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Simulation of Taylor-Couette flow. 
Part 1. Numerical methods and comparison 

with experiment 

By PHILIP S .  MARCUS 
Division of Applied Sciences and Department of Astronomy, Harvard University 

(Received 9 August 1983 and in revised form 23 March 1984) 

We present a numerical method that allows us to  solve the Navicr-Stokes equation 
with boundary conditions for the viscous flow between two concentrically rotating 
cylinders as an initial-value problem. We use a pseudospectral code in which all of 
the time-splitting errors are removed by using a set of Green functions (capacitance 
matrix) that allows us to satisfy the inviscid boundary conditions exactly. For this 
geometry we find that a small time-splitting error can produce large errors in the 
computed velocity field. We test the code by comparing our numerically determined 
growth rates and wave speeds with linear theory and by comparing our computed 
torques with experimentally measured values and with the values that appear in other 
published numerical simulations. We find good agreement in all of our tests of the 
numerical calculation of wavy vortex flows. A test that is more sensitive than the 
comparison of torques is the comparison of the numerically computed wave speed 
with the experimentally observed wave speed. The agreements between the simulated 
and measured wave speeds are within the experimental uncertainties ; the best- 
measured speeds have fractional uncertainties of less than 0.2 o/o. 

1. Introduction 
We have developed a numerical method for calculating the equilibrium states and 

the transitions of a viscous flow between two differentially rotating concentric 
cylinders (Taylor-Couette flow). In  this paper we shall generally limit our study to 
the case where the outer cylinder is not rotating, so that  the fluid is driven solely 
by the angular velocity Q,, of the inner cylinder. By further limiting ourselves to 
the case of a very large aspect ratio r (i.e. the height in the axial, or z ,  direction of 
the cylinder is much greater than the radial gap between the two cylinders), we can 
assume that the motion is periodic in z with fundamental wavenumber a.  Taylor 
(1923) showed that equations of motion of this axially periodic system depend on 
three dimensionless numbers: the radius ratio 7 = a / b  (where a = inner-cylinder 
radius, b = outer-cylinder radius), the dimensionless axial wavelength h = 27c/ad 
(where d = b--a) and the Reynolds number R = aQin d/v (where v is the kinematic 
viscosity). Throughout this paper, unless otherwise specified, we use d as the unit of 
length, aQin as the unit of velocity and pd3 as the unit of mass, where p is the fluid 
density. 

Description of the numericul problem 

We remind the reader that there are several qualitatively different, stable equilibria 
of the Navier-Stokes equation when the inner cylinder is rotating and the outer 
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cylinder is held stationary. For a good description of some of these equilibria see the 
review article by DiPrima & Swinney (1981). There is only one closed-form analytic 
solution for a Taylor-Couette flow, and that is the circular Couette flow 5: 

Circular Couette flow is stable only for low Reynolds numbers. Another well-known 
solution to the Navier-Stokes equation is axisymmetric Taylor-vortex flow. Two of 
the best documented non-axisymmetric stable equilibrium solutions that have been 
studied experimentally are ( 1 )  wavy-vortex flow, which has one non-axisymmetric 
travelling wave with fundamental azimuthal wavenumber m, and azimuthal speed 
s1 (for the earliest systematic study of wavy vortices cf. Coles 1965) and (2) 
modulated wavy-vortex flow, which has two non-axisymmetric travelling waves. The 
waves both travel in the $-direction. The fundamental wavenumbers of the travelling 
waves are m, and m2, and their angular velocities are s1 and s2. A quantitative 
description of the two-travelling-wave flow appears in Gorman & Swinney (1982). 

The earliest analytic studies of Taylor-Couette flow (for a review see Chandrasekhar 
1961) were primarily concerned with the determination of the critical Reynolds 
number R, where circular Couette flow becomes unstable to axisymmetric Taylor 
vortices. Finite-amplitude calculations of the torque exerted by the Taylor-vortex 
flow on the stationary outer cylinder were pioneered by Stuart (1958) and improved 
upon by Davey (1962). DiPrima (1967) re-examined the flow with an Eckhaus 
expansion. These expansions are, of course, valid only for (R-R,)/R, < 1 .  Davey, 
DiPrima & Stuart (1968) extended the finite-amplitude study to three-dimensional 
non-axisymmetric flows and determined the critical Reynolds number for the onset 
of wavy vortices and their torques. Their calculation was verified and extended by 
Eagles (1971), who used a fifth-order expansion. I n  a subsequent paper, Eagles (1974) 
computed the torques of the non-axisymmetric one-travelling-wave flows and 
compared them with the experimentally measured values. The comparison is only 
qualitative because the experiments were made without any flow visualization. (The 
outer cylinder of the Couette apparatus was opaque.) Therefore the exact states of 
the flow (i.e. the values of h and m,) in the experiment are unknown and must be 
assumed. 

One of the earliest axisymmetric numerical simulations of Taylor-vortex flow was 
carried out by Meyer (1966), who later (1969a, b )  extended the calculations to 
three dimensions for Reynolds numbers just greater than the critical value for the 
onset of wavy vortices. More recently, Meyer-Spasche & Keller (1980) simulated 
axisymmetric Taylor vortices numerically using a continuation method that forces 
the solution to relax to  a steady state. Jones (1981) also computed the Taylor-vortex 
flow, and used his solutions to determine the linearized eigenfunctions corresponding 
to the non-axisymmetric waves. I n  a series of papers Yahata (1983 and references 
cited therein) used a truncated modal expansion of the Navier-Stokes equations to 
represent Taylor-Couette flow. His truncations are very severe (at most four modes 
in the axial direction). Yahata’s model equations exhibit a frequency locking that 
is not observed in the laboratory experiments. The fact that the modal and laboratory 
results do not agree qualitatively is not surprising since Marcus (1981) and Loncaric 
(1981) showed that erroneous temporal behaviour can occur whenever truncations 
are so severe that they disallow effective viscous dissipation at the small scales. In  
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addition to having a small number of modes, Yahata’s choice of modes (e.g. 
Chandrasekhar-Reid functions) is not well-suited for numerical approximation. The 
poor convergence properties of these modes are well-documented (Gottlieb & Orszag 
1977). Recently, an extremely well-resolved numerical study of three-dimensional 
wavy-vortex flow with a set of modes that exhibit exponential (spectral) convergence 
was carried out by Moser, Moin & Leonard (1983). 

