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narrow laminar regime close to the transition from axisymmetric
to non-axisymmetric flow, far from the regime of geostrophic
turbulence. In the experiments of both Hide and Read and
Antipov et al. the forcing was axisymmetric, which contrasts
with the localized forcing produced by our pumping through
inlets and outlets. The small scale of our forcing could be
significant because such forcing is generally a necessary condi-
tion for strong turbulence in a quasi-two-dimensional flow
(energy transfers towards small scales are inhibited).

Our experiment demonstrates that for a wide range of condi-
tions a permanent coherent vortex, like the long-lived coherent
spots on Jupiter, can emerge spontaneously from a turbulent,
incompressible, quasi-geostrophic flow. It is not necessary to
invoke stratification or deformation of the fluid layer to explain
the formation of a stable spot. The dynamical behaviour is
dominated by two-dimensional inertia and the beta effect; fric-
tional effects are secondary, as on Jupiter.

Our experiments and the simulation of Marcus' suggest that
long-lived vortices should form in planetary zones of strong
shear and uniform potential vorticity. Recent estimates'® indi-
cate that the potential vorticity is fairly uniform for the zonal
flows that contain the Great Red Spot and the White Oval BC,
but further measurements are needed for other latitudes where
long-lived vortices are located.

We thank Philip Marcus for suggesting this experiment. This
research is supported by the NSF Program in Fluid Mechanics
and Hydraulics, the Office of Naval Research Nonlinear
Dynamics Program, and the Exxon Education Foundation. J.S.
is supported in part by the Centre National de la Recherche
Scientifique.
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Numerical simulation of Jupiter’s Great
Red Spot

Philip S. Marcus

Department of Mechanical Engineering, University of California at
Berkeley, Berkeley, California 94720, USA

Jupiter’s Great Red Spot is viewed as a vortex that arises naturally
from the equations of motion of the jovian atmosphere. Here 1
solve numerically the equations governing fluid motion in a model
of the jovian atmosphere for a variety of initial conditions. Large
spots of vorticity form spontaneously in chaotic azimuthal flows
and are stable if the vorticity of the spots has the same sign as
the shear of the surrounding azimuthal flow. The Great Red Spot
is compared with these solutions and a new prediction of its vertical
structure is made.

Following Ingersoll and Cuong’, I use a two-layer model in
which the Great Red Spot lies in a shallow layer overlying a
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deep azimuthal flow. In this model the shallow upper layer does
not influence the denser flow beneath it, but the deep azimuthal
flow affects the upper layer by determining its vertical depth.
The velocity v of the upper layer is approximated as two-
dimensional (due to the rapid rotation of the planet) and is
determined by potential vorticity w, conservation:

d Dw,
[5+(V'V)}wp= Dt =0 Q)

We use the quasi-geostrophic 8-plane approximation® for w,

of the upper layer: B
w(r, ¢, t)=w(r, ¢, 1) _Br_w
R

(2

where B is the gradient of the Coriolis force, ¢ is the longitude,
r is the latitude of Jupiter muitiplied by its radius, Ly =
(VgHAp/p)/f is the Rossby deformation radius (a measure of
the vertical stratification), f is twice Jupiter’s angular velocity,
Ap is the difference in density between the lower and upper
layers, and p, H, g, ¥(r, &, t) and o(r, ¢, t)=Vy(r, d, t) are
the density, mean vertical depth, gravitational acceleration,
stream function and vorticity of the upper layer. The azimuthal
velocity of the lower layer is given by the stream function ¢(r).
The physics responsible for the deep flow (convection, latent
heat release, radiation and differential heating, for example)
occurs on timescales that are much longer'® (10%s) than the
dynamical or turn-around time of the spot (~10°s). (In the five
months between the fly-bys of Voyagers 1 and 2, there was no
appreciable change in Jupiter’s azimuthal zones*.) Therefore we
treat Y(r) as a time-independent, but unknown, parameter that
we vary to obtain different numerical solutions. Here, equations
(1) and (2) are solved numerically with spectral methods® and
with impermeable boundaries at r = R; and R,. We use cylin-
drical, rather than the usual cartesian coordinates in equations
(1) and (2) to allow a direct comparison with the cylindrical
laboratory experiments of Sommeria et al®.

