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Two intersecting beams of internal gravity waves will generically create two wave packets by nonlinear
interaction. The frequency of one packet will be the sum and that of the other packet will be the difference
of the frequencies of the intersecting beams. In principle, each packet should form an “X” pattern, or

“St. Andrew’s cross’’ consisting of four beams outgoing from the point of intersection. Here we derive

selection rules and show that most of the expected nonlinear beams are forbidden. These rules can also be

applied to the reflection of a beam from a boundary.
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Introduction.—Interacting internal gravity waves in
stratified fluids have been studied for over a hundred years
[1]. Thus, it is surprising that there is a set of previously
unknown selection rules that forbids most of their non-
linear interactions. Internal gravity waves are currently of
interest because their reflections (i.e., interactions with
their “images’’) from the ocean floor may sculpt continen-
tal shelves [2]. Also, our numerical experiments have
shown that interacting internal gravity waves can form
vortices in protoplanetary disks [3].

A two-dimensional, compact source of gravity waves
oscillating at frequency = w creates four, columnated out-
going beams in an “X”’ pattern, as in Fig. 1, known as a
“St. Andrew’s cross” [4]. There are four beams, or “legs”,
because the angle 6 of each beam with respect to the
positive x axis obeys the dispersion relation

lol/N = |sind|, ¢))
where N =+/—g(dp/dz)/po is the Brunt-Viisild fre-

quency, dp/dz is the vertical (z) density gradient of the
unperturbed fluid, g is the acceleration of gravity, and p, is
the average density. Intersecting beams can produce first
harmonics with frequencies w equal to the sum or differ-
ence of the frequencies of the interacting beams, subject to
the solvability condition imposed by Eq. (1): 0 < |w|/N =
1. Thus, two interacting beams should produce a St.
Andrew’s cross with a “low frequency” equal to the dif-
ference of the absolute values of the frequencies of the
interacting beams. A second St. Andrew’s cross with a
“high frequency” equal to the sum of the absolute values
of the frequencies of the interacting beams will also be
created if the solvability condition is satisfied. Thus, one
expects either four or eight harmonic beams or legs.
However, in many simulations and experiments of inter-
acting beams of internal gravity waves (e.g., Figs. 2(a),
2(b) in [5]; Fig. 2(b) in [6]; and Fig. 3(a) in [7]), one or
more legs are missing. Fig. 2 shows another example of
missing beams: the two primary beams have the same
frequencies, = w, so the low frequency St. Andrew’s cross
cannot form. However, we would expect the beams to pass
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through each other, interact and create a high frequency
cross because |w| < N/2. In Fig. 2(a) the sources of the
primary beams are located at the right-side corners, and
only two of the four expected legs are created. In Fig. 2(b)
the sources of the primary beams are at the top, and no legs
are created. Tabaei ef al. [8] found selection rules govern-
ing the creation of harmonic legs that correctly predicted
that the interaction in Fig. 2(a) creates only two, of the
possible four, legs. However, their rules are incomplete;
they also predicted that the interaction in Fig. 2(b) would
create all four legs [Fig. 6(b) and Table I in [8]].

Here we derive the complete set of selection rules for
interacting beams of gravity waves. A beam consists of a
packet of complex conjugate pairs of plane waves
eikxtkzton with a continuum of wave numbers con-
strained such that all of the waves’ group velocity vectors
¢ point in the same direction. From Eq. (1) the absolute
value of the frequencies of all plane waves in a beam must

cout <2) woutkout(Q) woutkout(l) Cout(l)

cout(g)A woutkout(g) woutkgut(4) Acout(4)

FIG. 1. St. Andrew’s cross of beams propagating from the
origin. Each beam is labeled with its quadrant n. Each thick,
double-headed arrow represents a group velocity ¢®(n) of a
typical plane wave in the beam. Each thin, single-headed arrow
shows the product of that plane wave’s wave vector k°"(n) and
frequency w°"'. Although a beam is a continuum of plane waves,
the group velocity vectors of all of a beam’s plane waves point in
the same direction #°*(n). In this “‘thought experiment”, all
plane waves in a beam have the same frequency «°®"; i.e., the
beams are not made of complex conjugate pairs of waves.
Relative directions of the thin and thick vectors are drawn

consistent with Egs. (2) and (3).
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FIG. 2. Numerical simulations of physical beams, shown by
the magnitude of their vertical velocities. Each primary beam has
frequencies of *w with |w|/N = 0.3746 < 1/2. (a) (left) The
primary beam sources lie within the circles in the corners on the
right side of the panel. Both primary beams propagate to the left,
interact, and create two harmonic beams or legs with frequencies
*2w. (b) (right) As in panel (a), but with sources at the top. No
harmonic beams are produced.