Purpose of paper 

The purpose of this paper is first to present a numerical initial-value method that 
will allow us to compute non-axisymmetric time-dependent Taylol-Couette flows. 
The method is sufficiently robust, fast and memory-efficient to allow us to calculate 
solutions for Reynolds numbers as large as - 1500. Typical runs for R w 1000 require 
(for physical, not numerical, reasons) on the order of 15 rotation periods of the inner 
cylinder for the fluid to  come to equilibrium. Computing the flow for 15 rotation 
periods requires approximately 2400 timesteps with approximately lo6 operations per 
timestep or roughly 20 min on a CRAY-1. The storage requirement to resolve a 
typical flow fully a t  R x 1000 is approximately 700000 words. 

The second purpose of this paper is to show that the computer can serve as a useful 
tool in understanding and predicting the results of Taylor-Couette flow. Despite the 
fact that  this classical flow was first observed almost 100 years ago (Mallock 1888) 
and that the conditions for linear stability with respect to axisymmetric disturbances 
were found over 50 years ago (Taylor 19231, much less progress has been made in 
understanding the physical mechanisms that produce non-axisymmetric disturbances. 
Several mechanisms have been proposed (cf. Coles 1965; Meyer 1966; Davey et al. 
1968), but no single scenario explains why the waves form easily in narrow-gap 
geometries but are inhibited in wide gaps, why the waves are themselves unstable 
to modulations, and why the waves disappear a t  very large Reynolds numbers while 
the Taylor cells persist. In  this paper we demonstrate that  we can quantitatively 
simulate Taylor-Couette flow. The simulations not only agree with past experiments, 
but also have predicted experimental results (King et al. 1984). Although experi- 
mentalists find it easier and cheaper than numericists to measure torques and wave 
speeds for several different values of the parameters 7, r, €2, h and m, for any particular 
flow numericists can determine the entire velocity field everywhere. Numericists can 
also compute the torque, wave speed, enstrophy, angular momentum and energy 
spectrum of a flow. Experimentalists can generally only measure the velocity a t  a 
few points, and cannot obtain a global picture of the flow. Therefore numerical 
simulation is a useful way of examining Taylor-Couette flow and is complementary 
to laboratory measurements. 

I n  Part  2 (Marcus 1984) we use the numerical code described in this paper to 
produce a family of simulations. From these we propose a scenario for the physical 
instability that drives the wavy vortices, and marginal-stabilitylmixing-length 
theory. Our scenario predicts the speed of the travelling waves at onset and at high 
Reynolds number in the narrow-gap limit. We also show that the observed spatial 
symmetries and computed energy spectra are consistent with our scenario. 

I n  $2 of this paper we outline the fundamental numerical methods that we use in 
a pseudospectral initial-value calculation. We emphasize the fact that a small 
time-splitting error can cause a large error in the travelling-wave speeds s, and s2. 
The splitting error is removed by the use of Green functions. In  5 3 we present evidence 
of the code’s accuracy by comparing our results to analytic calculations and 
independently obtained numerical results. We also show that the Navier-Stokes 
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equation is solved in a self-consistent manner. I n  $ 4  we test the validity of our 
numerical simulations by direct comparison with the experimentally measured 
stability boundaries, torques and wave speeds. Our discussion appears in $5. 

2. Numerical methods 
General equations 

The fluid velocity ~ ’ ( c ,  r ,  4, z,  t ) ,  as measured by an observer in a frame rotating with 
angular velocity c about the z-axis of the cylindrical Couette apparatus is related to 
the velocity u’(r, 4, z ,  t )  as viewed by an inertial observer by 

(2.1) u’(c,  r ,  # , z ,  t )  = u’(r, 4 + ct, 2, t )  - crZ+. 

The computational variable that we use in all of our numerical calculations is 

u(c ,  r ,  4, z ,  t )  = u’(c, r, 4, z ,  t )  + crZ4 - B(T) 
= u’(r, @+ct, z, t ) -  6(r) ,  

where B(r) is the primary Couette-flow velocity ( l . l ) ,  (1.2). The advantage of u as the 
computational variable is that, unlike u’, u obeys homogeneous radial boundary 
conditions 

u ( c , r  = a ,+ , z , t )  = u(c , r  = b , @ , z , t )  = 0. (2.4) 

I n  dimensionless units, a = q / ( l  -7) and b = 1/(1-7). The advantage of using the 
velocity calculated in a rotating frame over the velocity in the inertial frame is that, 
with the proper choice of c, the one-travelling-wave flows are steady-state and the 
two-travelling-wave flows are periodic in time. Our code has been designed to search 
for the proper rotating frame and then to  shift automatically into that frame, 

As seen in a frame rotating with speed c, the Navier-Stokes equation written in 
terms of u(c ,  r ,  4, z ,  t )  is 

an  
- = (u+v”-crZ4) x (o+6)-VV17+R-lV2u, 
at (2.5) 

where o is the vorticity in the rotating frame: 

4 c ,  r, 4,z, t )  = v x u(c, r ,  9, z ,  t ) ,  (2.6) 

and n i s  the pressure head in the rotating frame. The Navier-Stokes equation is solved 
subject to the kinematic condition 

v-u = 0, (2 .8)  

the radial boundary conditions (2.4) and an imposed periodicity in the axial direction 
of length A. 

Equations (2.4)-(2.8) are solved pseudospectrally, and we adopt the notation that 
each variable &(c, r ,  4, z ,  t )  is written as a spectral sum 
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where Q  ̂ is complex and Tn(x) are Chebyshev polynomials. Note that (2.8) requires 
that v,(c, n, m = 0, k = 0, t )  is always identically equal to zero for all n. All derivatives 
are evaluated spectrally. The nonlinear cross-product of the velocity and the vorticity 
is computed by transforming the velocity and vorticity into physical space, multiplying 
the values at the collocation points, and then inverse-transforming. We do not remove 
aliasing errors. A discussion of the magnitude of these errors appears at the end of 
$3. A description of these pseudospectral operations is given by Gottlieb & Orszag 
(1977). Often, we shall need the quantity Q in a mixed physical-spectral space, and 
we adopt the notation 

(2.10) 

A time-splitting method 

The velocity can be advanced from timestep N to timestep N+1 by using three 
fractional steps. The first fractional step accounts for the nonlinear terms, and is made 
second-order accurate in time At by using an Adams-Bashforth method. We denote 
the velocity a t  the end of this third of the full timestep as vN+!: 

vN+i = vN+A.t[:(vN+ i?-cri?$) x ( o N + & ) ] - A t [ + ( v N - l +  C-cr&?$) x (oN-'+6)]. 