I adopt the hypothesis that the jovian zone containing the
Great Red Spot is an approximately axisymmetric, azimuthal
flow with nearly uniform w, that contains isolated patches of
non-uniformity (including the red spot). Although the
hypothesis cannot be tested directly because ¢(r) and Ly are
unknown, it is consistent with their known bounds’. The motiva-
tion for this hypothesis is that numerical simulations have shown
that fluids that obey equation (1) and that are mixed by external
stirring tend to produce flows with nearly uniform w, over much
of their domains’*®. This evolution to homogeneous w, has also
been observed in the laboratory®. Our numerical simulations of
equations (1) and (2) in an annular geometry with no stirring
also show that large regions with homogeneous w, form when
the initial velocity is random but constrained so that its azimuthal
average, 1/(27) ]3" vo(r, @, t =0) d@, is a linearly unstable sol-
ution of equation (1)°. (All axisymmetric, azimuthal flows are
exact solutions of equation (1).)

Typically, the nearly axisymmetric, azimuthal flows with uni-
form w, produced in our simulations and in the experiments of
Sommeria et al. contain a few, small, isolated vortices where the
value of w, differs substantially from that of the surrounding
azimuthal flow. Because the evolution of a general class of initial
flows into nearly uniform w, flows containing isolated vortices
is discussed elsewhere®®, each numerical simulation presented
here begins with an exactly axisymmetric, azimuthal, uniform
w, flow superposed with a finite number of spots of vorticity.
We define ,(r, t) as the velocity of the uniform w, component
of the flow, o= ra(¥,/r)/3r as its shear, and w, as the difference
between the potential vorticity of a spot of vorticity and the w,
of 04(r, t). Note that 04(r, t) is a neutrally stable solution of
equation (1); it has no exponentially growing or decaying eigen-
modes and cannot propagate Rossby waves’.

First, I show that spots with w. the same sign as ¢ are stable
and those with opposite sign are pushed to the radial boundaries
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Fig. 1 The w. of two spots superposed with an axisymmetric,

azimuthal, uniform o, flow with negative shear. The colour scale

follows the order of the spectrum: w, <0 is red, w.=0 is green,

and w,> 0 is blue. The time is in units of the turn-around time of

the initial spots (defined in the text). a, t =0.0; b, t =0.50; ¢, t = 1.5;
d, t=4238.

of the azimuthal flow and fragment. Figure 1 shows a flow
consisting initially of two spots of vorticity of equal strength
and with approximately uniform . but with opposite sign. The
azimuthal flow superposed initially with the spots is 0,(r, 1=
0) = Br’/3+ C/r, where C is a constant equal to L. The flow has
B=1, R,=0.25, R,=1.0 and Ly~ 0. The shear of the initial
b, is a(r,t=0)=Br/3—-2C/r*, and is negative throughout
the entire domain of the flow. Both spots have |w.|=~0.9 (so
|o/w.|=0.7).

Fig.2 Two stable spots initially superposed with an axisymmetric,
azimuthal, uniform w, flow with negative shear. 4, =0.0; b, t = 1.3;
¢, t=2.6; d, t =28.

Fig. 3 Rectangular spots of positive and negative w, superposed

initially with an axisymmetric, azimuthal, uniform o, flow with a

sinusoidally varying shear. The white circles mark the radii where

the shear changes sign. (These are also the extrema of the angular

velocity of the azimuthal flow.) a, t=0.0; b, t=0.057; ¢, t=1.1;
d =11

In Fig. 1b the red spot, with w, of the same sign as o, is stable
and becomes more elliptical, but the blue spot stretches into a
spiral with its inner and outer edges pushed to the inner and
outer boundaries, respectively. The spiral is Kelvin-Helmholtz
unstable®”; it fragments and breaks apart (Fig. 1¢). Finally, Fig.
1d shows an isolated red spot superposed on a chaotic (as
determined by broad peaks in its power spectrum) azimuthal
flow containing many small yellow and blue filaments. If the
azimuthal flow is averaged over scales large compared to the
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filaments but small compared with the red spot, it has uniform
w,. The spot is advected with the velocity of the surrounding
azimuthal flow. Although it continually loses and gains w., it
is statistically steady. The behaviour shown in Fig. 1 is rep-
resentative for a wide range of values of the parameters B, ¥,
Lr and C, including the case B = {/(r) = 0 (neither the gradient
of the Coriolis force nor an underlying topography are essential),
as long as 10>|0/w.|>0.1 and Lg =Ly, where Ly is the
characteristic length over which w, changes (not necessarily the
same as the size of a spot—see below). When parameters are
varied so that |w./o| or Ly decreases, the stable spots become
more elongated in shape’. When |o/w.|>10 they are so
elongated that they can be Kelvin-Helmholtz unstable. When
|o/w.|<0.1 the spots behave as if there were no surrounding
azimuthal flow present. Flows with o>0 have stable blue
spots.

