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SPATIAL SELF-ORGANIZATION OF VORTICITY IN CHAOTIC SHEARING FLOWS 
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We examine two-dimensional incompressible f luid flows that are chaotic in 
time but have large scale coherent spatial structures. We show that spots 
of vor t i c i t y  superposed on a chaotic shear flow can be robust and merge 
together i f  the shear and the vor t ic i ty  have the same sign. We propose 
the hypothesis that the merging and s tab i l i t y  cr i ter ia for spots can be 
derived by requiring that the energy in the.time-averaged (non-chaotic) 
component of the velocity is minimized. Our numerical simulations of the 
dynamics of these spots is quali tat ively similar to that of the Red Spot 
of Jupiter. 

I .  INTRODUCTION 

In this paper we report numerical calculations of a f luid flow in which 

spatial structure and large-scale self-organization coexist with temporal 

chaos. We consider the incompressible flow between two concentric cylinders 

of radii R l and R 2. The upper boundary of the annulus is f lat  and located at 

height z =H, and the lower boundary is radially sloped with position z=-r .s .  

The annulus is rotated about the z-axis with angular velocity ~. All equations 

and results reported in this paper are in this rotating frame. I f  <m>/~ 

Ro << l then the Taylor-Proudman theorem requires that to f i r s t  order in Ro the 

flow is two-dimensional with no velocity component and no velocity gradient in 

the axial z direction. Here, <m> is the characteristic z-component of the 

vor t ic i ty  of the f luid in the rotating frame and Ro is the Rossby number. I f  

in addition, the slope is small Is • (R2-RI)/H I <<l the three-dimensional Euler 

and continuity equations and boundary conditions have the two-dimensional 

(quasi-geostropic) approximat ions  1 

3u Du A 

@--~ + ( u .  V)u = -~- : Br(ezX ~) -V~ (1) 

V-u = 0 (2) 

where ~ is the pressure head of the f lu id,  B~2~s/H is a dimensionless constant, 

and D/Dtz B/@t+u .V is the advective derivative. We have non-dimensionalized 

equation (1) with unit of length equal to (R2-RI), time equal to I /s  ~, and 

mass density of the f luid equal to unity. In equation (1) we have ignored 

viscosity. Its role in the dynamics discussed in this paper is unimportant, 
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although i t  is included in our numerical calculations when we make comparisons 

with laboratory experiments 2. The boundary conditions for the inv isc id  flow 

are 

u r = 0 at r : R 1 and R 2 (3) 

The physics is more i n t u i t i v e  by taking the curl of equation ( I )  which 

describes the v o r t i c i t y  dynamics (m-e z . V x u )  

o r  

Dm_ Bu r (4) Dt 

D~ 
P = 0 (5) 

Dt 

where WpZm-Br is defined to be the potential v o r t i c i t y .  Equation (4) states 

that in the absence of a sloping bottom the v o r t i c i t y  of the flow is advected 

along with each f lu id  element (D~/Dt=O). The incl ined bottom boundary 

stretches each vortex f i lament, and the stretch causes the v o r t i c i t y  carried 

by a f l u id  element to change. The advective change of the v o r t i c i t y  is propor- 

t ional to the slope of the bottom and the speed that the f l u id  element goes 

from deep to shallow water. Equation (5) shows that the potential v o r t i c i t y  of 

the flow is unchanged as i t  is advected. 

One solut ion of equation (5) is mp=C 1 where C 1 is a constant. This is an 

important solution because a random s t i r r i ng  of the f lu id  (caused by i n s t a b i l i -  

t ies or external forcing) can cause an ergodic mixing of f lu id  elements and 

hence of potential v o r t i c i t y .  The formation of flows with large-scale or 

macroscopically uniform mp (and with miscroscopic f luctuat ions in mp) was pre- 

dicated from numerical experiments by Marcus 2 and observed experimentally by 

Sommeria and Swinney 3. 

mp = C 1 are 

The axi-symmetric ve loc i ty  f ie lds corresponding to 

u(r)e@ : (B~2+ rCl /2+C2/r)e @ (6) 