The stability of the explicit nonlinear step in (2.11) is governed by a Courant 
condition. We can modify (2.11) to allow bigger timesteps by observing that, even 
in a rotating frame, the largest velocity component is the z-independent axisymmetric 
(m = 0, k = 0) component of the azimuthal velocity. In  Taylor-Couette flow the 
mean azimuthal velocity is analogous to the mean temperature gradient in thermal 
convection ; i t  drives the primary instability and has a profile that is modified by 
order unity owing to the nonlinear interactions. Like the mean temperature gradient, 
the mean velocity becomes modified so that in the interior of the flow the mean 
profile is almost neutrally stable. Typically, for Reynolds numbers less than 15R, 
and 7 NN 0.875, v$(c, n , m  = 0 ,  k = 0 , t )  is O(1) ;  whereas the rest of the velocity, 
[v(c, n, 4, z ,  t )  -v4(c, n,  m = 0, k = 0, t )  i?$] ,  is much smaller, approximately 0.1. We can 
therefore break the nonlinear term in (2.11) into two pieces: a term that does not 
depend on v4(c, n, m = 0, k = 0, t )  (and/or the vorticity produced by this piece of 
the mean velocity), which we compute explicitly, and a term that contains 
v$(c ,n ,m = 0,k = 0, t ) ,  which we treat implicitly to first order in At. By using a 
Richardson extrapolation a t  the end of all three fract'ional steps, we can recover 
second-order accuracy in At. The implicit method is practical only when we are 
computing a final equilibrium state that  is very far from the initial condition. 
Generally, we use (2.1 1 )  as it stands and avoid a Richardson extrapolation. 

(2.11) 

The second fractional step is due to the pressure contribution 

vN+! = v N + f  - At VnN+' .  (2.12) 

With the time-splitting method, the pressure head nN+l is computed by requiring 
that vN+f be divergence-free : 

At VZnN+' = V -  vNf4, (2.13) 

with the boundary condition 

C ; v N + f = O  a t  r = a  and r =  b ,  (2.14) 
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or equivalently 

(2.15) 

Equation (2.15) is exact for the pressure head in the inviscid limit R --f 00. We shall show 
that (2.15) causes a large time-splitting error near the radial boundaries. 

The third fractional step, which completes the integration from timestep N to 
timestep N +  1 ,  is the viscous step 

v N + l  = VN+: + At R-1 V 2 v N + I  (2.16) 

where V2 is inverted subject to the no-slip boundary condition (2.4). We have chosen 
the backwards Euler method rather than the second-order-accurate Crank-Eicholson 
method to avoid a numerical neutrally stable oscillation that can occur a t  large 
wavenumbers. By using the backwards Euler method, our final accuracy will be 
reduced from O(At2)  to O(At2 ,  A t l R ) .  We can formally recover second-order accuracy 
by using a Richardson extrapolation, but we have found experimentally that an 
extrapolation does not improve our results. Since R > 100 for all of our calculations, 
the O ( A t / R )  error is always smaller than the O(At2)  error; a plot of the error in the 
velocity as a function of At reveals that  the error is proportional to At2, not At. 

We note that the most expensive numerical operation in stepping u forward in time 
is inverting the V2 operator. The inversion must be done four times per timestep : once 
for evaluating the pressure head (2.13) and once for each component of the velocity 
in the viscous fractional step (2.16). We use the Haidvogel-Zang (1979) factorization 
in the inversion (for efficient implementation in cylindrical geometries see Patera & 
Orszag 1981), which requires 0 ( 4 N 2 M K )  multiplications per inversion, where N is the 
number of radial Chebyshev points, 2K is the number of axial modes and M is the 
number of' azimuthal modes. Since V2 is inverted in the pressure fractional step with 
Neumann boundary conditions and is inverted in the viscous step with Dirichlet 
boundary conditions, we are required to store two different eigenvector decompositions 
of V2 for a total of 4N2M words of storage. This is a significant fraction of the total 
storage requirements of the code, and we show presently that the storage can be 
reduced. 

In  solving the Navier-Stokes equation, we could have used the two vector 
potentials Y and 0 as the computational variables rather than the three components 
of the velocity. The velocity is defined in terms of the vector potentials by 

u = v x ( YZ) + v x v x (a?), (2.17) 

where P is an arbitrary unit vector. I n  spherical and Cartesian geometries (see e.g. 
Marcus 1979), use of the two vector potentials requires only three and not four 
inversions of the V2 operator (one inversion for the pressure and one inversion each 
for V 2 Y  and V 2 0  in the viscous fractional step). I n  these two geometries, use of the 
vector potential reduces the total computational cost by a factor of approximately 
i. I n  cylindrical coordinates, depending on the choice of 6, either the two equations 
for the boundary conditions for Y and 4 do not separate (and thereby make the 
numerics intractable) or the viscous fractional step cannot be put into a form where 
the Laplacian operators on @ and Y can be implicitly (stably) inverted in a 
numerically efficient manner. We have therefore opted to use the velocity and not 
the vector potential as our computational variable throughout the calculations. 

Occasionally, we have used a computational shortcut when we have had a poor 
guess for the initial velocity field and when we were interested only in finding a 
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steady-state equilibrium (or in finding a new equilibrium state that could serve as 
a ‘good’ initial guess for the velocity field). This shortcut uses the fact that  the mean 
angular momentum profile E(r, t )  = rv4(c, r ,  m = 0, k = 0, t ) ,  which drives the Taylor- 
vortex flow, changes to its final equilibrium value near the radial boundary only in 
a viscous timescale and not in the faster dynamic timescale. I n  our shortcut, we 
replace the dynamic equation that governs the growth of v4(c, r ,  m = 0,  k = 0,  t ) ,  

+R-1 w+(c, r ,  m = 0,  k = 0,  t ) ,  (2.18) 

with the kinematic equation 

(2.19) 

where a2/ar2+ ( l /r )  a/ar- l / r2  is inverted using homogeneous Dirichlet boundary 
conditions. All of the other dynamic equations for v(c, r ,  m, k, t )  remain unchanged. 
When the time derivative of v4(c, r ,  m = 0 ,  t )  is small, (2.19) is a good approximation 
to (2.18) (cf. the amplitude expansions of Stuart 1958), and in a steady state i t  reduces 
exactly to (2.18). However, even for large time derivatives, we have found that the 
shortcut equations are stable and converge much faster to a steady-state (and 
therefore exact) equilibrium than the Navier-Stokes equations. We emphasize that, 
whenever we have found a steady equilibrium solution by using the shortcut, we have 
tested its stability by using the equilibrium solution (plus small perturbations) as the 
initial value of the full Navier-Stokes equations. We have also experimentally 
determined that any solution produced by the shortcut method is physically 
realizable ; by starting with a physically realizable initial condition (i.e. circular 
Couette flow or some other observed equilibrium plus perturbations) and integrating 
it forward in time with the full Navier-Stokes equation, the same solution is obtained. 
I n  summary, we have used our shortcut method not to  produce ‘real’ solutions but 
merely to explore a large area of parameter space for interesting features in a short 
amount of computational time. 

