Pre-merger epoch (1994–1997)

In late 1995, the white ovals were traveling together in a
tightly spaced group. If this fragment of a Kármán vortex
street had not been confined by a Rossby wave (or other
mechanism), Eq. (9) shows that the vortices would have
spread apart with speed �1 m s�1, meaning that the longi-
tudinal separation between adjacent white ovals would dou-
ble in two years. In our simulations, the only way that we
have been able to keep a a tightly spaced group of vortices

Table 6
Interactions of three vortices trapped in a Rossby Wave as in Table 5,
but with the initial circulations of the anticyclones as in Tables 2 and 4

AC
position
(°S)

�b V�

(m/s)
�C/�A

0.05 0.10 0.15 0.20 0.25 0.50

33.04 1200 km � 1.04° �1.7 H R R R R R
33.56 1800 km � 1.56° 6.7 H R R R R R
34.10 2400 km � 2.10° 13.8 H H R R R R
34.60 3000 km � 2.60° 19.5 H H H R R R
35.11 3600 km � 3.11° 25.9 H H H H R R
35.24 3750 km � 3.24° 27.7 H H H H R R
35.37 3900 km � 3.37° 29.4 H H H H R R
35.63 4200 km � 3.63° 33.4 H H H H H R
35.88 4500 km � 3.88° 38.7 H H H H H R
36.14 4800 km � 4.14° 43.4 H H H H H R

Fig. 20. Same as described in the legend to Fig. 19, but with small-area vortices. See Section 4.1 for details.
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together is by utilizing the Rossby wave trapping described
in Section 3.6. This is a credible mechanism on Jupiter
because the eastward jet centered at 36.5°S clearly deforms
around the southern side of the Kármán vortex street frag-
ment in Figs. 3–6, cradling it in a trough of a Rossby wave.

In our simulations of Kármán vortex street fragments
(Figs. 21–23), we began with 3 vortices superposed on the
velocity in Fig. 2. Far from the fragment, the eastward jet
was located at its latitude of 36.5°S. Closer to the fragment,
the jet was deformed to pass just south of it. The magnitudes
of �Qjet the initial areas, q, and circulations of the white
ovals �qBC � 1.1 � 10�4 s�1 were set as in Fig. 19, and the
initial latitudes and longitudinal separation of the anticy-
clones were set to their observed values in Fig. 4. The areas,
circulations, and latitudes of the jovian cyclones are more
difficult to measure, so we initialized our simulation using
the indirect methods described in Appendix B. In order to
demonstrate the Rossby wave trapping of the white ovals,
we used a simplified flow with only two anticyclones and
one cyclone rather than trying to simulate the entire chain of
vortices shown in Fig. 4. We believe this adequately illus-

trates the physics without unneeded complication. Fig. 21
shows a time sequence where the entire flow, including both
the vortices and the eastward jet, are computed with the QG
equations. However, in this calculation we artificially set the
�Qjet of the eastward jet equal to 0, so that there was no
Rossby wave. The three vortices do not remain confined and
spread apart at �1 m s�1 as predicted by Eq. (9). Repeating
the calculation, but now setting �Qjet to its jovian value, the
3 vortices remain trapped in the Rossby wave trough, and
they do not merge (Fig. 22). The calculations are sensitive
to �C. If it is too large, the three vortices escape from the
trough and spread apart; if too small the cyclone hops and the
two anticyclones merge. Our calculations show that the vorti-
ces remain trapped without merging only for �4.0 � 102 	 �C

	 �3.8 � 102 km2 s�1. Fig. 22 was computed with �C �
�3.9 � 102 km2 s�1 and a cyclone area of 8.2 � 106 km2.

The 3 vortices sharing the same Rossby wave trough do
not maintain fixed distances from each other. The interven-
ing cyclone oscillates back and forth between the two white
ovals. When it comes close to a white oval and is repelled,
strong tides can be raised on it by the white oval. Fig. 6 from
Galileo is similar to many frames in our numerical simula-

Fig. 22. Same as described in the legend to Fig. 21 but with �Qjet set equal
to its jovian value. The eastward jet, which supports the Rossby wave, is
shown by a yellow line and is deformed south of the 3 vortices. The
vortices neither spread apart nor merge.