~ 2C2/r 2 where C 2 is also a constant. Notice that the shear of u { ( r ) =  Br /3-  

and is a function of posi t ion.  I t  is convenient to think of the v o r t i c i t y  as 

the sum of two components, (C l + B r )  and me(r,@,t ) where w e is the v o r t i c i t y  in 

excess of the uniform potential v o r t i c i t y  flow 

We(r,~,t) --- w( r ,~ , t )  - (C 1 + Br) 

Simi lar ly we decompose the ve loc i ty  into u and i t s  excess ~e 

(7) 
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where 

Ue(r,@,t) ~ u(r ,¢ , t )  - u(r)e@ (8) 

^ 

m e = (VXUe)-e z (g) 

The excess vor t ic i ty  (not to be thought of as a perturbation because the flows 

of interest in this paper have m e of order unity) is advected with the total 

velocity of the flow 

D~ 
e _ 0 (lO) 

Dt 

A f luid element advects i ts  excess vor t ic i ty  with no change in i ts  strength - 

any spin up or down caused by stretching from the sloped bottom is exactly 

balanced by the spin down or up exerted b~ the torques from the gradient of 

the shear in u. Equation (lO) shows that the excess circulation r 

r - I  R2 rdr [ d@ m e ( I I )  
R l J 

is conserved in time. 
^ 

We note that adding a uniform rotation r .  Ceb to our inviscid, incompres- 

sible, two-dimensional velocity u in no way alters the physics of the flow 

because i f  u(r,@,t) is a solution to equations (I)-(3) then u ( r , @ - C t , t ) +  
A 

rCe¢ is also a solution. Therefore without loss of generality we can set 

C l = O, and we see that m e = rap. 

In the remainder of this paper we show how the excess vor t ic i ty  either 

self-organizes into one or more large coherent spots or fragments into thin 

chaotic filaments. Our motivation for looking for spatial self-organization in 

this particular type of annular flow comes from the coincidence that equation 

(1) is also the two-dimensional (quasi-geostrophic) approximation of a rapidly 

rotating planetary atmosphere. In the Jovian atmosphere the East-West zonal 

wind in which the Great Red Spot is located looks to a f i r s t  approximation like 

a macroscopically axisymmetric uniform potential vor t ic i ty  flow u. The Red Spot 

is a patch of excess vor t ic i ty .  

2. SUMMARY OF NUMERICAL EXPERIMENTS 

We have calculated numerical solutions to equations (I)-(3) using a de- 

aliased pseudospectral ini t ia l-value method with 256 Chebyshev and 256 Fourier 

modes in the radial and azimuthal directions. Details can be found in Marcus 4. 

We summarize here the qualitative results of f ive different types of i n i t i a l -  

value experiments. One feature con~mon to all of our experiments is Rl/R2=0.25. 
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2.1 One i n i t i a l  spot of negative excess vo r t i c i t y  

These experiments have an i n i t i a l  flow with C 2=0.  This guarantees that 

the sign of a(r)  does not change in the flow. (In fact ,  the character ist ic 

radial distance over which o(r)  varies is r ,  so a changes only by a factor of 4 

from R 1 to R2.) The i n i t i a l  flow has one spot of excess v o r t i c i t y ,  with m e 

approximately uniform throughout the spot. This set of experiments has 

<~e>/<a><O where <m e> is the character ist ic m e of the spot and <a> is the 

character ist ic value of a at the i n i t i a l  location of the spot. We therefore 

refer to these as negative spots. The i n i t i a l  values of the radial location, 

area, shape and <~e>/<q> of the spots are changed in the experiments, but we 

res t r i c t  the i n i t i a l  areas of the spots to be less than or of order unity and 

the spots location to be not too close to a boundary. 