The merger of two stable spots is shown in Fig. 2. The flow
parameters and the initial §, are the same as in Fig. 1, but both
initial spots in Fig. 2a have w.<0. The spots are initially
towards each other by the differential rotation of 7. As the
spots approach, they distort, shed some w, (Fig. 2b), and merge,
trapping weakly rotational fluid (yellow-coloured) at the vortex
centre (Fig. 2¢). The yellow streamer trailing from the vortex is
Kelvin-Helmholtz unstable’ and becomes wavy. Figure 2d
shows a statistically steady spot, superposed on a chaotic
azimuthal flow. Yellow filaments torn from the spots make the
azimuthal flow chaotic, but the azimuthal flow has uniform w,
when averaged over length scales larger than the size of the
filaments. The timescale for mergers is the turn-around time of
a spot, 7=4m/w.. By varying the parameters and initial condi-
tions, we have found that the size of the critical impact parameter
(initial separation in r) necessary for two spots to merge
increases approximately linearly with o/ w. and approximately
equals the sum of the radial axes of the two merging spots. A
derivation of the critical impact parameter based on the assump-
tion that energy in the chaotic component of the flow is maxi-
mized was given earlier’. We have found circumstances where
two spots do not merge if surrounded by a laminar azimuthal
flow, but do merge if surrounded by a chaotic flow with small
inhomogeneities in w,. A possible explanation is that the
dynamics of two isolated spots is constrained to conserve energy
and momentum. Small inhomogeneities in the azimuthal flow
can exchange energy and momentum with the spots, relax the
constraint, and thereby allow mergers.

Notice that between Fig. 2¢ and d the spot has expelled the
weakly rotational, yellow fluid from its centre. We have never
found a stable spot with a local minimum of w, at its centre.
Flows that initially have &, superposed with many small spots,
each with a different value of w., can produce one large spot
by mergers. Moreover, if the flow is so chaotic that the small
spots are well-mixed with each other before and during the
merging, the core of the large spot will have approximately
uniform w,.

Figure 3 shows the dynamics of spots in a uniform w, flow
where the shear of 0, does not have a constant sign. Initially,
o(r,t=0)=3sin[47(r—R,)/(R;~R)l/r and o,(r, t—O)
rIR a(r',t=0)/r dr' —0.46r. The parameters ¢(r) and L% were
chosen such that §(r)/ L% = Br—(1/r)(a/ar)[ri4(r, t =0)] and
Y(r, t)/ L% >0 (this limit corresponds to the ratio of the fluid
density in the upper to lower layers approaching zero). The
white circles show the radii where o =0. If we consider the
annular regions between the circles as ‘zones’, then the o of the
four zones alternates in sign with the innermost zone having
o> 0. Initially, red and blue rectangular spots are superposed
with 7,, but these distort due to the differential rotation of o,
(Fig. 3b). The distortion is at a maximum where 5,/r has an
extremum (at the white circles). The large spots quickly frag-
ment, and pieces with w, of the opposite sign of the local o (7, t)
are expelled from the zones (Fig. 3¢). The small pieces of w,
coalesce and form one large spot in each zone (Fig. 3d). The
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spots alternate in colour from zone to zone and are highly
elongated because o/ w,=5.