Analysis of the time-splitting error 

We have found that the time-splitting error due to solving (2.13) for the pressure-head 
with the inviscid boundary condition (2.15) can cause large errors in many of the 
diagnostic tests that we use to  test our code’s accuracy. I n  particular, we have found 
that, as the ratio 7 of inner- to outer-cylinder radii approaches unity, the travelling- 
wave speeds predicted by the initial-value solver differ markedly from the speeds 
predicted by a numerical calculation of the linear eigenvalues. (See $3 for a full 
discussion.) 

Orszag & Deville (1984) studied the numerical errors produced by solving the 
incompressible Stokes equation with the method of fractional steps in a simplified 
geometry. Using the globally first-order-accurate backwards Euler method in the 
viscous fractional step, they found that in the interior of the domain, far from the 
boundary, the time-splitting causes an error of O(At)  in the velocity and O(At4) in the 
pressure. The time-splitting errors in the interior can be reduced by Richardson 
extrapolation. A local Richardson extrapolation reduces the time-splitting error in 
the velocity to O(Ati) and in the pressure to  O(At).  A disadvantage of Richardson 
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extrapolation is that  it nearly doubles the required computer time and storage. 
Higher-order extrapolations can further reduce the error in the velocity to O(At2). 

Orszag & Deville found that the method of fractional steps causes much larger 
errors near the boundary in a layer with thickness of order (At/R)i. I n  the boundary 
layer the time-stepping errors in the pressure, av,/ar, a2v6/ar2, a2v,/ar2 and V. v ,  are 
O(At4) and the errors in the radial derivative of the pressure and a2v,/ar2 are O(1) .  
The errors that  are in the boundary layer cannot be reduced by Richardson 
extrapolation. 

The At-dependence of the time-splitting errors in the radial derivatives of the 
velocity in Orszag & Deville’s model problem is consistent with the results of our 
numerical experiments in Taylorxouette flow. Note that the inviscid boundary 
condition (2.14) used in solving for the pressure head along with (2.4) and (2.16) 
impose the condition 

Equation (2.20) is incorrect since the correct boundary condition is 

8;V2v = 0 a t  r = a and r = b. (2.20) 

an l a  2;V2u = R--R(i76-cr)--[r(i76+vl.’c)] at r = a and r = b. (2.21) 
ar r ar 

The discrepancy between (2.20) and (2.21) is consistent with Orszag & Deville’s 
time-splitting error O(1) in a2vr/a2r (or 2;V2v) a t  the radial boundaries. Since the 
imposed boundary condition in (2.20) is not modified by using a Richardson 
extrapolation, it is not surprising that an extrapolation does not reduce the 
time-splitting error a t  the boundary. 

I n  cylindrical pipe flow (Orszag & Patera 1983) the time-splitting error does not 
appear to  cause inaccuracies ; in cylindrical Couette flow it  does. The linear momentum 
and energy that drive the flow in cylindrical pipe flow enter and leave the cylinder 
primarily a t  the axial boundaries (not a t  the radial boundaries), and the rates of 
energy and momentum transfer between the cylinder and the outside world are 
independent of viscosity. I n  cylindrical Couette flow the energy and angular 
momentum that drive the flow enter only at the radial boundaries. Furthermore, the 
rates a t  which angular momentum and energy leave or enter the cylinder are 
proportional to  the viscosity (or R-I) and are also proportional to  the derivative of 
the velocity a t  the radial boundaries. It is therefore not surprising that time-splitting 
errors that  are O(1) in a2v/ar2 and O(At4) in avlar at the radial boundaries cause large 
errors in cylindrical Couette flow. I n  particular our numerical experiments show that 
Richardson extrapolation (which reduces the error a t  the interior but not a t  the radial 
boundaries) does not reduce the error in the speed s1 of the travelling wave. Our 
experiments indicate that s1 depends strongly on the physics a t  the radial boundaries, 
and as n+ 1 the error in s1 becomes very large. 

Reducing the time-splitting error 

The most straightforward way of removing the time-splitting error is to solve for the 
pressure head with the correct boundary condition. I n  inverting (2.13), the correct 
boundary condition is 

= 0 (2.22) 

or (2.23) 
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Equation (2.23) cannot be solved directly since u N f l  is still an unknown quantity 
during the pressure fractional step. We can, however, approximate (2.23) by 

(2.24) 

This approximation reduces the splitting error in a2v/ar2 by a factor of At. Results 
obtained using (2.24) in our initial-value code for short times have given excellent 
agreement (one part in lo6) with the wave speeds and growth rates produced by our 
linear eigenvalue code (which does not use fractional steps). Unfortunately, (2.24) 
makes the initial-value code algebraically unstable, and after several revolutions of 
the inner cylinder the numerical results are meaningless. 

A method with no time-splitting error 

We have removed the time-splitting error entirely by using a new Green-function or 
capacitance-matrix method. We solve for the pressure head nNtl by using (2.13) with 
the correct viscous boundary condition (2.22). We define 

C (2.25) n N t 1  n N + l + n N + l  

and fiN+2 3 + u y : ,  (2.26) 

where nNtl is defined to be the partial pressure head 

At V2nN+1 v * @”$ (2.27) 

determined by the (arbitrary) Dirichlet boundary condition 

(2.28) 

(2.29) 

= - At Vn:fl. (2.30) 

(We could have chosen to define nNtl and the correction n:+l by imposing the 
Neumann boundary condition (2.15) instead of (2.28). The Neumann boundary 
condition gives a correction that is smaller than the Dirichlet condition, but both 
methods give the same final answer for vNil. We show a t  the end of this section that 
the Dirichlet method is much more memory-efficient than the Neumann method.) 
The correction n?+l that must be added to the partial pressure head obeys the 
homogeneous equation 

v2nN+i c = 0, (2.31) 

with the inhomogeneous boundary condition (from (2.21)) 

a n N + i  

]-At- a t  r =  a and r = b .  (2.32) At= = e; [ u N f ~ + R - l  VZUN+l 

ar ar 

The equations (2.27) and (2.28) for the partial pressure head can be solved 
immediately since vN+i is known; the equations for 17?t1 cannot yet be solved because 
uN+l is still unknown. The viscous fractional timestep (2.16) becomes 

,,,N+1 = fiN+1+ [ 1 - AtR-1 Vz]l-1 uc N+g 9 (2.33) 

where VN+l is defined by 

fiNt1 = - [ 1 - AtR-1 V21-1 f i N + H ,  (2.34) 
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and where 1 - R-l At V2 is inverted subject to the boundary condition 

UN+l  = 0  a t  r = a  and r =  b. (2.35) 

The equations for U N f l  can be solved immediately. Knowing V N + l ,  we could in 
principle solve (2.31) and (2.32) directly for l7,. However, the numerical solution of 
(2.31) is numerically expensive - i t  involves solving Poisson’s equation. We now show 
how we solve directly for vN+l without any additional Poisson solves. 