The experiments show that when l<~e>/<a> I is less than or of order unity 

the following occurs. The d i f fe rent ia l  rotat ion of u stretches the excess 

vo r t i c i t y  of the spot into a thin sp i ra l ;  the excess vo r t i c i t y  i n i t i a l l y  

located at large values of r is drawn to the outer boundary of the annulus and 

the material at small i n i t i a l  values of r to the inner boundary; the spiral 

fragments into thin filaments (each, by vir tue of equation (I0) retaining i t s  

i n i t i a l  value of me); each filament is further stretched by the d i f fe rent ia l  

rotat ion into a new smaller, thinner spiral which then fragments into new 

filaments. (Note that f ission and merger of spots is allowed kinematically in 

real laboratory experiments and in our numerical experiments because both are 

s l i gh t l y  d iss ipat ive. )  The stretching and fragmentation occur on a quick time- 

scale - of order the spot turnaround time (defined to be 4~/<me>). 
This fragmentation results in the i n i t i a l  excess vo r t i c i t y  accumulating in 

one of three places: at the inner boundary where an excess c i rculat ion F 1 is 

deposited, at the outer boundary where excess c i rculat ion F 2 is deposited, or 

dispersed throughout the annulus with an excess c i rculat ion of F3" Conserva- 

t ion requires 

F = F 1 +F 2+? 3 (12) 

where F is the i n i t i a l  value of the excess c i rcu la t ion.  The flow produced by 

F 3 is temporally chaotic and shows a broad band power spectrum. I t  is composed 

of excess-vor t ic i ty  filaments that appear to be ergodical ly d istr ibuted such 

that the density of filaments (excess c i rculat ion/area) is approximately uni- 

form throughout the entire annulus. 

The values of FI, F 2 and F 3 are established in approximately one turnaround 

time, and the subsequent fragmentation of excess vo r t i c i t y  into smaller 
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filaments does not effect the values. The time-averaged component of ue is 

A A 

= R2-R 1 )]e~ (13) v(r)e@ [ r l /2~  r + rF3/2~ ( 2 2 

The piece Of_eU due to the time-averaged filaments in F 3 is a uniform rotat ion.  

We define the instantaneous f luctuat ing excess veloci ty to be 

A 

v_f(r,~,t) ~U_e(r,~,t)- v(r)e@ (14) 

has no circulation, and we shall argue below that i t  has no angular Clearly, Xf 
momentum. 

We terminate our numerical simulations when the size of the filaments 

becomes smaller than the numerical resolution of our code. This allows us to 

simulate the flow for 15-30 turnaround times. There appears to be no macro- 

scopic changes in the flow after the f i r s t  few turnaround times when the values 

of Cl' F2 and F3 are established. We have continued the simulations past 30 

turnaround times by adding a small numerical dissipation at the resolution 

lengthscale and s t i l l  found that there are no macroscopic changes in the flow 

after 100 turnaround times. 

When l<me>/<o> I >> l negative spots become long-lived. Not surprisingly, 

their behavior is similar to that of spots of excess vort ic i ty with <o>= B= 

s =C 2 =0 ( i .e . ,  the usual 2-dimensional inviscid vortex dynamics) 5. 

2.2 One in i t ia l  spot of positive excess vort ic i ty  

The in i t ia l  conditions of these experiments were identical to those for one 

spot of negative excess vort ic i ty with the exception that <me>/<o>>0. The 

spot is i n i t i a l l y  stretched in the azimuthal direction by u, then contracts. 

Repeated oscillations of stretch and contraction occur with decreasing ampli- 

tude. During these oscillations small pieces of the spot can be broken off 

and advected away by u, but i f  <me>/<o> is order unity, the loss of excess 

circulation from the spot is small and the area of the spot never decreases by 

more than 5%. After two or three turnaround times, the oscillations cease and 

the spot forms an el l ipt ical shape with the long axis in the azimuthal direc- 

tion. The e l l i p t i c i t y~ ( ra t i o  of the axis in the radial direction to that in 

the azimuthal) is observed to be approximately 

c ~ me/(~e+a) (15) 

The radial position of the positive spot is approximately the same as i ts 

in i t ia l  value. The spot is advected azimuthally around the annulus by 

u(r,@,t) so the spot's speed is the characteristic azimuthal velocity at 
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the radial location of the spot. 