be the same. It is important to understand the relative
directions of the group velocity vector ¢ and wave vector
k. For internal gravity waves:

sgnic,} = sgn{wk,} 2

sgn{c.} = —sgn{wk.}. 3)

To prove Egs. (2) and (3), note that the dispersion relation
written in its traditional form is

w = =Nk, /k. 4
This dispersion relation and the definition ¢ = Vy w show
wkx = Cx(kkx/kz)2 wkz = _Csz’ (5)

which proves (k - ¢) = 0 and relations (2) and (3). The
definition of # and Eq. (5) show that for all beams:

cothd = c,/c, = —k./[k,. (6)

Note that Eq. (1) follows from Egs. (4) and (6). Equations
(4) and (5) show that we must exclude the case when w =
0 (i.e., 8 = 0, or 77) because no plane waves exist and also
the case when |w| = N (i.e., § = *7/2) because ¢ = 0,
and we are only interested in propagating beams.
Although a beam consists of complex conjugate pairs of
waves, consider a thought experiment in which each beam
has only a positive or a negative frequency. Because the
linearized equations for gravity waves are reflection sym-
metric about the x and z axes, we let one beam, labeled as
the zeroth beam, approach the origin from the first quad-
rant. We use the notation that it has frequency ™ (0), wave
vector ki"(0), angle #™(0), and group velocity ¢"(0) point-
ing toward the origin. At the origin this beam intersects a
second beam, also pointing toward the origin, with fre-
quency ™ (j), wave vector ki"(j), group velocity ¢"(j),
and angle 0™ (j) with j = 1, 2, 3, or 4. We use the notation
that the second beam lies in the jth quadrant. The inviscid,
linearized equations for gravity waves are reversible in
time, so we can require »™"(0) to be positive, and by using
the reflection symmetries we can also require that ™ (0) =
|w™(j)| for j =1, ..., 4. Similarly, the four harmonic out-

going beams generated at the origin (Fig. 1) have fre-
quency w°", wave vector k°(n), group velocity ¢°*(n),
and angle 6°*'(n), where n is the quadrant that the beam
propagates into, and n = 1, ..., 4. Because the outgoing
waves in the nth beam are generated from the waves in the
incoming zeroth and jth beams by quadratic nonlinearities:

0 = "(0) + w"(j) )
k() = k(0) + k" (j). (8)

Note that »°" is independent of the quadrant n of the
outgoing beam. Using Egs. (1) and (7), we obtain

cof6™ ()] = —(~ 1"y N*/[&"(0) + &"()F ~ 1. (9)

The sign of the right-hand side of Eq. (9) is obtained by
satisfying the geometric tautology that sgn{cot[#°"'(n)]} =
—(—1)". From Egs. (6) and (8):

kn(0) + K"(j) = — cot[#°*(n)[K(0) + kN(j)].  (10)

Using Eq. (6) to express the x components of k"(0) and
k™(j) in terms of their z components, we multiply both
sides of Eq. (10) by »™(0) to obtain:

[0™0)k1(0)18(n, j) = —[0™(0)/ 0™ ()™ ()KP()],
(1)
where

1 — cot[#°"(n)] tan[6™(0)]
1 — cot[#°(n)]tan[6™(j)]

First selection rule—We obtain our first selection rule
by requiring that the signs of both sides of Eq. (11) are the
same. Equation (3) shows that sgn{w™(0)k"(0)} =
—sgn{c"(0)}. Because the zeroth incoming beam lies in
the 1Ist quadrant, sgn{c"(0)} = —1. Thus, Eq. (11) be-
comes

B(n, j) = (12)

sgn{B(n, j)} = sgn{x(j)}sgn{c" ()}, (13)

where x(j) = »™(j)/»™(0). Note that sgn{c"(j)} is nega-
tive for j = 1, 2 and positive for j = 3, 4. The sign of B is
found on a case by case basis:

Beams with sgn{x(j)} = +1.—For example, when
sgn{y(j)} = +1, we can show that sgn{B(n, j)} = +1,

for all n and j. To see this, define a function f(y) =

J1/y — 1. Note that df /dy < 0, and that
fly1) = lcot[6™(0)]|  for y; = [«™(0)/NT
fly2) = lecotld™ (NI for y, = [w™(j)/NT
f(y3) = lcotl 0 (m)]| (14)
for y; = [@™(0)/NT + [w™(j)/NT
+ 2sgn{x()Hw™(0)/Nllw™(j)/NI.