It can be shown that the boundary conditions (2.32) for the pressure correction 
Z7, are satisfied if and only if 

V * v N + l = O  a t  r = a  and r =  b, (2.36) 

or, using (2.30) and (2.33), 

A t V - [ l  -AtR-l V2]-’ VII:+l = V.UN+l a t  r = a and r = b. (2.37) 

Expressing l7?+l as a spectral sum of Fourier modes m and k in the azimuthal and 
axial directions, we see that Ll:+l(r, m, k )  can be written a t  each timestep as a linear 
combination of Xl(r, m, k) and X2(r ,  m, k) : 

ZT?+l(r, m, k )  = af’+l(m, k )  xl(r, m, k)+a:+l(m, k )  X2(r, m, k ) ,  (2.38) 

where x1 and xz are two linearly independent solutions of Laplace’s equation (2.31) : 

V2[Xl(r, m, k )  ei(m$+znkz/A) ] = V2[X2(r, m, k )  ei(m@+2n’”z/A))I = 0, (2.39) 

and at the boundaries 
x l =  1, x 2 = 0  a t  r =  a, (2.40) 

x1 = 0, xz = 1 at r = b. (2.41) 

The boundary conditions (2.40) and (2.41) are arbitrary except that  they ensure linear 
independence of x1 and x 2 .  Dirichlet rather than Neumann conditions are chosen for 
computational convenience in evaluating x1 and xz (see below). 

To implement this method efficiently, we evaluate once in a preprocessing stage 
the functions x1 and xz for all Fourier modes. We don’t store x1 and xz ; instead we 
store the two Green functions, G1(r, m, k )  and G,(r, m, k )  : 

Gi(r,m, k )  = -At[l-AtR-1V2]-1Vxi, (2.42) 

where i = 1,2  and where [l -AtR-l V’]]-l is inverted with homogeneous Dirichlet 
boundary conditions. The Green functions depend only on the cylindrical geometry 
7 and not on the fluid velocity. We also calculate and store the four constants b,,(m, k),  
b,,(m, k ) ,  b,,(m, k )  and b,,(m, k )  : 

b,i(m, k) E At V*{[l- R-l At V’]-’ V X ~ } ~ ~ = ~ ,  (2.43) 

b,i(m, k) AtV.{[1 -R-l AtV’1-l V X ~ ) J ~ = ~ ,  (2.44) 

where i = 1,2.  From (2.33) and the definitions of Gi and xi we see that the final 
velocity is 

vN+l(r, m, k)  = UN+l(r, m, k )  +a?+l(m, k )  Gl(r, m, k) +aFf1(m, k )  Gz(r ,  m, k ) .  
(2.45) 

G, and G, are not functions of timestep ; therefore a t  each step we need only evaluate 
a?+l(m, k )  and aF+l(m, k )  for each Fourier mode (i.e. we do not have to solve Poisson’s 
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equation a t  each timestep to get vN+l from iiN+l). The constants @(m, k) and a f ( m ,  k )  
are determined from (2.37) and are seen to obey 

(2.46) (::: ::I) (ax+,) = (V*iiNfl at r = b 

Equation (2.46) is a trivial algebraic equation that is solved for each mode, (m, k ) .  
There is no coupling in (2.46) between modes. I n  practice we need only tabulate and 
store half of the Green functions, since they always have the symmetries 

8;Gt(r,m, k )  = 8;Gi(r, -m,  k ) ,  (2.47) 

t r*Gi ( r ,  m,  k )  = @;Gi(r, -m,  k), (2.48) 

i?,*G,(r,m,k) = -8$*Gi(r,  - m , k ) ,  (2.49) 

where i = 1,2.  Note that 8;Gi(r, m,  k )  is a real function and that 8,.Gi(r, m, k )  and 
gZ*Gf(r,  m, k )  are purely imaginary. 

We conclude this section by noting that the additional numerical calculations 
needed to remove the time-splitting error by this Green-function method are 
negligible. On the other hand, the amount of memory needed to store the Green 
functions appears to be significant since i t  is O(NMK). However, with the method 
of fractional steps outlined previously ((2.11)-(2.16)) i t  is necessary to  invert V2 once 
with Neumann boundary conditions (for the pressure step) and once with Dirichlet 
boundary conditions (for the viscous step). The two types of inversions require storing 
Haidvogel-Zang factorizations of V2 for both types of boundary conditions. By using 
the Green functions we only invert V2 with Dirichlet boundary conditions and thereby 
save the 0(2N2M) words of memory needed to store the Haidvogel-Zang factorization 
with Neumann boundary conditions. (We would not have this saving if we used 
Neumann boundary conditions in defining (see (2.28)) or in the definition of xi (see 
(2.40) and (2.41)).) Therefore no net increase in storage is needed to use the 
Green-function method. We note that this Green-function procedure is similar to one 
that was used by Marcus (1979) for a simulation of thermal convection in spheres. 
It is also similar to  a capacitance-matrix method used by Kleiser & Schumann (1980) 
for simulation of channel flow. We note, however, that Kleiser & Schumann’s method 
does not use the Haidvogel-Zang factorization for inverting V2, and therefore i t  is 
not efficient to store the Green function. Kleiser & Schumann must recalculate their 
set of Green functions a t  every timestep, which makes their method twice as time 
consuming as our method. 

1 a N + 1  v * i i N + 1  a t  r = a 

3. Tests of the numerical code 
Linear eigenvalues 

To determine how well our initial-value code for solving the Navier-Stokes equation 
works, we have written a second, independent, code that computes the linear 
eigenvalues and eigenfunctions of the general circular Couette flow where the angular 
velocity Qout of the outer cylinder is non-zero. The eigenvalue code uses a fourth-order 
solver and has no time-splitting errors. I n  table 1 we list for several values of radius 
ratio, Reynolds number and Qin/Qout the published eigenvalues (T of eigenmodes of 
the form v =f(r) exp (im, q5 + iaz- i d )  that have been calculated by other authors 
using a variety of analytic and numerical methods. Also listed in the table are the 
eigenvalues produced by our fourth-order solver and the eigenvalues (that is, the 
growth rates for Im (g) and wave speeds for Re (g)) produced by our initial-value code 
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where we have used the eigenmodes (produced by the fourth-order solver) as the 
initial value for the velocity field. 