The fragments of w e lost by the spot during the in i t i a l  oscillations are 

deposited at the boundaries or ergodically mixed throughout the annulus in a 

way that is quali tat ively similar to the fragments of negative spots. There- 

fore, the final velocity is a superposition of a single, steady-state (in the 

proper rotating frame) e l l ip t ica l  positive spot, u(r) from equation (6), v(r) 

from equation (13), and the chaotic component v_f ( r ,~ , t ) .  

Simi lar  to negative spots, i f  a pos i t ive  spot has l<We>/<o> 1 >>I the spot 

behaves as an i nv i sc id  vortex with the usual 2-dimensional dynamics. Posit ive 

spots with <w >/<o><<I have an e l l i p t i c i t y  that  is  so small that  they resemble e 
shear layers,  are unstable to Kelvin-Helmholtz i n s t a b i l i t i e s ,  and break apart.  

2.3 Mul t ip le  spots 

When two or more negative spots are i n i t i a l l y  present, they a l l  fragment 

into f i laments.  With one pos i t ive  and one negative spot as the i n i t i a l  condi- 

t i ons ,  the negative spot s t i l l  fragments and the pos i t ive  spot s t i l l  forms a 

nearly e l l i p t i c a l  equ i l ib r ium.  When two or more pos i t ive  spots are present 

mergers are possible. 

We have found with C 2=0 ,  that  i f  two pos i t ive  spots are present i n i t i a l l y  

with small impact parameter ( radia l  separation) they merge as fo l lows.  I f  they 

are not too close in azimuthal loca t ion ,  they behave i n i t i a l l y  as iso lated 

spots and form two nearly e l l i p t i c a l  e q u i l i b r i a .  They are advected towards 

each other azimuthal ly by the d i f f e r e n t i a l  ro ta t ion  of u. The speed at which 

they approach is  therefore proport ional to o( r )  and to the impact parameter. 

(An impact parameter i n i t i a l l y  zero w i l l  not remain zero due to the tendency of  

spots to rotate about t he i r  center of excess v o r t i c i t y . )  When the separation 

between the spots becomes smaller than t he i r  charac te r i s t i c  s ize,  they d i s t o r t  

each other in to  sp i ra ls  and wrap around each other (ent ra in ing f l u i d  wi th no 

w e into them). The spots eject  the f l u i d  with no w e and form an e l l i p t i c a l  

equ i l ib r ium.  The charac te r i s t i c  time for  mergers is a few turnaround times. 

During the merging process some excess c i r cu la t i on  is broken o f f  the spots and 

forms th in  f i laments or is deposited at the boundaries, but in our experiments 

with 0.I <<w >/<o><I0 the excess c i r cu la t i on  of the merged daughter spot e " '  
is at least  90% of the excess c i r cu la t i on  of the parents. The resu l t i ng  steady 

spot is surrounded by the chaotic flow of the detached f i laments.  We have found 

that i f  the i n i t i a l  impact parameter is larger than the charac te r i s t i c  size of 

the i n i t i a l  spots, the spots w i l l  not merge. 

When large numbers (10-20) of pos i t ive spots are present i n i t i a l l y ,  pairs 

with small impact parameters merge. Small perturbat ions of the i n i t i a l  loca- 

t ions can resu l t  in d i f f e ren t  numbers of spots in the f ina l  f low. For example, 
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i f  the merging occurs so that  there is never a large impact parameter among the 

spots, then a l l  o f  the spots w i l l  merge in to  one. A small per turbat ion of the 

i n i t i a l  locat ions can cause the merging to occur so that  a l l  of  the i n i t i a l  

spots merge in to  two spots and these two spots have a large impact parameter 

and never merge together.  

Merging of  pos i t i ve  spots wi th <me>/<o> of order un i t y  occurs on a tu rn -  

around t imescale. I f  <me>/<o>>>l then the merging process, i f  i t  occurs at 

a l l ,  is  q u a l i t a t i v e l y  d i f f e ren t .  I t  is  s im i la r  to the merging of  vor t ices in 
5 the usual 2-dimensional vortex dynamics ; the timescales are slow and dominated 

by the small numerical d i ss ipa t ion  present in the numerics. 

