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Nonlinear standing waves in Couette-Taylor flow
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A nonlinear stability analysis by Demay and looss [J. Mec. Theor. Appl. , special issue, p. 193
(1984)] of flow between concentric rotating cylinders (the Couette-Taylor system) predicted a

transition from the basic flow to a state with ribbons, which are traveling waves in the azimuthal

direction but standing waves in the axial direction. We have observed the transition to ribbons in

laboratory experiments and numerical simulations, and the measured wave speeds are in accord
with those obtained numerically.

The Couette-Taylor system has served as a paradigm
for testing ideas on stability in systems described by non-
linear partial differential equations since the landmark
work of Taylor ' on flow between concentric rotating
cylinders. He measured the critical Reynolds number for
the primary instability and showed that it agreed within a
few percent with the predictions of a linear stability
analysis. This was the first quantitative agreement of
theory and experiment for any flow instability. However,
linear stability analyses do not, in general, completely
determine the final pattern of secondary flow. Our experi-
ments and numerical simulations demonstrate the ex-
istence of a secondary flow that was first found to be possi-
ble from a nonlinear analysis two decades ago but was
only recently predicted to be stable.

The symmetry of the Couette-Taylor system induces
degeneracies in the linear eigenmodes and only a non-
linear calculation can determine the combination of
modes that produces stable patterns. Two possible flows
for strongly counter-rotating cylinders are spirals with op-
posite helicities; these modes, which are traveling waves in
the axial and azimuthal directions, were observed by Tay-
lor and, subsequently, by others. In a nonlinear
analysis DiPrima and Grannick later found a third mode,
but it was unstable for the parameters they considered.
This mode, which is to lowest order a superposition of the
two spirals, is a standing wave in the axial direction and
traveling wave in the azimuthal direction. Recently,
Demay and Iooss have examined this mode, which they
call ribbons. They used a center-manifold formalism to
reduce the Navier-Stokes equations to a set of coupled or-
dinary diA'erential equations, and coefficients in these
Landau equations were computed as a function of the con-
trol parameters. Calculations for a radius ratio of 0.752
yielded stable ribbons over a finite range of cylinder
speeds, while at the other radius ratio considered, 0.950,
the ribbon state was not stable.

Our experiments confirm the existence of ribbons at a
set of parameter values where Demay and Iooss found the
transition to be subcritical; at these values their perturba-
tion analysis could not determine the final form of the
secondary flow. Therefore, to corroborate our observa-

tions we undertook direct numerical simulations of the
Navier-Stokes equations at the parameter values for
which ribbons were observed; the simulations confirm the
existence of a subcritical transition to ribbons.

We now describe the analysis that leads to the coupled
complex Landau equations studied by Iooss and co-
workers, and then we will describe our observations and
simulations.

Consider a system with inner cylinder radius a, outer
radius b, and corresponding angular velocities Q~ and 02.
The dimensionless control parameters are the Reynolds
numbers R ~

= (b —a)a i) ~/v, where v is the kinematic
viscosity. Couette flow (the basic flow), which is stable
for sufficiently small R&, is given by Uo=(Ar+B/r)ee,
where 2 and B are determined by the no-slip boundary
conditions at the cylinder walls. For fixed a/b and Rz, in-
stability is observed upon slow ramping of R

& through a
critical value R&, . The eigenmodes for the nonaxisym-
metric linear stability problem are perturbations to
Couette flow of the form

u (r 8 z)e' +'"'-F(r)e' '+ '+"'e' +' "

( 0 ) (cr rc+u)t gF( ) +&a (a+(ru)t
R (2)

where L and R refer to left- and right-handed spirals, and
the vector field SF(r) is obtained from F(r) by reflection
through the plane z=0. The phases pt. and pR are arbi-
trary. At R ~, the growth rate a is zero and the axial wave
number k and azimuthal wave number m take the values
k, and m, . These values are used as input to both the
nonlinear analysis and the numerical simulations.

Following Demay and Iooss, the perturbation of the
flow can be written as

Q AUz +AllL +BUR+ BUg

+ u'(r, O, z;e,A, A, B,B),
where the overbar denotes complex conjugate and

(R ~

—R ~, )/R ~, . The residual field u' is spatially
periodic with axial and azimuthal wave numbers k, and
m„respectively, and can be expressed as a power-series
expansion in e, A, A, B, and B. The complex amplitudes
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A and 8 are governed by the coupled Landau equations:

dA/dr (cr+ico)A —(g [A (
2+h [8 (

2)A+, (4)

dB/dr (cr+ico)8 (g I 8 I
'+1't

I A I
')8+ ' . , (5)

where cz a~a and m m, +m~z. The coe%cients a~, m~,

g g„+ig;,and h h„+ih;depend on the control parame-
ters R2 and a/b in a way that may be cotnputed numeri-
cally. Large-scale modulation of the amplitudes has
been neglected; the system is assumed to be exactly
periodic in z. The three solutions to Eqs. (4) and (5) cor-
respond to

~
A ( (cree/g, ) 'i, 8 0 (left spiral),

A -0,
~
8

~
(cr~ e/g„) ' (right spiral),

and

(A [ )8( [cr(e/(g, +h, )]'i (ribbons).

Spirals are supercritical and stable when g„&0and

h„/g, & 1; ribbons are supercritical and stable for g, &0
and —1 & h„/g„&1. Spirals are subcritical for g„&0 and
ribbons for h, & —g, .

