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We present a mathematical analysis of the transition from temporally periodic 
rotating waves to quasi-periodic modulated waves in rotating flows with circularly 
symmetric boundary conditions, applied to the flow between concentric, rotating 
cylinders (Taylor-Couette flow). Quasi-periodic flow (modulated wavy vortex flow) 
is described by two incommensurate, fundamental, temporal frequencies in an 
arbitrary frame, but the flow is periodic in the appropriate rotating frame. The 
azimuthal wavelength of the modulation may be different to that of the underlying 
rotating wave ; hence the flow state is described by two azimuthal wavenumbers as 
well. One frequency and one wavenumber are determined by the wave state, but no 
simple physical properties have yet been associated with the parameters of the 
modulation. The current literature on modulated waves displays both conflicting 
mathematical representations and qualitatively different kinds of modulation. In  
this paper we use Floquet theory to derive the unique functional form for all 
modulated waves and show that the space-time symmetry properties follow directly. 
The flow can be written as a non-separable function of the two phases ( 8 - c l t ,  
8-c, t ) .  We show that different branches of modulated wave solutions in 
Taylor-Couette flow are distinguished not by symmetry but by the ranges of the 
numerical values of c l ,  c2 ,  and the spectral amplitudes of the solution. The azimuthal 
wavenumber associated with the modulation has a unique physical definition but is 
not directly expressed in the spatial symmetry of the modulated flow. Because 
modulated waves should occur generically in systems with rotational symmetry, this 
analysis has application beyond Taylor-Couette flow. 

1. Introduction 
The flow between concentric, differentially rotating cylinders, Taylor-Couette 

flow, exemplifies a class of problems in fluid dynamics involving rotating flows with 
circularly symmetric boundary conditions. When the outer cylinder is held fixed and 
the inner cylinder speed is increased, the flow undergoes a series of transitions (the 
‘main sequence ’ (Golubitsky &, Stewart 1986)), which are characterized by the 
change in the symmetry group that leaves the flow invariant. In particular, in such 
systems a temporally periodic rotating wave will generically bifurcate to a quasi- 
periodic modulated wavy flow. The symmetry group defining these quasi-periodic 
flows, consisting of a lattice of space-time translations which bring the flow into 
itself, was derived by Rand (1982) and confirmed in experiments of Gorman & 
Swinney (1979, 1982) on modulated wavy Taylor vortex flow (MWV). Work on this 
system has been motivated in a large part by interest in the transition to chaos, 
which has been shown in the laboratory to occur directly out of the MWV state as 
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the inner cylinder speed is increased (Gollub & Swinney 1975 ; Fenstermacher, 
Swinney & Gollub 1979). It was believed that this transition might be related to the 
work of Ruelle & Takens (1971), who showed that under quite general conditions a 
low-dimensional quasi-periodic flow will be unstable to a strange attractor. In a 
quasi-periodic flow, the equilibrium flow trajectory sits on an n-torus in the phaae 
space, and the dynamics can be described with a finite number (n) of incommensurate 
temporal frequencies. Thus MWV is a particular example of a quasi-periodic flow. 
However, MWV is temporally periodic when viewed in the appropriate rotating 
frame; hence the transition to chaos studied by Brandstater & Swinney (1987) is 
directly from a limit cycle to chaos. The work of Ruelle & Takens does not apply in 
this case, nor is there any other known mathematical mechanism for such a 
transition. 

We believe that a useful approach to the solution of this problem is to understand 
the nature of quasi-periodic instabilities of the rotating wave in general. This entails 
a closer look a t  the available experimental work, which reveals that the series of 
bifurcations in Taylor-Couette flow is more complicated than is suggested by the 
main sequence. At  least two modulated waves of qualitatively different character 
have been observed in the laboratory (Coughlin et al. 1991), a fact which has not been 
reconciled with existing theory. In addition, there exist two conflicting nom- 
enclatures for the MWV states which have been studied in detail, neither of which 
illuminates the physical nature of the modulated flow. Our numerical simulations of 
quasi-periodic Taylor-Couette flows, described in Part 2 (Coughlin & Marcus 1992), 
have shown that there is a simple, general framework in which all of these MWV 
states can be understood. In  this paper, we lay down the mathematical basis for this 
understanding, based on the construction of the mathematical form of the solution. 
This work should be generally useful in any situation where rotating waves and 
quasi-periodic flows are found. 