2.4 One pos i t i ve  spot with varying m e 

Experiments were performed with C 2 =0 and with one i n i t i a l  spot of  pos i t i ve  

excess v o r t i c i t y  whose value we varied from 0.3<o> to 3.0<o>. In pa r t i cu la r  we 

studied i n i t i a l l y  c i r c u l a r  d i s t r i b u t i o n s  of excess v o r t i c i t y  which decreased or 

increased l i n e a r l y  in radius of  the spot. We found that  in a l l  cases the spot 

i n i t i a l l y  osc i l l a ted  s im i la r  to a pos i t i ve  spot with a uniform m e . However the 

spots in these experiments always organized themselves so that  the f l u i d  

elements with the larges value of  m e were at the center wi th m e decreasing 

monotonical ly outward. Not s u r p r i s i n g l y ,  the timescale for  the v o r t i c i t y  

r e d i s t r i b u t i o n  was of  order the spot turnaround t ime. This r e d i s t r i b u t i o n  of  

m e is consistent  wi th the merging experiments which showed that  when f l u i d  

wi th m =0 was entrained in a spot, i t  was qu ick ly  ejected. e 
2.5 Spots with B =0 and C 2~0  

Al l  o f  the above experiments were repeated with B = 0 and C 2 # 0 corresponding 

to an annulus with a f l a t  bottom but wi th a ve loc i t y  u with shear -2C2/r 2. The 

shear has the same sign throughout the f low (but opposite in sign to C2). When 

pos i t i ve  and negative excess v o r t i c i t i e s  are defined with respect to the sign 

of  t h i s  shear, we f ind that  a l l  of  the above numerical ly observed resu l ts  are 

s t i l l  t rue.  This indicates that excess -vo r t i c i t y  dynamics does not depend on 

the cause of the shear in u but only on i t s  presence. 

3. EQUILIBRIA OF SPOTS IN A SHEAR FLOW 

I f  the size of  a spot is  small compared to the value of  i t s  radia l  loca t ion ,  

then the va r ia t i on  of  o ( r )  at the spot and the ef fects  of curvature of  u are 

small. We can make a local Cartesian approximation to u and f ind an ana ly t ic  

fami ly of  exact, l i n e a r l y  stable so lu t ions to equations ( I )  and (2) cons is t ing 

of  a superposi t ion of  u and an exact ly  e l l i p t i c a l  spot of uniform excess 

v o r t i c i t y  with e l l i p t i c i t y  ( length of  y -ax is  to x -ax is )  is  5'2 

E : 2 / { I  + a/m e + [ ( I  + O/me)2 + 4O/me ] I / 2 }  (16) 
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For 0.I <me/O<lO. equation (16) is reasonably well approximated by our experi-  

mental re la t ion (15). Equations (15) and (16) both show that in the absence 

of shear the spot is a c i r c l e ,  and as the shear is increased posi t ive spots get 

increasingly stretched in the azimuthal d i rect ion.  Equation (16) shows there 

are posit ive spots for al l  values of me/O but negative spots exist  only for 

small values of Imel, in par t i cu la r  for I~e/O 1 < 3 - 2 ~ .  Negative solut ions can 

be shown to be unstable to small f i n i t e  amplitude perturbations 2. These 

i n s t a b i l i t i e s  can be understood physical ly  by real iz ing that a negative spot is 

surrounded by a closed stream l ine or sepatr ix with no f lu id  motion across i t .  

All stream l ines i n te r i o r  to the sepatr ix are closed and have c i rcu la t ion  with 

the same sign as We; al l  stream l ines exter ior  to the sepatrix are open, begin 

and end at i n f i n i t y ,  and have c i rcu la t ion  opposite in sign to w e. Any f i n i t e  

amplitude perturbat ion of an element of the spot that keeps i t  inside the 

sepatrix is bounded in the sense that the element remains near the spot for al l  

time. An element perturbed outside the sepatrix gets advected to i n f i n i t y  and 

never returns to the spot (an i n s t a b i l i t y ) .  The sepatr ix is never far from the 

boundary of the spot and therefore the negative spots are not stable to large 

amplitude perturbat ions. 