Because y; < y3 and because df/dvy <0, we can show
that | cot[ #°"*(n)] tan[#™(0)]| < 1. Thus, the numerator of
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B(n, j) in Eq. (12) is positive. Similarly, because y, < ys,
the denominator of S is also positive. This shows that
sgn{B} = +1. Therefore, the signs in Eq. (13) are consis-
tent if and only if ¢"(j) > 0, or equivalently, if and only if
j =3, 4. Thus, in this thought experiment, harmonic
beams can be created only when j = 3 or j = 4, but this
rule imposes no restriction on the quadrant n of the beam
produced by the interaction. Note this rule (i.e., that j = 3
or j = 4) explains why the interaction in Fig. 2(b) creates
no harmonic beams.

Beams with sgn{y(j)} = —1.—In this case, we have
v3 > v, if and only if |w™(j)| > 2|w™(0)|. However, this
is never true because we assumed that |0™(j)| = |0™(0)],
for j = 1,...,4. Thus, the sign of the numerator of 8 is
(—1)" for all j and n.

Beams with sgn{x(j)} = —1 and |0 (j)| <|0™(0)|/2.—
In this case, y3; > vy,. Thus, the denominator of B is
positive for all n and j, and sgn[B(n, j)] = (—1)".
Therefore, Eq. (13) shows: for j = 1 or j = 2, n must be
even; and for j = 3 or j = 4, n must be odd.

Beams with sgn{x(j)} = —1 and |0 (j)| > |0™(0)| /2.—
Here, the sign of the denominator of B(n, j)is (—1)!""*/,
so sgn[B(n, j)] = (—1)'"/ for all n. Equation (13) shows
that beams can be produced in all quadrants if j = 1, or
Jj = 4, and never produced if j = 2 or j = 3.

Beams with  sgn{x(j)} = —1 and |o™(j)|=
|w™(0)|/2.—In this case, when n + j is even, no harmonic
beams are created. This is due to the fact that in this case
the denominator in 8 in Eq. (12) is zero, and Eq. (11)
shows that k"(0) = 0, so, ¢"(0) = 0 which corresponds to
a nonpropagating beam and is not a case of interest. When
n + j is odd, then sgn{B(n, j)} = (—1)". Equation (13) is
satisfied only when j = 1 and n is even, or it is satisfied
when j = 4 and n is odd. Thus, no beams are ever gen-
erated if j = 2 or j = 3.

Although our analysis used positive »™(0), our results
extend to negative values. It can be shown that the selection
rules depend only on the relative signs between w™"(0) and
w™(j), for j=1,...,4, 1ie., on sgn{x(j)}.

Second selection rule—A second rule comes from
requiring that the signs on both sides of Eq. (8) are the
same. Both the x and z components must be satisfied.
Again, this selection rule must be examined on a case by
case basis. However, for half the cases, the two terms on
the right-hand side of Eq. (8) have the same sign, and the
rule can be determined by ‘‘inspection”. For example,
consider the z component of Eq. (8) for an incoming
beam with j =4 and with sgn{w™"(j)} = —1. Because
sgn{c"(0)} = —1 and because sgn{w™(0)} = +1, Eq. (3)
shows that sgn{k"(0)} = +1. Equation (3) also shows
that sgn{ki"(4)} = +1. Therefore, Eq. (8) shows that
sgn{k%"(n)} = +1. By assumption, |0™(0)] = |w"(4)],
so Eq. (7) shows that sgn{w®"} = +1. Therefore
sgn{c"(n)} = —1, and n must be 3 or 4.

For cases in which the two terms on the right-hand side
of Eq. (8) have opposite signs, the sign of the right-hand
side is not obvious, and the 2nd Selection Rule cannot be

determined by inspection. However, even in this case, the
sign of the right-hand side of Eq. (8) can be determined and
the 2nd Selection Rule found. The trick is to note that
the sign of the right-hand side depends on whether
|k (j)/Kk2(0)] = | B(n, j)| and [K"(j)/kR(O)] = |B(n, j) ¥
tan[6™(j)]/ tan[6#™(0)]| are greater than or less than unity.
Finding these values is easy, but must be done on a case by
case basis similar to the way we determined sgn{B(n, j)}
above. The results of all of our selection rules are summa-
rized in Table L.