We use Floquet theory to deduce the functional form of instabilities of the rotating 
wave, and from this we derive the form of modulated wave solutions to the 
NavierStokes equations. The consequences of the mathematical structure of the 
flow, particularly the relation between the space-time symmetry as described by 
Rand and the form of the initial rotating wave and the Floquet mode, are discussed 
in detail. From this we are able to resolve the questions raised by current 
experimental and theoretical work. In  the process, the parameters describing the 
solution are given a physical interpretation, with a detailed discussion deferred to 
Part 2. 

To set our work in context, we present a brief review of the main sequence 
(discussion of the transition to chaos will be left to Part 2). A more complete review 
is given in DiPrima & Swinney, (1981), and a thorough discussios of the linear 
stability problem in Chandrasekhar (1961). The geometry of the apparatus is 
characterized by the radius ratio 7 = a/b ,  where a and b are the inner and outer 
cylinder radii respectively, and the aspect ratio r which is equal to the height of the 
fluid column divided by the gap width. For the work discussed here, the gap is 
narrow with 7 = 0.875. We define a Reynolds number 

R = Qa(b-a)/v, ( 1 )  

where D is the inner cylinder frequency, and v is the kinematic viscosity. We use the 
usual cylindrical coordinates ( r ,  8,  z ) ,  and non-dimensionalize by setting the gap 
width (b-a) ,  the inner cylinder velocity Qa, and the density all equal to one. 
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At low R, circular Couette flow is a stable equilibrium, with the exact solution (for 
the infinite cylinder case) v,. = v, = 0 and vo = V ( r ) ,  where 

V(r )  = A ( r - b 2 / r ) ,  (2) 

and A = --52q2/(1 - q 2 ) .  (In this paper we consider only the ‘infinite cylinder’ case, 
in which exact axial periodicity is imposed. For a justification of this assumption 
with regard to comparison with experiments see Part 2.) At R = R, this flow becomes 
centrifugally unstable to Taylor vortex flow (TVF), which is steady, axisymmetric 
and periodic in the axial direction with wavelength A. In our units, R, = 116.1 for 
q = 0875. For R just a few per cent above R,, a supercritical Hopf bifurcation leads to 
azimuthally travelling (rotating) waves on the Taylor vortices. We define the 
azimuthal wavenumber m, of wavy Taylor vortex flow (WVF) as the number of 
identical waves around the cylinder, and the fundamental frequency f, as the 
frequency with which successive wave peaks pass an observer in the lab frame. The 
phase speed c1 = film, is approximately independent of m, and R (King et al. 1982). 
For the gap widths considered here, c, is equal to roughly one third the inner cylinder 
speed. 

A t  higher R, one observes modulated wavy vortex flow which is characterized by 
the presence of a second fundamental frequency incommensurate with f, (Gollub & 
Swinney 1975; Fenstermacher et al. 1979). Just as WVF is periodic in the inertial 
frame but steady in the frame rotating at speed c , ,  MWV is quasi-periodic in the 
inertial frame and temporally periodic in the proper rotating frame. The modulation 
pattern may change the azimuthal symmetry of the flow, indicating that the new 
state must be described by two azimuthal wavenumbers as well as two temporal 
frequencies (Gorman & Swinney 1982 ; Gorman, Swinney 6 Rand 1981 ; Shaw et al. 
1982). 