. MOMENTUM AND ENERGY CONSERVATION 

To understand the s t a b i l i t y  and merging c r i t e r i a  of spots, we need to show 

how energy and momentum are conserved by equations ( I ) - ( 3 ) .  The angular 

momentum is equal to a constant plus a term proport ional to 

I R2 I )r2 (17) = rdr d6 me(r, @ 
R 1 

Thus, ~ which is equal to the excess-vor t ic i ty  weighted value of r 2 is con- 

served in time. Energy is also conserved and is equal to a constant plus 

where E z Ese I f + E  int  

11R2 rdr I d$ IR2 r ' d r  ' 
Eself - 8~ R1 R1 

d$ 'me (r)We ( r ' ) I  n I r - r '  I (18) 

d@~w e (19) 

and where 

I R2 rdr 
Ein t = 

R 1 

u(r )  = d~d(r) (20) 

We have ignored the ef fects of the boundaries on E, but when w e is far from 
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the boundaries this is a reasonable approximation 2. Equations (18)-(19) show 

that there is an analogy between m e and an electric charge density in two dimen- 

sions and between ~ and the potential of an applied electric field. With u =0 

or no applied electric field, equation (18) shows that energy is required from 

an external source to push together two spots of m e or charge of the same sign. 

Equation (19) shows that the sign of Ein t depends on the sign of m e with 
respect to ~. In particular, for flows discussed in this paper where either 

BPO and C 2=0 or B =O~and C 2#0, the sign of Ein t depends on the sign of 
<a> <We>. A non-zero u breaks the energy degeneracy between flows with posi- 

tive and negative excess vorticity. 

5. PREDICTION OF F l ,  F 2, AND F 3 FOR NEGATIVE SPOTS 
It  seems plausible, given the ini t ial  values of F, ~ and E, to try to com- 

pute the three unknowns Fl' F2' and F3 that define the final time-averaged 
velocity v(r)~@ that forms after the break-up of negative spots. (See equation 

(13).) Assuming that vf is ergodic, time averaging is the same as space 

averaging, so ~f by its definition has no excess circulation. Furthermore, i f  

the filaments in vf are macroscopically homogeneous, ~f cannot contribute to ~. 

We therefore have two conservation equations useful for computing Fl' F2' and 

F3: equation (12) and 

~ = FIR~ + F2R~ + F 3(R~+R~)/2 (21) 

Ergoticity of vf guarantees that the cross-product term in the kinetic energy 

integral between the time-averaged component of the velocity and ~f is equal 

to zero. Therefore we can write E as 

E = Eself(due to v)+ Eself(due to vf)+ Eint(due to v) (22) 

where Eself(due to v) is computed from equation (18) by setting the excess 
vorticity that appears in the double integral equal to the component of m e due 

to v, and Eself(due to ~f) is computed by using the component due to ~f. 

Ergoticity also makes Eint(due to vf) equal to zero. Although Eself(due to v) 
and Eint(due to v) can be expressed in terms of Fl' F2' and F 3, we have no 

a pz~ori knowledge of the value of Eself(due to vf). The value of the latter 
energy is sensitive to the microscopic distribution of the filaments: 

decreasing the distance between pairs of filaments (while leaving the macro- 

scopic density uniform) increases Eself(due to ~f) logarithmically. Therefore, 
we cannot use energy conservation to help calculate F l ,  C2' and ?3" 

We propose the hypothesis: The energy due to the time-averaged velocity 
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[Eself(due to v)+Eint(due to v)] is minimized by the flow. Note that this 
hypothesis does not say that the et~ergy in the large-scale component of the 

velocity is minimized. A spot with sharp edges has both large and small 

scales, We cannot derive our hypothesis from equations (I)-(3).  Our motivation 

is loosely based on thermodynamics - energy is transferred irreversibly from 

ordered to disordered motion -w i th  vf identified as disorder. We now show the 

consequences of this hypothesis. We minimize the total energy in the large 

part of the flow 

[Eself(due to v) + Eint(due to v)] = 

2 2 + 4r~ 

R 2 
+ C2[F3 + ?I In ~ i  ] 