Figure 3 shows several properties common to all of our
simulations: several zones with opposite shear can co-exist;
stability of spots does not depend on the proximity of horizontal
boundaries; the sign of the local o determines which spots of
w, are stable and which are ejected from a zone; spots grow by
amalgamating other spots until they either overflow their own
zone (see Fig. 3d) or have amalgamated all available w, (which
occurs when the initial spots are smaller than those in Fig. 3a).
Flows with spots that do not fill their entire zones tend to move
to the radial location where o(r) have a local extremum, in
agreement with the laboratory study of Sommeria et al®. (An
isolated spot can change its radial location only if it exchanges
energy and momentum with another spot or with the small
filaments of w, in the surrounding azimuthal flow.)

Although the dynamics of spots is similar throughout the
range Lr = Ly, the vorticity and velocity distributions inside
the spots vary qualitatively with the value of Ly : a uniform w,
spot with finite L; concentrates most of its vorticity at the edge
of the spot and has a non-rotating centre. In contrast, a spot
with uniform . and with Lg > 00 has approximately uniform
vorticity. This can be demonstrated analytically for the case
B=o0=10,=0 where the spots are circular. The vorticity in a
circular spot with Lg - 0 is exactly uniform, but with finite Lg,
the vorticity is proportional to I,(7/Lg), where 7 is the distance
from the centre of the spot and I, is a modified Bessel function
that increases exponentially in 7. The vorticity drops abruptly
by w, at the edge of the spot, and decreases exponentially
(proportional to the Bessel function K,(7/ Lg)) outside the spot.

The parameters of Jupiter’s Great Red Spot, o/w.~1 and
Ly/Lg =1, are within the range of values presented here, and
the vorticity distribution and shape of the red spot agree qualita-
tively with our simulations. The dynamics of the red spot looks
similar to our numerical simulations, especially the amalgama-
tion of smaller spots, which often leaves trailing wisps of .
downstream of the red spot'®. The red spot, like the flow in Fig.
34, fills its zone (in the latitudinal direction) and like all of our
simulated spots, does not drift with respect to v, except for the
chaotic buffeting it gets from the small filaments embedded in
- (Note that the slow 90-day zonal ostillation of the red
spot'® cannot be produced by our simulations.) There are other
long-lived vortices on Jupiter with dynamics similar to the red
spot!! and our simulations. Although some rotate clockwise and
others anti-clockwise, all of these spots rotate in the same
direction as the local shear, which is consistent with our numeri-
cal simulations.

Because the velocity of the red spot increases exponentially
outward (with Ly;=2,200km) and has a non-rotating centre
with most of its vorticity concentrated at its periphery, it is
possible that it has uniform w.. This suggests that it was created
by a chaotic amalgamation of smaller spots. To see if w, is
uniform in the core of the red spot and to find the value of Lg
at the spot, consider the variation of w, as a function of longitude
(but at fixed latitude). Equivalently, consider the difference in
w, between the points (r,, ¢) and (r., ¢.) where ¢, and r, are
the longitude and latitude (multiplied by the radius of Jupiter)
of the centre of the spot. From equation (2) this difference is

w(re, ¢) = we(re, bc)
=w(r, ¢)-wl(r, d,c)_‘/’(’c’ ¢)_zl/l(rc, ¢

Ly
¢ ’ ’
rcj«bc U,-(rc, d’ )d¢
L%
where | have assumed that Ly is a funcuon of r but not ¢, and

I have used y(r., &)—y(r., ¢.)= ., $')d¢'. The
advantage of equation (3) over equatlon ?i) is that it does not
contain the unknown function §(r). If the left-hand side of
equation (3) is zero, the spot has uniform w,. Substituting the