In the experiments of Gorman & Swinney the modulated flow was identified with 
periodic flattening of the outflow boundaries between adjacent Taylor vortices. To 
distinguish this kind of MWV from other branches of quasi-periodic solutions we 
refer to it as ‘GS flow ’. For a given initial WVF state, a variety of azimuthal patterns 
were observed, all of which were found to be in agreement with the theoretical work 
of Rand (1982). Given an initial WVF with azimuthal wavenumber m,, Rand showed 
that for MWV flows there exist an integer n and a basic period 7 such that the flow 
in the frame rotating at the speed c1 is invariant under the transformation (8,t)+ 
(8+27cn/m,, t + 7 ) .  Defining s 1 as the fundamental azimuthal wavenumber of the 
modulated flow, the space-time symmetry of a given state is labelled by the three 
integers (m,, n, s). Rand proved that for fixed m, and s there are a finite number (less 
than m,) of modulated wavy flows with distinct labels (m,, n, s). Shaw et al. (1982) 
conjectured that the GS flow was composed of two rotating waves, characterized by 
two azimuthal wavenumbers (defined as m, and m2 respectively), and two wave 
speeds (cl and c2). Inferring m4 from thc modulation pattern, they showed that the 
experimental power spectra were consistent with an approximately constant speed 
for each wave with c2/cl x 2. No explicit connection was made between the ‘second 
wave’ parameters (m2,c2) and the (n,s,7) nomenclature of Rand, nor was the 
apparently unlimited range of m2 reconciled with Rand’s prediction of a finite 
number of observable symmetries. 

A defining characteristic of GS flow is that there is always a peak f2 = m2 c2 in the 
power spectrum whose frequency shifts when the flow is observed in a rotating frame 
by an amount proportional to the frame speed. This property implies that the 
frequency f2 is associated with a phase in 8. A modulated wave not having this 
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property was observed by Zhang & Swinney (1985). The temporal power spectra 
showed a single strong peak associated with the modulation which remained fixed 
irrespective of the frame in which the flow was measured; hence, this flow was 
designated a ‘non-travelling modulation ’. We refer to this kind of modulated wave 
as a ‘ZS flow ’. No modulation signal was detectable a t  the inflow boundaries of the 
Taylor vortices, and there was no observed flattening a t  the outflow. This flow has 
not been set into the context of Rand’s theory, which presumably must include it as 
a special case. The physical nature of the non-travelling mode, and why it is so, has 
not been explained. 

A number of theoretical descriptions of modulated waves have been proposed in 
the literatye. Swift et al. (1982) assumed the MWV to be a separable function of the 
time t and 8 F 8-c, t ,  the azimuthal coordinate with respect to the rotating frame, 
and were able to correctly identify the locations of their observed spectral peaks. 
However, such a separable function is not an allowable solution of the Navier-Stokes 
equations, nor does it correctly predict the phase of the modulated wave. Ohji, 
Shionaya & Amagai (1986) proposed a functional form in which a tingle azimuthal 
mode is both amplitude and frequency modulated by a factor sin (k0- wM t )  for some 
integer k, where wM is the observed frequency of modulation in the c,-frame. While 
i t  is possible to represent the symmetries of the flow this way, it is unphysical because 
it includes only the fundamental azimuthal mode of the wave, and again functions 
of this form are not allowable solutions to the Navier-Stokes equations. Nor is it 
clear that one gains any physical insight by separating the modulation into 
amplitude and frequency components. In contrast, the functional form we shall 
derive in this paper is based on the structure of the linear eigenmodes of the rotating 
wave, and has a direct physical interpretation. 

The rest of the paper is organized as follows : in $2 we use Floquet theory to derive 
the functional form of the solution, which is the same for all modulated rotating 
waves. The space-time symmetry properties, and the resolution of notational 
difficulties, follow directly. In  $3, we show how the symmetry classes of Rand (1982) 
can be constructed from the functional form. Section 4 contains a discussion of how 
distinct branches of modulated wave solutions can be distinguished from each other 
by spectral data, augmented by general information about ZS and GS flows obtained 
from the numerical simulations. In $5 we show that a simple scaling relation allows 
a unique definition of the parameters of a particular state. Our conclusions are 
presented in $6. In  the Appendix we describe the diagnostics used in our numerical 
computations of Taylor-Couette flow both to verify our hypotheses and to determine 
the parameters associated with the space-time structure of the flow. The code itself 
has been described by Marcus (1984a). In  Part 2 we present detailed numerical 
results for both GS and ZS flows and describe the physical features which distinguish 
them. 