Figure 1 shows the linear stability result (for a/b
-0.727) for the primary transition boundary in the
R2 —R~ plane with R2 & 0. The boundary is divided into
sections of diA'ering azimuthal wave number m. The sec-
tion for m 2 is further subdivided according to the non-
linear theory into regions of supercritical spirals, super-
critical ribbons, and subcritical transition. The key
finding is that ribbons exist. However, we have observed
robust ribbons only where the theory predicts the transi-
tion to be subcritical.

Our laboratory and numerical results concentrate
around the parameter values a/b 0.727, R2 —340,

R,

0
-400 -300 -200 -100
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FIG. 1. Primary transition boundary for a/b 0.727, show-

ing segments predicted by linear stability theory (Ref. 8) to
have diA'erent values of m. The secondary Aows predicted by
nonlinear theory are as follows: T—Taylor vortices, 5—spirals,
R—ribbons. The cross-hatch marks indicate where the transi-
tion is predicted to be subcritical. The parameters investigated
by experiment and numerical simulation are shown by a vertical
arrow.

FIG. 2. Spiral flow at Rl 152 and R2 —175 is shown in

(a} frontal and (c) crass-sectional views one-half period apart in

time. Ribbon flow at R~ 207 and R2 —340 is shown in (b)
frontal and (d) cross-sectional views one-half period apart in

time; strong vortices are paired near an outflow jet, as indicated
by the large arrows in (d). Small arrows indicate vortex centers.
The cross-sectional views were obtained by illuminating the gap
between the cylinders with a light sheet; to improve contrast and
decrease the lensing eAect the light sheet was placed at an angle
of about 45 to the r-z plane.
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and R~, 204.9. Photographs of spirals are shown in
Figs. 2(a) and 2(c) and ribbons in Figs. 2(b) and 2(d). In
Fig. 2(a) spirals of opposite helicity can be seen to meet in
the center of the cylinder. In Fig. 2(b) the ribbons exhibit
a horizontal banded structure with an interleaved or
"checkerboard" pattern traveling around the cylinders. It
is apparent in photographs of radial cross sections that the
ribbons are reflection symmetric while the spirals are not
[cf. Fig. 2(c) with 2(d)]. Note that the spirals have one
strong vortex per axial wavelength, an asymmetry that is
strictly a nonlinear effect.

Three-dimensional numerical simulations of the full in-
compressible Navier-Stokes equations were performed
with a pseudospectral code. ' The code imposes an az-
imuthal periodicity u(r, 8,z) u(r, 8+2n/Itt„z) and an
axial periodicity u(r, 8,z) u(r, 8z+2tr/k, )." The sta-
bility of solutions was tested by perturbing the converged
solution with uL, by starting with random noise, and by
starting with a state formed of equal amplitude spiral
linear eigenmodes uL and uR.

Figure 3 shows plots of the numerically determined ve-
locity field for ribbons. The 8 —z projection in Fig. 3(a)
clearly exhibits the checkerboard symmetry apparent in
the photograph in Fig. 2(c): u(r, 8,z) u(r, 8+'tr/m„z
+ tr/k, ). Moreover, the r —z projections in Fig. 3(b)
match the laboratory observation that the vortex centers
are near the radial outflow jet; a pure superposition of the
linear eigenmodes does not show this effect. The pair of
r —z projections shows one vortex pair being replaced by
an identical vortex pair a half an axial wavelength away;
the outflow jet reverses into a weak inflow. In contrast, in
spiral flow the single dominant vortex travels continuously
up the axis, followed by the next such vortex one full axial
wavelength behind. The strong radial outflow of the rib-
bons is correlated with an increase in the azimuthal veloc-
ity, as evidenced by the outward bulge in the contours of
u~ 0. This mechanism transports angular momentum
outward from the inner cylinder, increasing torque above
that of Couette flow.

The numerical simulation confirms that the transition
to ribbons is weakly subcritical at the parameter values
studied. The computed wave speeds agree with those
measured to within 1%, and both are 1.6% or greater than
the linear stability wave speed at onset. Ribbons were
computed down to e-l.46X10 and the turning point,
e —2.44X 10, was estimated from an analysis of the
computed amplitude as a function of R&. No hysteresis
was observed in experiments with a resolution d,a= 1

x 10,but the experimental transition could be continu-
ous as a consequence of finite-size effects.

Thus the laboratory experiments and numerica1 simula-
tions confirm the existence of ribbons. However, an at-
tempt to observe a supercritical transition to ribbons in
experiments at Rq —230, where the transition is pre-
dicted to be supercritical, was not successful —only spirals
were found. Although simulations yielded a transition to
ribbons at R2 —230, slightly above the onset of ribbons,
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FIG. 3. The numerically computed velocity 6eld for R2
—340 and e 1.02 x 10: (a) 8-z projection for

r (a+b)/2 (b) r-z pro.jections for 8 values indicated by ar-
rows in (a). The curve in each projection is the contour ul 0.
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at e 1.46& 10, a spiral rather than a ribbon state was
obtained; this spiral was robust under perturbations. This
nearby stable spiral state may explain the difFiculty in ex-
perimentally observing ribbons at this value of R2.
Another explanation may be that end eA'ects in the labo-
ratory system result in a transition that is diff'erent from
that given by the theory and numerical simulations, both
of which assume axial periodicity. Even in the observed
ribbons state at Rz —340 there is a definite departure
from axial periodicity: The amplitude of the pattern de-
creases towards the ends of the cylinder, and faint spirals
rather than ribbons are observed there. Furthermore, re-
cent theory' and experiments' on convection indicate
that end effects can lead to dynamics that depend funda-
mentally on the finite size of a system. An investigation of
ribbons in which finite cylinder size is taken into account
is now underway.
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