'—_w(rc’ d’)_w(rc’ ¢c)+ (3)
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observed values'? of v.(r., ¢) and w(r., ¢) into the right-hand
side, we find that the left-hand side is ~0 when Lg = 1,300 km.
The fit is particularly good for distances <9,000 km from the
centre of the red spot. (The semi-major axis of the red spot is
~13,000 km.) This calculation of Ly is the first to be made based
on the dynamics of the red spot, and it is consistent with the
estimates based on the thermal structure of the atmosphere®.
This calculation suggests that the red spot has a large, 18,000-km
diameter core with a nearly uniform potential vorticity, that the
size of the spot is much greater than Lg, and that Lg = Ly,.
The picture here is that the red spot is embedded in a chaotic
but approximately uniform w, zone. It formed by amalgamating
the small patches of w, that continually form on Jupiter due to
small-scale processes (first suggested by Ingersoll'), grew in size
until it overflowed its zone, and is currently in statistical equili-
brium—continually exchanging . with the surrounding flow.
Although my two-layer model of the jovian atmosphere is sim-
plistic, it produces robust, long-lived vortices that are dynami-
cally similar to the red spot. Future calculations will need to
include a more realistic vertical structure. My assumption that
the zone surrounding the red spot has a nearly uniform w, will
also have to be tested. The spots of vorticity produced by our
model are stable if they have the same sense of rotation as the
zonal shear, can exist in chaotic flows, and tend to coalesce.
The spots with finite L are like the jovian red spot in having
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quiet interiors with vorticity mostly at their edges. The spots do
not require the proximity of horizontal boundaries, nor finite
values of B, Ly or ¢ for stability. The values of these parameters
do not strongly influence the dynamics of spots, but they do
determine the sign and strength of #,(r, t) and the vorticity
distribution and shape of spots.

I thank H. L. Swinney and J. Sommeria for discussions and
insight and B. Scott for the colour figures. The work was
sponsored by NSF, the Office of Naval Research and the
Lawrence Livermore National Laboratory.
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Direct identification of superconducting
regions in an inhomogeneous

specimen by electron shadow microscopy
Yang Cui-Ying & J. W. Steeds

Physics Department, University of Bristol, Bristol BS8 1TL, UK

Scanning and transmission electron microscopy have played a
major part in evaluating the microstructure of the new high-
temperature superconductors. Complex fabrication routes have
led to a wide variety of phases in the samples produced, and the
high-temperature superconductor itself has a complex microstruc-
ture on which its superconducting properties are dependent.
Finally, the process of preparing specimens for examination by
electron microscopy can itself lead to degradation of the supercon-
ducting properties. As a result it is desirable to establish directly
that the regions studied are indeed superconducting, and to relate
the superconducting properties to the local microstructure. Here
we describe a convenient method for performing such an evalu-
ation. One possible method, which relies on image contrast in a
scanning electron microscope, was recently proposed'. Another,
which we discuss here, involves the use of a long established, if
little used, technique of electron shadow microscopy?.

The technique is closely related to Schlieren microscopy. Flux
exclusion from superconducting regions leads to local changes
in the magnetic field which cause Lorentz deflection of the
high-energy electrons in a transmission electron microscope.
The focusing effects of the complicated form of the resultant
magnetic fields give rise to the well-known classes of catas-
trophes in optics which are now well-understood®. In the
simplest case, cycloidal shadows are produced*, and numerical
calculations of the shadow patterns produced by superconduct-
ing lead cylinder were performed®.

In order to pursue these experiments, we decided to abandon
the fracture chip method of specimen preparation mostly used
in previous transmission electron microscopy experiments on
the new superconductors. Qur main aim was to relate micro-
scopic observations to macroscopic specimens, and for this
purpose we decided to ion-thin sections of the material prepared.
On fracturing, the location of a fragment in the original specimen

Fig. 1 Shadow image of the edge of an ion-thinned sample at the
approximate temperatures a, 90 K; b, 74 K; ¢, 35K; 4, 35 K. Short
exposure was employed to reveal details of the caustic figures.

is lost; moreover the technique is generally selective and fails
to pick out all the components of a multiphase preparation.
However, ion-thinning of samples is known to introduce
damage® and considerable care had to be exercised in obtaining
satisfactory samples.

It was also important to have a double-tilting liquid helium
cooled specimen holder available for the experiments reported
here. Even though the superconducting transition temperature
of YBa,Cu;0, is well above that of liquid nitrogen, it is unlikely
that fracture chips reach this temperature in liquid nitrogen
cooled holders. Cooling by conduction via the tortuous path
required to reach the fracture chip is unlikely to be very effective.
In addition, the thin specimens, with aspect ratios which are
typically not less than 100: 1, were mounted perpendicular to a
magnetic field of ~1.5 T. The resulting demagnetizing fields will
have caused flux penetration into the sample.

Some initial work was performed with fracture chip specimens
to identify unambiguously the YBa,Cu;0, phase in our prepar-
ations (see, for example, refs 7 and 8). After a while it was
possible to pick these out by their twinned microstructure,
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