2. Functional form 
We derive the functional form of MWV beginning with the assumption that the 

rotating wave is linearly unstable to a Floquet mode. This assumption is used to 
clarify the derivation but our result does not depend on it. We shall ignore the radial 
and axial dependence of the solutions, as they are irrelevant to the discussion. We 
make reference to Taylor-Couette flow to illustrate the concepts presented. To 
simplify the notation, we denote an arbitrary scalar flow quantity in the rotating 
wave state as Qw, and such a quantity in the modulated wave state as QM. 
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2.1. Floquet theory 
We define a rotating wave as a solution to the NavierStokes equations with the 
symmetry 

with c, the non-dimensionalized wave speed. For all time, the flow is also m,-fold 
symmetric ; 

(4) 
for a positive integer m, 2 1. The 0 and t coordinates are coupled and periodic, so the 
solution must have the general form 

~ ~ ( T , e + s e , z , t )  = ~ ~ ( r , e , Z , t - - e / c , ) ,  (3) 

~ ~ ( r ,  e+2x/m1, Z, t)  = ~ ~ ( r ,  e , ~ ,  t) ,  

In WVF the azimuthal wavenumber m, is just the number of waves around the 
cylinder. In an experimental power spectrum there is a set of equally spaced peaks 
at  multiples of mlcl, thus we define thef, = mlcl as the fundamental frequency of 
the rotating wave. For WVF, the phase speed c, is positive (the wave travels in the 
direction of the inner cylinder or mean azimuthal flow). Because Taylor vortices go 
unstable to WVF via Hopf bifurcation, the eigenmodes come in complex conjugate 
pairs, and the spectral sum in (5 )  has both positive and negative temporal frequencies 
+jm, c,. The complex conjugate pairs are proportional to exp [ f ijml(e - c1 t)] ; hence 
both frequency components describe waves travelling in the positive &direction. 
Waves which travel against the direction of the mean flow are not seen, neither in 
experiments nor in numerics. When the flow is observed in a frame rotating with 
angular speed c, the locations of spectral peaks are shifted tojm,(c,-c). The flow will 
be time-independent if and only if c = cl. 

We define the new variable 
e = e-c, t, (6) 

such that Qw(r, 4, z )  is steady. The N5vierStokes equation linearized around Qw has 
coefficients which are periodic in 8 and autonomous in t ,  thus we refer to the 
eigenmodes as Floquet modes. We assume that (i) there is no change in the axial 
structure of the solution, and (ii) the flow goes through a supercritical Hopf 
bifurcation to modulated waves (numerical data presented in Part 2 support this 
hypothesis for some quasi-periodic flows). Defining the critical Reynolds number for 
onset of modulation as R,, the eigenmodes have the form 

m 

5--m 
QF(r, 4, z, t) = exp (im, 4) exp ( -  iw, t)  c yj(r, z )  exp (ijm, 4) + c.c., (7) 

where wM is real at R = R,. In  the c, frame the bifurcation is from a steady to a 
temporally periodic flow. Note that m2 need not equal m,; hence the azimuthal 
symmetry of the flow may be changed by the bifurcation. Because the solution is 
always periodic in 0 there is an integer s, defined as the greatest common factor 
GCF(ml, m2), such that the flow is symmetric under 0 + 0 + 27c/s. 

2.2. Nonlinear solution 
In order that the functional form of the fully nonlinear solution be invariant under 
the action of the NavierStokes equations, it must contain all the modes that might 
be generated as products of the eigenmode with itself or the rotating wave. Thus, 
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MWV solutions can be written as a spectral sum of these products, and will have the 
form 

m m  

Q M ( r ,  8, z, t )  = c ujk(r, z )  exp [ijm, 81 exp [ik(m, 8-fdMt)l. (8) 
j=-m k--m 

Relative to the inertial frame, the flow is quasi-periodic, and we can use (8) to  define 
two fundamental frequencies f, = m1 c1 and f2 = m2 c1 + wM. However, as is well 
known, the spectral data itself does not define uniquely the fundamental frequencies 
of a quasi-periodic signal, as any linearly independent combination (for example, 
fi+f2 and fl-f,) can be used as a basis for the entire set of peaks. In  order to 
unambiguously specify the frequency of modulation, it must be identified with some 
physical flow characteristic. Here we define wM as the modulation frequency observed 
in the frame rotating a t  speed c , ,  which we assume is known a priori. 