Fig. 21. The potential vorticity q of a fragment of a Kármán vortex street.
The eastward jet artificially has �Qjet � 0, so it has no Rossby wave. From
top to bottom, the frames correspond to t � 0, 25, 50, 75, 100, 125, and 150
days. The 3 vortices spread apart with the speed predicted by Eq. (9). A
red-to-violet color map is used with red as the most cyclonic and violet as
the most anticyclonic.
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tions. White oval BC (which creates a counterclockwise
flow around itself) stretches the cyclone C2 and looks as if
it will pull a filament south of it. In our calculations we find
that the cyclone stretches southward, but does not break into
pieces. Neither do we ever see cyclones hop south of an
anticyclone. If the flow in Fig. 6 acts similar to our simu-
lations, then C2 will be pushed back toward DE. Before two
anticyclones merge, C2 carries out a preferred hop north and
west over DE. (The large, white vortex to the south of BC
in Fig. 6 is an anticyclone and part of the row of anticy-
clones at 41°. Although it was reported (Simon et al., 1998)
that a vortex pair at 41° was responsible for producing the tail
of the cyclone in the figure, we doubt that it could do that.)

5.3. Merger epoch (1997–2000)

We agree with Simon (private communication, 1998)
that in September or October of 1997, white oval FA
merged with the small anticyclone WO1. (However, we
think that this merger was inconsequential to the merger of

BC and DE.) We propose that the FA–WO1 merger was
preceded by cyclone C4 hopping westward to the north of
FA. This hop placed FA adjacent to WO1 and they quickly
merged. We believe that C4 survived until at least Novem-
ber 1997 (Fig. 5) where it is visible as a filamentary region
between WO2 and FA � WO1 (possibly having merged
with any other cyclone that was previously at that location).
Unlike Simon (private communication, 1998), we also be-
lieve that C3 was also still present.

Fig. 4 shows that prior to the merger of BC and DE the
cluster of trapped vortices was drifting eastward at approx-
imately 1 m s�1 into cyclone C1. We propose that in late
1997, BC and C1 attained their point of closest approach
and that the cyclonic flow of C1 drove BC northward. We
argue the interaction occurred prior to November 1997
because Fig. 5 taken in that month shows BC slightly to the
north of DE, while it was south of DE on 21 October 1996
(Fig. 4). This interaction with C1 allowed C2, the cyclone
between DE and BC, to hop westward to the north of DE
where it merged with C3. The merger between BC and DE
was most likely completed by February 1998. Although
Simon (private communication, 1998) believes that the
bright elliptical cyclone between FA � WO1 and BC � DE
in Fig. 7 is C2, we believe it is more appropriately labeled
as C2 � C3.

The simulation that led to our scenario of how BC and
DE merged is shown in Fig. 23. The initial flow has the
same 3 vortices and Rossby wave trough as in Fig. 22, but
we now also include a small cyclone (to model C1 in Fig. 5)
20,000 km to the east of the Kármán vortex street fragment,
well outside the Rossby wave’s trough. The 3 vortices drifts
eastward and interact with C1, which provides enough re-
pulsion to force the intervening cyclone C2 to carry out a
preferred 3-body hop westward to the north of the anticy-
clone on its westward side. The two adjacent anticyclones
then merge in approximately one vortex turn-around time.
Starting at the time of closest approach with the eastern
cyclone, the merger is finished in 50 days. The merged
white oval BC � DE merged with FA in 2000 in a process
that took 3 or more weeks (Sánchez-Lavega et al., 2000).
This is consistent with our simulations. After white ovals
BC and DE merged, the combined vortex had nearly twice
the circulation of white oval FA. Our simulations show that
a trio of vortices, like FA, C2 � C3, and BC � DE, in
which the circulations of the two end anticyclones are asym-
metric is not very stable and that a preferred 3-body hop will
occur, resulting in the merger of the two anticyclones. It was
reported that C2 � C3 disappeared before the merger in
2000 (Sánchez-Lavega et al., 2000). We think it more likely
that there was a window in time prior to the merger when
the cyclone C2 � C3 was not spatially closely confined
between its surrounding anticyclones. During that window,
its cloud pattern changed making it difficult to see (Appen-
dix B) in any images that were taken at that time.