Note that the published eigenvalues correspond to calculations with the Reynolds 
number equal to  the critical value for the onset of the perturbation. Therefore the 
imaginary parts of the published eigenvalues are all zero. The comparison between 
our eigenvalues and the published eigenvalues tests our numerical computation of 
the critical Reynolds numbers and (for m =I= 0) the numerical calculation of the wave 
speed. From table 1 i t  is clear that the real part of the eigenvalues computed by 
Krueger, Gross & DiPrima (1966) and those produced by our fourth-order solver agree 
to within one part in lo4. At the Reynolds numbers corresponding to the critical 
values determined by Krueger et al. the imaginary parts of our eigenvalues (growth 
rates) are negligible. It is also apparent from table 1 that the eigenvalues from the 
fourth-order solver and those implied by the growth rates and wave speeds from our 
initial-value code also agree to within one part in lo4. 

Numerical consistency of computed solutions 

One useful measure of the accuracy of our code is the calculation of V’u in units of 
the characteristic Taylor-vortex velocity vChar divided by the characteristic length 
d of the Taylor vortices. This normalized divergence is less than lop6 everywhere in 
the fluid at all times. (Without using the Green functions to remove the time-splitting 
errors, this normalized divergence is of order unity a t  the boundaries for typical 
timesteps.) 

When a solution converges to a steady state, either to the axisymmetric Taylor- 
vortex flow or to the non-axisymmetric one-travelling-wave state (viewed in the 
correct rotating frame), we can compute a second test of the solution’s accuracy. We 
define Y by 

Y IV x [ - (o’*V) o’+ R-’ V2d]l. (3.1) 

If the flow appears as a steady state to an observer in some rotating frame, then Y 
will be identically equal to zero in that frame. When Y is measured in units of 
( ~ , ~ , , / d ) ~  we find i t  to  be less than a t  every point in the fluid for both the 
axisymmetric Taylor-vortex flows and for the one-travelling-wave states. The 
fact that  we have independently numerically determined that the velocity is 
divergence-free and that Y is zero (and that the no-slip boundary conditions on the 
velocity are satisfied) verifies that  our initial-value code produces correct steady-state 
solutions. 

Temporal accuracy 

The temporal accuracy of our code has been checked in several ways. The code was 
designed to have temporal errors of O(R-l At, At2) (see $2) .  By varying the timestep 
At at large Reynolds numbers (R > 100) we have confirmed experimentally that the 
errors in the velocity’s growth rate and wave speed are proportional to At2. 
Furthermore, we have computed the one-travelling-wave state in the inertial frame 
(which is periodic in time) and followed this flow for several revolutions of the inner 
cylinder. We have compared this time-dependent calculation of the flow with the 
steady-state calculation of the same flow (computed in the proper rotating frame). 
We find that after 10 inner-cylinder revolutions the amplitudes of the two calculations 
agree to one part in lo6 and the phases agree to one part in lo5. The timestep used 
in this comparison was At = the inner-cylinder rotation period/48. 

Two other tests of the temporal accuracy of the code are the measurements of the 



58 P. S .  Marcus 

energy and angular moment,um. The total rate of change of the angular momentum 
of the fluid is the difference in the torques applied at the inner and outer cylinders. 
The angular momentum of the fluid per unit length of the cylinder is 

2' = 2n drvi(r ,  m = 0, k = 0, t )  r2, s," 
where the inner radius a and outer radius b are respectively q / ( l - q )  and 1/ (1  -q) 
in dimensionless units. The torques (per unit axial length) exerted on the fluid by 
the inner and the outer cylinders are respectively 

and 

wi(r,  m = 0,  k = 0, t )  

r 
G ~ ,  = -2xa3~-1  - (3.3) 

(3.4) 

A good test of the temporal accuracy of the code is to determine the numerical 
accuracy of the angular-momentum-balance equation 

~ ( t z ) - ~ ( t l )  = Jt:dt (Gin-Gout), (3.5) 

where the flow a t  time t ,  is in a different state (for example, the axisymmetric 
Taylor-vortex state) than the flow is in at time t, (such as the one-travelling-wave 
state) and where t, - t, is several inner-cylinder rotation periods. We have found that 
(3.5) is typically satisfied to 1 part in lo5 for t,-t, = 10 inner-cylinder rotation 
periods. 

The rate at which energy enters the fluid (per unit length) a t  the inner cylinder 
is 

Zin = GinSZin. (3.6) 

We remind the reader that  SZi, in dimensionless units is (1  - q ) / q .  If the outer cylinder 
is held stationary there is no energy exchange a t  the outer cylinder. The rate of loss 
due to viscosity (per unit axial length) of the fluid is 

(3.7) ZdiS = 2R-1(2n + &), 

where 8 is the enstrophy per unit axial length : 

+jdr r (V x v),dq5dx 

s dz 
b =  

For a steady-state solution 2dis  should of course be equal to Ein, but a much more 
stringent test of the numerical temporal accuracy is to see how well the integrated 
energy-balance equation is satisfied : 

E(t,)--E(t,) = dt (Zin-Zdis), (3.9) Itt: 
where E is the kinetic energy per unit axial length of the flow. Typically, we find that 
(3.9) is accurate to one part in lo4 for t ,  - t, = 10 inner-cylinder rotation periods. The 
energy-balance equation is more prone to numerical round-off error than the 
angular-momentum-balance equation because the angular momentum and torques 
involve only the large-scale (m = 0, k = 0) Fourier mode, whereas the kinetic energy 
and the viscous dissipation rate Edis depend on all of the Fourier modes. 
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Since angular momentum is conserved, we can define an angular-momentum 
flux FC 

(3.10) 

where E i s  the angular momentum density (i.e. prv+(r, m = 0, k = 0, z )  in dimensional 
units). The outward radial component of the mean (averaged over q5 and z )  
angular-momentum flux per unit axial length in dimensionless units is 

At the cylinders’ boundaries 2nrpdr) is, of course, equal to Gin and Gout. If a flow 
appears as a steady state in any rotating frame, then 21trF13r) should be independent 
of radius. For the Taylor-vortex flow and for the one-travelling-wave flow we find 
that the fractional variation in 21crFdr) over the entire radius is about one part 
in lo6. 