A similar argument shows that the azimuthal wavenumbers m, and m, are not 
uniquely defined by the formal solution. Consider a spatial Fourier spectrum of the 
flow in (8) a t  some fixed time: 

This spectrum will have peaks a t  all values of the integer I such that 

I = jm, + Icm, (10) 
for all integers j, k. All values of 1 will be multiples of s, the greatest common factor 
of m, and m,. The set of pairs (m,,m2) which reproduces this set of peaks is not 
unique. The limitation on observable MWV flow patterns bifurcating from a given 
rotating wave follows from this fact. The functional form of the solution determines 
the modulation pattern observed in the laboratory ; hence, for given m1 and m,, and 
mi = m, +pm, for integer p in (8) reproduces the same functional form and therefore 
the same spacetime symmetry. If the modulation is a weak perturbation of the 
underlying rotating wave m, can be determined visually. However, to measure m2, 
a way must be found of disentangling the ‘ background ’ m,-fold symmetry from the 
total spatial signal (analogous to  removing the background rotating wave frequency 
by transforming to the appropriate frame). While this has not yet been accomplished 
in the laboratory i t  is easy to  do numerically, and results presented in Part  2 
demonstrate the physical significance of m2. 

For now, we assume that c, ,  wM, and the wavenumbers (m,,m2) are known. The 
Floquet mode in (7) consists of a spatial eigenfunction multiplied by a complex phase 
with the functional form of a rotating wave, and a phase speed relative to the inertial 
frame 

The parameter c2 turns out to be the same as the ‘second wave speed’ deduced by 
Shaw et ul. (1982) in their study of Taylor-Couette flow, and m2 is equal to  their 
second wavenumber (modulo a multiple of m,). To avoid confusion we do not refer 
to  these parameters as descriptive of a second rotating wave, but rather as describing 
the Floquet mode associated with the modulation. 

Using (11) to replace wM, and returning to  the coordinates 6 and t in the inertial 
frame, the flow in (8) becomes 

c2 = c1 + w M / m 2 .  (11) 

c o m  

&M(r?  6, z, t ,  = c ajk(r? z, exp [gml (6-c1 t ) l  exp Likm, ( 6 - e 2  t)]* ( 12) 
5--m k--m 
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Mathematically, the flow is a doubly periodic, non-separable function of the two 
phases (8-c1 t )  and (8-c, t ) .  It is not correctly described as a pair of travelling waves, 
but there will be a doubly infinite set of peaks in the power spectra which have the 
properties of the spectra of travelling waves. There is a structural symmetry under 
1 t, 2 ,  but because the matrix ajk 4= a 

The form of the quasi-periodic solution does not depend on the assumption of a 
supercritical Hopf bifurcation, as it is equivalent to a functional form based purely 
on the observed symmetries of the flow. We define a1 and a, such that 

there is no physical equivalence. 
k: 

m, = als ,  

m2 = a,s;  

hence a1 and a, are relatively prime. Letting 1 = ja ,+ka, ,  we rewrite (8) as 
m a  

QM(r, 8, x ,  t )  = 2 c Alk(r,  z )  exp ( i d )  exp ( - iku, t ) ,  (15) 

(16) 

I--00 k--m 

- 
where Ajal+ka2,k = a j , k .  

This is the most general form for a flow which is temporally periodic when viewed in 
the c,-frame, and spatially symmetric under 8 + 8 + 2 R / s .  To have begun with this 
equation would however have obscured the real structure of the instability, as can 
be seen from the complicated relationship between the coefficients ajk and Ajk.  The 
matrix Ajk is full and has no symmetries, so there is no frame transformation which 
will simplify the space-time structure of the flow any further. 

2.3. Rotating frames 

The form of the solution in (12) can be used to prove that there is a doubly infinite 
family of rotating frame speeds s ~ , ~ ,  in which the modulated wave appears to be 
temporally periodic. More specifically, there is an infinite family of possible periods 
T,, and each TJ can be obtained in an infinite number of ways. 