R 2 
~ll + 47371]/I 6~ 

(23) 

subject to the constraints of equations (12) and (21) and subject to the 

requirement that ?l '  ?2 and ?3 must all be less than or equal to zero (due to 
the fact that m < 0.). (Note that equation (23) is the exact energy and 

e - -  

includes the effects of the boundaries,) 

We have found that the minimization hypothesis when applied to the break up 

of a negative spot is correct. The values of ?l '  ?2' and F 3 predicted by energy 

minimization agree within 5% (the numerical uncertainty) with the results of the 

numerical simulations of the in i t ia l  value equations discussed in section 2.1. 

6. ENERGY MINIMIZATION HYPOTHESIS APPLIED TO SPOT MERGERS 

Note the following: I f  two ellipses of equal area, e l l i p t i c i t y ,  and radial 

location combine to form one ellipse with the same e l l ip t i c i t y ,  same total area 

and with radial location such that the merger conserves the second radial 

moment 

I r d(area) (24) 

then the merger increases the cubic moment 

I r d(area) (25) 

and decreases the logarithmic moment 
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I In(r) d(area) (26) 

The integrals in equations (24)-(26) are evaluated over the area of the 

ell ipse(s). Consider the merger of two in i t ia l  spots of excess vorticity. For 

simplification of the analyses let both spots have the same excess vorticity m e 

uniform over the spot, let them have e l l i p t i c i t y  given by equation (16). Let 

the spots have equal area, no impact parameter, and be sufficiently far from 

each other and the boundaries so that they are approximate equilibria. I f  

the spots n~rge with no loss of m e into filaments, Eself increases. I f  B~O 

and C 2 = O, then the increase in the cubic moment due to the merger (see equa- 

tion (25)) causes Ein t ,  as defined by equation (19), to decrease i f  m e has the 

same sign as o ( i .e . ,  the same sign as B) and causes Ein t to increase i f  m e has 

the opposite sign. I f  B =0 and C 2~0, then the decrease in the logarithmic 

moment produces the same result: Ein t decreases i f  m e has the same sign as o. 

Therefore, two spots of negative excess vorticity always increase their energy 

by merging. In the absence of a ~f negative spots cannot merge and s t i l l  con- 

serve energy. In the presence of a ~f they can only merge i f  the spots (the 

time-averaged component of the velocity) can extract energy from~f. By our 

hypothesis, this is forbidden. In fact, because fragmentation of negative spots 

decreases the energy in the time-averaged component of the flow, the prediction 

of energy minimization is that all negative spots fragment. This is consistent 

with the numerical experiments. 

The merger of two positive spots decreases Ein t but increases Eself. From 

equations (18)-(19) we see that the ratio of Ein t to Eself is <a>/<me> multi- 
plied by a geometric factor. In a more detailed analysis this factor can be 

shown to decrease with increasing impact parameter 2. Therefore i f  <o>/<me> is 

sufficiently large and the impact parameter is sufficiently small, E(due to v) 

can decrease. In the absence of vf two positive spots can merge only i f  the 

change in E(due to v) is zero. The minimization hypothesis predicts that two 

positive spots wil l  merge in the presence of a ~f i f  E(due to v) decreases. It  

is possible to derive semi-analytically the criterion for which two arbitrary 

in i t ia l  positive spots will decrease E(due to v) by merging as a function of 

the in i t ia l  impact parameter and <me>/<o>. Within the numerical uncertainties 

of decomposing the velocity into a time-averaged component* and a ~f, we find 

that the minimization hypothesis correctly predicts the circumstances under 

which positive spots merge in our in i t ia l  value experiments. 

Time-averaging is done on time scales of 1 to 3 turnaround times. 
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