Finally, we note that our results have been checked for adequate spatial resolution. 
Truncation and aliasing errors are both due to miscalculation of the nonlinear term 
v x w .  We now estimate upper bounds for both errors and show that they have the 
same order of magnitude. Let us restrict ourselves to errors due to insufficient trunca- 
tion and aliasing in the axial direction. We denote by vk and ( v  x u ) ~ ,  the kth axial 
Fourier components of v and v x w ,  where - K  < k < K.  By numerical experimen- 
tation with R, < R < 15R, and 7 x 0.875 we have found that vk x wk x O(e-alkl) 
(see figure 5 of Part 2). The product ( v  x o ) ~  is the convolution sum 

( v  x w)k = c x vp x wq. (3.12) 
P q  

p+q=k 

Owing to the exponential nature of the spectrum, the k largest terms in the sum are 
O(e-cLlkl). The truncation error in the sum is dominated by the neglected terms that 
contain either w? ( K + l )  or v * ( ~ + ~ ) .  The neglected terms are O(e-a(2K+z-k)). Therefore 

Typically, 01 is approximately 1.5 (see Part 2). Therefore, with K =  16 the 
upper-bound fractional truncation error in ( v  x o ) ~  is less than the machine precision 
of for lkl < 6. In  the worst case, when Ikl = K ,  the upper-bound fractional error 
is e-3. However, a fractional error in ( v  x of eP3 does not mean that there is a 
fractional error of e-3 in vk (see below). 

The aliasing error in ( v  x o ) ~  is due to our collocation method, which contaminates 
( V X W ) ~  with terms that really belong to ( V X O ) ~ ~ - ~ .  Since the characteristic term 
in ( v  x o ) ~ ~ - ~  is O(e-a(2K-k)), the upper bound to the fractional aliasing error in ( v  x o ) ~  
is O(e-2a(K-k)), or eZa times the upper bound to the fractional truncation error. 
Therefore i t  is apparent that aliasing errors have the same k- and K-dependences as, 
and are not much greater than, the truncation errors. Although the aliasing error can 
be found directly by comparing the values of ( v  x o ) ~  computed with 2K collocation 
points with the value computed with 3K collocation points (which is alias-free), i t  
is more useful to  find the combined effects of truncation and aliasing on v by doubling 
the number of spectral modes. For an axisymmetric Taylor-vortex flow with n = 0.95, 
a = 2n/1.988 and R = 1.3R, and K = 16 and 32 we have found that the greatest 
fractional change in value of vk occurs for the largest (k( and is 0 ( 1 O p 6 ) .  The reason 
that the fractional error of vK is much smaller than the fractional error in ( V  x 
is that the modal equation for vK is dominated by the linear viscous term, not the 

an upper bound on the fractional error in ( v  x w ) ~  due to truncation is O(e-2a(K+1-k) ). 

3 F L M  146 
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nonlinear term. We also note that errors due to aliasing and truncation can usually 
be easily detected by plotting the energy spectrum of vk .  An upward curl in the 
spectrum a t  large harmonic numbers usually indicates lack of spatial resolution (see 
figure 24 of Part 2) .  

4. Comparison of simulations with laboratory measurements 
Torques 

We have compared our numerically calculated torques with those measured experi- 
mentally by Donnelly & Simon (1960) for axisymmetric Taylor-vortex flow with a 
radius ratio of 7 = 0.5 and for Reynolds numbers up to four times the critical 
Reynolds number for transition to Taylor-vortex flow. One difficulty in comparing 
the calculated torques with the experiments is that  the torque depends on the axial 
wavelength. The torque measurements of Donnelly & Simon (and almost all other 
experimentalists) are done with opaque outer cylinders SO that  the axial wavenumber 
is not known and must be assumed a priori. (It is also not known how constant the 
axial wavelength is among the different Taylor cells nor is i t  known how the finite 
length of the cylinder affects the torque - see Alziary de Roquefort & Grillaud (1978).) 
For these reasons we do not present a detailed comparison between our numerical 
torques and the experimental values. We are content with noting that for 
R,  < R < 4R, the torque of Taylor-vortex flow varies by a factor of three, and over 
this entire range our numerical values agree with the experimental values to within 
2%.  We believe that a more detailed comparison (i.e. more detailed than the 
experimental uncertainties warrant) is highly misleading. 

We have not attempted to compare our calculated torques with the experimentally 
measured values for non-axisymmetric travelling-wave flows. For laboratory data 
acquired without simultaneous flow visualization, the comparison would require 
assuming not only the axial wavelengths and the effects of finite-length cylinders, 
but also the azimuthal wavenumbers of the experimentally measured flow (cf. Eagles 
1974). 

For Taylor-vortex flow with 7 = 0.5 and a = 2n/1.988, we have compared the 
torques computed by our initial-value code with those computed by Meyer-Spasche 
& Keller (1980, figure 3 ) ,  who used a steady-state solver. For R < 2.ORC our torques 
agree within 1 yo. For R = 3.OR, the agreement is within 2.5 yo. For computations a t  
this Reynolds number Meyer-Spasche & Keller used a Galerkin spectral sum with 9 
cosine modes in the axial direction. By plotting the energy spectra as a function of 
axial wavenumber and observing an upward curl a t  high axial harmonic numbers, 
we found that 9 axial modes are insufficient for complete spatial resolution a t  
R = 3.ORC. To determine whether the truncated spatial resolution could be a source 
of error, we calculated the torques with our initial-value code using both a 9- and 
a 32-term cosine series. The two torques differed by 2 yo. Another possible source of 
disagreement between our code and the code of Meyer-Spasche & Keller is that we 
have a stricter convergence criterion; a necessary condition for our terminating a 
calculation (for steady-state equilibrium) is that the fractional variation of the 
angular momentum flux (or torque) over the entire radius of the fluid be less than 
low6 (see (3 .11 ) ) .  Meyer-Spasche & Keller report fractional variations of up to 3%.  

Wave speeds 

We believe that a comparison of the numerically computed and experimentally 
measured speeds of the waves in wavy-vortex flow is the best test of a numerical 
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R 2n S1 

R, a Corn pu ted Measured 
- - 

3.98 2.4 0.3443+0.0001 0.3440f0.0008 
3.98 3.0 0.3344t0.0001 0.3347 f0.0007 
5.97 2.2 0.3370 rf- 0.0001 0.3370 rf- 0.0002 

TABLE 2. Comparison of computed and measured wave speeds (7 = 0.868, m, = 6) 

simulation. Not only can the wave speed be measured much more precisely than the 
torque, but also the numerical experiments show that the wave speeds are a sensitive 
indicator of a code’s accuracy. We have found that any compromise in numerical 
resolution changes the wave speed by several percent. In  particular, improper 
treatment of boundary conditions markedly changes the wave speeds, especially in 
the limit as y + l  (see $2) .  