Fig. 23. Same as described in the legend to Fig. 21, but now we initially
include a small, (red) cyclone 20,000 km to the east of the Kármán vortex
street fragment, well outside the Rossby wave’s trough. The 3 vortices in
the trough drift eastward at approximately 1 m�1 and interact with the
small cyclone. The cyclone provides enough repulsion to force the inter-
vening cyclone to hop to the west, allowing the two anticyclones to merge.
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6. Conclusions

Using QG theory and equations, we have been able to
explain the behavior of the white ovals from the time of
their formation in 1939 to their merger in 1998. By assum-
ing that they were the anticyclonic row of a Kármán vortex
street, we can understand why from 1940 to 1994 they
drifted eastward (and slowly northward) and oscillated lon-
gitudinally and why they sometimes came within a diameter
of each other before being “ repelled,” but never merged. By
assuming that the Kármán vortex street was trapped in the
trough of a Rossby wave between 1994 and 1997, we can
explain how the white ovals, along with 2 weaker anticy-
clones, and the intervening cyclones, drifted as a group with
only a diameter or so spacing between them without spread-
ing apart and without merging. By assuming the group
drifted into a small cyclone to its east, we can understand
the merger of white ovals BC and DE and the merger of
white ovals BC � DE and FA. Through numerical simula-
tions we supplied quantitative details of how vortices “hop”
over each other and merge with their new neighbors.

We now address the implications of this work for the fate
of the remaining white oval and other jovian vortices. We
conjecture that cyclone C2 � C3 did not disappear
(Sánchez-Lavega et al., 2000) but instead hopped north and
west over FA and merged with C4 and that it would be
useful to look for an image of C2 � C3 � C4 to the west
of the surviving white oval. It is our conjecture that cyclones
are not ephemeral; they are just difficult to detect by looking
at their associated clouds unless the cyclone and its cloud
are compressed between two anticyclones (Appendix A).
Thus, we believe it would be useful to search for images of
C2 � C3 just prior to the merger of FA and BC � DE when
it had not yet hopped to the north and west over FA and
might be visible because its clouds were compressed be-
tween FA and BC � DE. We feel that the surviving white
oval is stable and that it will not fade back into the zonal
band from which the 3 white ovals sprang in 1939 (as
suggest by Sanchez-Lavega et al., 2000). If the white ovals
formed from a Kelvin–Helmholtz instability of the zonal
flow—as in the simulations of Dowling and Ingersoll
(1989)—this would require making a linear instability go
backward in time. A more likely scenario, in our opinion, is
that the zonal flow near FA � BC � DE and C2 � C3 �
C4 will fill up with 2 or 3 other vortex pairs as it has in the
past (Rogers, 1995).

We have argued that vortices moving with small differ-
ential velocities do not merge unless they first become
trapped in a Rossby wave. This raises the question of how
vortices become trapped. According to our numerical sim-
ulations, there are three ways in which vortices can become
trapped. The strength �Qjet of the potential vorticity jump of
the eastward jet could increase, but this is unlikely since it
is constrained by the homogenization of potential vorticity
between eastward jets. Another possibility is that the white
ovals could have moved (or other jovian anticyclones will

move) southward closer to the eastward jet, but this would
be contrary both to the white ovals’ observational history
and to theoretical predictions (Humphreys, 2000). The most
likely way for the White Ovals, or any Kármán vortex street
fragment, to have become trapped is if the circulations of
the intervening cyclones became weaker. There is a critical
value, above which trapping is impossible (Section 5.2).
Historically the white ovals have lost area and—we there-
fore presume—circulation. Humphreys has shown numeri-
cally that both cyclones and anticyclones lose circulation
due to the ambient turbulence of the atmosphere (Hum-
phreys, 2000). Because the areas of the clouds associated
with the white ovals was decreasing, Rogers (1995) pre-
dicted that they would eventually disappear. We would now
argue that the decrease in area was indicative of loss of
circulation in all of the vortices of the Kármán vortex street.
The loss in the cyclones did not lead to the disappearance or
enhanced dissipation of the white ovals, but instead to their
trapping and mergers.