Application of selection rules to physical beams.—A
physical beam of gravity waves, rather than a thought
experiment, consists of complex conjugate pairs of waves.
To exist, the high frequency St. Andrew’s cross requires
[lo™(0)| + |@™(j)|] < N. The rules for that cross are in the
first row of Table I: the high frequency cross can only be
produced if j = 3 or 4, and has only two legs (with n = 2,
3). Using reflection symmetries, we generalize these state-
ments so that no beam needs to be in the first quadrant: a
high frequency cross is produced only if one of the incom-
ing beams propagates upward and the other downward.
The cross has only two outgoing beams—one propagates
upward and the other downward. Both outgoing beams
propagate horizontally in the same direction as the incom-
ing beam with the higher absolute value of its frequency. If
the two incoming beams have the same frequency and
propagate in opposite directions, then no high frequency
beams, or legs, are produced.

A low frequency St. Andrew’s cross has two, or fewer
legs and cannot form if |w™(0)| = |w™(j)|. The rules for
that cross are in the bottom three rows of Table I. As above,
we use reflection symmetries to generalize the rules. The
second row of Table I is the case when the absolute value of
the frequency of the incoming beam with lower frequency
is less than half the absolute value of the frequency of the
beam with higher frequency. In this case, a low frequency

TABLE I. Selection rules for creating harmonic beams from
two primary beams intersecting at the origin. One incoming
beam, labeled as the zeroth lies in the first quadrant with
frequency w™(0). The second incoming beam lies in the jth
quadrant with frequency ™ (j). Depending on the value of y =
0™ (j)/w™(0), there are four possible scenarios, indicated by
each of the four rows of the table. The first two columns specify
x- (Without loss of generality, |y| = 1.) For each row, the
quadrant numbers n of the allowable outgoing beams are listed
as a function of j (column). Solvability requires |w™(j) +
»™(0)] < N. This table uses both the first and second selection
rules. For a harmonic beam to exist, it must satisfy both rules.
When sgn{y} = +1and j = 3, no harmonic beams are produced
if w"(3) = w™(0).

sgn{y} range of || j=1 j=2 j=3 j=4
+1 none none 2,3 2,3
-1 xl <1/2 2 2 3 3
-1 x| =1/2 2 none none 3
-1 12<|xl=1 1,2 none none 3,4
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FIG. 3. Schematic and a numerical simulation of physical beams verifying the selection rules in the fourth column and top two rows
of Table 1. Here, 6™"(0) = 40° and 6™(4) = —16°, so | x| < 1/2. (a) (left) Schematic shows: two incoming primary beams from the
right as heavy arrows; the three allowable (according to Table I) outgoing harmonics as thin solid arrows; and the five disallowed
harmonics as dotted arrows. The high frequency harmonic St. Andrew’s cross has two arrowheads and the low frequency harmonic has
one. (b) (center) The vorticity in a numerical simulation with output filtered to show only frequencies with 0" = *+(|w™(0)| +
|w™(4)]), i.e., the high frequency harmonic or top row of Table L. (c) (right) As in (b), but filtered to show frequencies w®' =

+(lw™(0)] — |w™(4)]), i.e., the low frequency harmonic or second row of Table 1.

cross with only one leg is always generated. The outgoing
beam propagates in the same horizontal direction as the
incoming beam with higher frequency. The outgoing beam
propagates vertically in the direction opposite that of the
vertical direction of the incoming beam with lower
frequency.

The third row of Table I is for a low frequency cross
created when the absolute value of the frequency of the
incoming beam with lower frequency is equal to half the
absolute value of the frequency of the beam with higher
frequency. Here, a low frequency cross is created only
when both incoming beams propagate in the same hori-
zontal direction. The cross has only one beam. It propa-
gates horizontally in the direction of the incoming beams.
The outgoing beam propagates vertically in a direction
opposite that of the incoming beam with lower frequency.

The bottom row of Table I is for the case when the
absolute value of the frequency of the incoming beam
with lower frequency is greater than half the absolute value
of the frequency of the beam with higher frequency. In this
case, a low frequency cross is generated only when the two
incoming beams propagate in the same horizontal direc-
tion. The cross has two legs. They propagate vertically in
the direction opposite that of the incoming beam with
lower frequency. The two outgoing legs propagate hori-
zontally in opposite directions.

Discussion.—All of our selection rules have been veri-
fied numerically (e.g., Fig. 3). Our rules are complete
because no harmonic beams allowed by Table I are missing

from our numerical simulations. (We tested all possibil-
ities). The selection rule in [8] is a subset of our second
selection rule; however, the rule in [8] requires only that
the signs on both sides of the x component (but not z com-
ponent) of Eq. (8) are the same. Moreover, in [8] the rule is
stated only for the simple case in which signs can be
determined by inspection. Because the reflection of a
beam from a boundary can be computed as the interaction
of a beam with its “image”, our selection rules can be
applied to reflection, and those rules will be presented in a
future paper.
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