To determine the degree of accuracy which we expect our numerical code to 
reproduce the laboratory values of the wave speed, we note that there are strong 
physical constraints on sl. As shown in Part 2 ,  the wave speed is determined by the 
azimuthal velocity of a fluid surface located far from both boundary layers. For large 
R (i.e. R > 4Rc) and large 7 (i.e. 7 > 0.8) the azimuthal velocity of the fluid far from 
the boundary layers has only about a 25 Yo variation; therefore we believe that even 
a poorly resolved code with the correct boundary conditions should be able to reproduce 
wave speeds within 25 yo of their measured values for R > 4R, and y > 0.8. A code 
that produces wave speeds with errors of 5 or 10 yo is not necessarily quantitatively 
accurate. A quantitatively correct code should produce wave-speed errors on the 
order of the experimental accuracy, which is less than 1 yo. 

Our numerically calculated wave speeds correspond to an infinite aspect ratio r, 
so to compare our numerical speeds with laboratory experiments (made a t  finite 4, 
i t  is necessary that the speeds be measured in the laboratory as a function of r and 
then extrapolated to r = co. For 7 = 0.876 and R FZ 4Rc the difference between the 
extrapolated value of s1 a t  r = co and the s1 observed a t  the largest aspect ratio 
measured (r z 80) is approximately 2 yo. The experimental uncertainty in the 
extrapolated value of s, at  r = co is approximately 0.2 yo. 

In table 2 we summarize the results of King et al. (1984), which compares the 
experimental and numerical value of the speeds of m, = 6 one-travelling-wave flows 
a t  y = 0.868 for different values of h and RIR,. The important feature of the table 
is that  the numerical and laboratory speeds agree to within the laboratory 
uncertainties. Details of the laboratory measurements appear in King et al. The 
numerical wave speeds in table 2 were computed with 33 radial Chebyshev modes, 
32 axial Fourier modes, and 32 azimuthal Fourier modes where the modes were chosen 
so that all symmetries of the one-travelling-wave flow were fully exploited. 

The errors in the numerical calculations are due to both the finite timestepping 
and the finite spatial resolution (which includes the aliasing error). The error due to 
spatial resolution was estimated by computing the flow three more times, each 
recalculation corresponding to reducing the spatial by half in each of the three 
dimensions. The fractional change in s1 is O(5 x lop4), which is less than the 
timestepping error. 

The timestepping errors in the flow velocity (see § 2 ) ,  are of O(At /R ,At2) .  By 
plotting the change in the velocity field as a function of At, we have found that the 
error in the velocity scales as (At)z .  Presumably the At2 error dominates the AtlR error 
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because R is large (greater than 100) for wavy-vortex flows, with 7 z 0.875. Typical 
calculations were made with At in the range 71160 < At < r/2000, where r is the 
period of the inner cylinder. 

The uncertainty shown in table 2 ,  Asl/sl z 3 x lop4, is due to the uncertainty in 
extrapolating the value of s1 to At = 0. Note that this fractional uncertainty is three 
times the fractional error in the wave speeds that we found when we comparcd the 
speeds from our initial-value solver with the speeds from our fourth-order cigcnvalue 
solver (see table 1 ) .  

5.  Discussion 
In  this paper we have presented the details of a numerical mcthod that computes 

Taylor-Couette flow by solving the Navier-Stokes equation as an initial-valuc 
problem. Furthermore, we have demonstrated that the method works, by showing 
that the numerical results are self-consistent, that they agree with other published 
numerical work, that they agree with analytic results, and most importantly that 
they agree with laboratory measurements. 

The most difficult numerical task solved in this paper is the removal of the 
time-splitting error that  occurs if the viscous fractional step and calculation of the 
pressure head are not done simultaneously. It is interesting that, although both 
cylindrical pipe flow (Patera & Orszag 1981) and Taylor4ouette flow require solving 
the Navier-Stokes equation for a divergence-free velocity field in a cylindrical 
geometry with periodic boundary conditions in the axial direction, the time-splitting 
does not cause an appreciable error in pipe flow, but does cause a large error 
in Taylor-Couette flow. The reason why the rotating flow is sensitive to the splitting 
error is that the forcing terms for Taylor-Couette flow arc a t  thc radial boundaries, 
while in the pipe flow the radial boundaries are rather unimportant. This difference 
in sensitivity to the time-splitting error illustrates the fact that  numerical codes that 
solve the Navier-Stokes equation in some particular geometry are not equally good 
for all problems. The subtleties of the physics of a flow should he considered before 
blindly applying a numerical method. All numerical codes produce small errors that 
contaminate the velocity. If the flow is not sensitive to these errors it is pointless to  
remove them, but if the flow is sensitive then some additional care must be taken. 

There are several extensions of the use of Green functions to remove time-splitting 
errors that would be useful. Green functions can be used efficiently in our calculation 
because in two spatial dimensions (qi and z )  our flow is periodic. We would like to 
modify the Green-function method so that  it is efficient for flows where only one 
spatial dimension is periodic (for example Rayleigh-BBnard convection in a cylinder) 
or for flows with no spatial periodicity. 

Another planned extension of this work is to use the method of artificial time, 
outlined in $2, to compute unstable equilibria. A disadvantage of initial-value codes 
is that often they cannot converge to an unstable equilibrium, while steady-statc 
solvers usually can. It may be possible to compute these unstable equilibria using 
an initial-value code with artificial time. We have already found examples of flows 
that are unstable with respect to real-time perturbations, but are stable to perturb- 
ations in artificial time. An initial-value code that uses artificial time converges to 
these unstable equilibria. The advantage of using an initial-value code over a 
conventional steady-state solver that  uses a Newton-Raphson method is that the 
matrix inversion required with the latter method frequently prohibits detailed spatial 
resolution. 
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We believe that the best test of a code that simulates Taylorxouette flow 
numerically is the comparison between the numerically simulated wave speeds and 
the experimentally measured speeds. At the present time torques have not been 
measured sufficiently accurately (i.e. with fractional errors less than 2 yo) to allow 
measurements to be a definitive comparison between experiments and numerics. For 
all comparisons it is necessary that the laboratory flow be measured in a way that 
allows the axial wavelength and azimuthal wavenumber to be unambiguously 
determined. It is also necessary that either the numerically simulated flows include 
the same finite-axial-length end effects as the experiments or that the experiments 
be done for a sequence of large aspect ratios, so that the experimental results can 
be extrapolated to infinite aspect ratio. I n  this paper we have compared the numerical 
simulations to experimental results that  were exbrapolated to infinite aspect ratio. 
The fractional errors in our numerically computed wave speeds are within the 
experimental uncertainties. For T/ = 8.75 and R 5 4R,, the experimental uncertainty 
is less than 0.2 yo. 
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