We can apply these ideas to other jovian vortices. The
Kármán vortex street at 41°S is a good example. In 1979 it
had 12 cyclone/anticyclone pairs; in 1996 it had 6. We argue
that the cyclones lost circulation until one or more pairs
became trapped in a Rossby wave, then the vortices under-
went a “preferred 3-body hop,” and then two cyclones and
two anticyclones merged. The process repeated until only 6
pairs remained.

The counterexample to our statement that all long-lived
jovian vortices are parts of Kármán vortex streets in the Great
Red Spot at 22.4°S. We argue that a Kármán vortex street has
not formed there because the accompanying row of cyclones
would be north of the westward jet that is north of the Red
Spot. These latitudes are too close to the equator for the
Coriolis force to be large enough to make the flow 2-dimen-
sional or to obey the shallow-water equations. Observations
show that near the equator the character of the jovian flow
changes, looking much more turbulent and three-dimensional,
an environment where vortices do not survive for long. With-
out an accompanying row of cyclones, we have argued (Sec-
tion 3.4) that it is impossible to have more than one long-lived
anticyclone at the same latitude. Thus, there is only one Great
Red Spot and it could not (as has been conjectured by Sanchez-
Lavega et al., 2000) have been created from the merger of two
or more large, long-lived vortices that were once part of a
Kármán vortex street.

We believe that to make progress in understanding the
dynamics of the jovian atmosphere, it will be necessary to
compute jovian velocity fields from images rather than
studying cloud patterns. This is feasible both with satellite
images and with ground-based telescopes with adaptive
optics (Gibbard et al., 1999). For example, denoting the
boundaries of belts and zones as the locations of the east-
ward and westward jets (which depend on longitude and
time) rather than cloud color would go a long way toward
clarifying the atmosphere’s dynamics. With velocity fields,
cyclones can be reliably detected; their associated clouds
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are not reliable indicators of vorticity or potential vorticity.
With velocity fields, the behavior of cyclones, as well as
anticyclones, could be recorded over long periods of time.
With these data, it could be determined whether all long-
lived vortices (except the Red Spot) are parts of Kármán
vortex streets and whether the instances in which the veloc-
ity between two anticyclones changes sign always corre-
spond to a close encounter between one of the anticyclones
and a cyclone.
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Appendix A

Cyclones and the relation between clouds and dynamics

There is no theoretical argument against long-lived jo-
vian cyclones. (The intermediate geostrophic theory prohib-
its them, but since intermediate–geostrophic anticyclones
rotate rapidly at their centers and look qualitatively nonjo-
vian (Yamagata and Williams, 1984), we do not consider
this theory pertinent to the jovian atmosphere.) With the QG
equations, cyclones and anticyclones are degenerate and
have identical properties. The SW equations break the de-
generacy. Cyclones are weaker, but not necessarily any less
robust. In any case, we have argued (Marcus, 1993) that the
QG limit of the SW equations is valid if Ro (L/Lr)

2 � 1,
where Ro is the Rossby number (approximately �0.1 for
the cyclones associated with the white ovals), Lr � 1900 km
is the deformation radius, and L is the characteristic length
over which the velocity in the cyclones changes (which is
often much smaller than the diameter of the vortex when the
q within a vortex is nearly uniform). Using Appendix B, L
� 1900 km for the cyclones. Thus we expect the cyclones
to be QG.

It should be noted that jovian cyclones typically are
weaker than the anticyclones, but this does not violate QG
theory, which treats them as equals. The formation of vor-
tices is ageostrophic (since neither SW or QG theory allows
q to be created or destroyed). It has been conjectured that
large vortices are created from the repeated mergers of
small ones, which in turn are created by atmospheric up-
welling and downwelling. The rate of creation of anticy-
clonic (cyclonic) vorticity is directly proportional to the
velocity of the upwelling (downwelling). If upwelling were
concentrated to small areas associated with overshooting
plumes from convection beneath the weather layer, and if

the return downwelling was weaker and spread out over a
larger area, then strong anticyclones and weak cyclones
would be created.

Although the dynamics of QG cyclones and anticy-
clones are the same, their associated clouds are not.
Simulations of jovian clouds (Graves, 1993) showed that
the clouds of the anticyclones were compact and ellipti-
cal, while those of the cyclones looked like “fi lamentary
regions”—wispy, tangled, and not circumferential around
the cyclones. Because the clouds of the cyclones look
different from the closed streamlines expected of a lam-
inar, coherent vortex, whereas the clouds of anticyclones
have a more suggestive vortical appearance, it was ar-
gued that cyclones cannot be long-lived or coherent (An-
tipov et al., 1990). However clouds do not coincide with
streamlines in a time-dependent flow. Clouds correspond
to particle paths (for example, of NH3 ice crystals that
make up the clouds). Turbulent cyclones and anticy-
clones can have anomalous q and streamlines that are
mirror images, yet their associated Lagrangian particle
(i.e., ice) paths are not if the regions where particles are
created and destroyed are correlated with the flow’ s vor-
ticity. Graves’ simulation of jovian clouds (1993) created
Lagrangian particles where the vorticity was anticyclonic
(corresponding to upwelling, which in the subadiabatic
jovian atmosphere cools the ambient atmosphere (Flasar
et al., 1981) and creates ice) and destroyed them where
the flow was cyclonic (where the ice melts). The resulting
cloud patterns differed from the streamlines: elliptical
clouds formed over anticyclones and filamentary, disor-
ganized clouds over cyclones. The clouds associated with
the anticyclones coincided with their regions of their
anomalous q, but the clouds of the cyclones generally
covered a much larger area. Our point is that one must be
careful in inferring vortex dynamics from cloud morphol-
ogies.

Appendix B

Determination of vortex area and circulation

When velocity fields were available, the areas of the
white ovals’ anomalous q were determined as follows. The
locations of the two extrema of the north–south velocities
along the white ovals’ semi-major (east–west) axis were
found. The area inside the streamline connecting these two
locations was used as the area of the white oval. We found
that this area was nearly identical to the area of the elliptical
cloud covering the white oval. In cases where the velocity
field was not available we used the area of the associated
cloud as the area of the of the anomalous q. The circulations
of the white ovals were determined by adjusting the values
until the aspect ratio (minor diameter divided by the major
diameter) of our simulated vortex was the same as that of
the observed white oval. As reported earlier (Marcus, 1993),
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the aspect ratio is a monotonic and sensitive function of the
ratio of the circulation to the ambient shear. The q within the
white oval was assumed to be uniform over the vortex. For
the cyclones, we used the areas and circulations that we
determined during the Pre–merger Epoch. We assume that
during that time, the area of the anomalous q was the same
as the cloud (cf. Fig. 6). The range of circulation that a
cyclone can have and remain trapped by a Rossby wave is
small. If the circulation is too large, the vortices will not be
confined; if it is too small, the anticyclones merge. We
chose the middle of the range as the cyclone’s circulation.
The strength of the potential vorticity jump at the eastward
jet south of the white ovals was determined as follows. We
assumed that the jovian q is a step function decreasing from
the north to south poles and that the q was uniform between
the eastward jets. Thus the jump in q at the eastward jet is
�Qjet � f(yn) � f(ys), where f is the Coriolis parameter and
yn (or ys) is the latitude halfway between the eastward jet
and its neighboring eastward jet on its northern (southern)
side.
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