We define the period TA as follows: 

2R 
T -  

A -a1a2slcz-c11' 

In any frame in which the flow is periodic, the periodicity must be a multiple of TA ; 
hence we define 

for integer J. 
TJ = JT, (18) 

J = nlal+n,a,. (19) 

Now define two integers nl,n, such that for fixed J 

The solutions to this equation define a one parameter family of integer pairs {nl, 
n2 = (J-n1a1)/aJ. 

For fixed J and nl,n, defined as above, in the frame rotating with speed 

the flow has period TJ. In this frame, the solution takes the form 
m a  

+-a k--m 
&M(r7 2 7  t ,  = I: X j k ( r ,  z, exp (ijsenlnz) exp (-ikuJ t ) 7  (21) 
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where Onlng = 0+5nln2t and wJ = 27c/IlJ. Thus, the basic functional form of quasi- 
periodic flow is preserved under this family of transformations, and c, = sl0 and 
c,  = sol are not defined uniquely as frame speeds in which the flow looks periodic. Note 
that if m, is misidentified as some value N = m, +pm, for integer p ,  and c, is thus 
defined as c, + w M / N ,  the flow will be periodic in this rotating frame, as can be proven 
by showing that c l + w M / N  can be written in the form 5n,n, above. 

3. Symmetry classes of modulated waves 
In  this section we use the functional form of the solution to re-derive Rand’s 

results regarding the allowed symmetries of MWV. Equation (8) shows explicitly 
that, given a fixed value of m,, all values of m, that  differ by a multiple of m, will 
have the same symmetry. Equivalently, for fixed m,, there are a t  most m, MWV 
states with distinct functional representations and therefore distinct modulation 
patterns. Rand (1982) proved this result, assuming that the modulation occurs as a 
Hopf bifurcation out of a rotating wave with known wavenumber m, and wave speed 
c, .  He defined the symmetry of MWV in terms of an integer n and a unique minimal 
period T such that the flow is invariant under the transformation (8, t )  --f (8+ 27cn/m,, 
t + T ) .  In experiments on Taylor-Couette flow, Gorman & Swinney (1982) identified 
T as equal to s/ml times the modulation period observed in the frame comoving with 
the first wave. 

We shall derive explicitly the relation between the spatial labels (m,, n, 5) and 
frequencies 51, and 52, used by Rand and the notation (m,, c,, m,, c,)  used in this 
paper. These relations are summarized in table 1 .  For reference we include Rand’s 
definitions 

52, = 27c/T, ( 2 2 )  

51, = s(c,  +nQ,/m,).  (23) 

We first consider the simple case where m, = m, = 5 (the same relations hold if m, 
is any multiple of m,).  In  this case, the flow must return to itself after a period T with 
no azimuthal rotation ; hence n = 0. The period T is then equal to the period observed 
in the rotating frame; hence T = 27c/wM. The fundamental frequencies are 52, = oM 
and 51, = 5c1 = m, c, .  

For n =k 0 ,  we substitute the phase shift 8 + 8 + 66, t + t + 6t into (8), from which it 
is clear that the shift in 0 can be absorbed by a compensating shift in t if and only 
if 88 is a multiple of 2x/m,. The complex phase factor acquired in the shift must be 
equal to one ; hence, 

for some integer n,. 
To simplify this expression we define 

a, = pa,  +a, 

for integers p and a?, with p 2 0 and 0 < a, < a,. This !fines p anL a, uniquely. 
Replacing m2/ml with ar/al, and absorbing p into a redefinition of n,, we find that 
wMr is equal to 27c/a, times an integer. Because T is defined as a minimal period we 
set that integer equal to unity, hence 

7 = 27c/w,a1. (26) 

(This includes the special case n = 0, for which a, = 1. )  
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Rand This paper 

m m1 = a,s 

" c1 

s GCF(m,,m,) 
m2 = a 2 s  
nu,- 1 = a1 x integer 
a, = a2 mod a, 

oM = m2(c2-c,) 

n 

'M &l"M 

a, sc,+no, 
7 T,/a, 

T, = 2n/w ,  

TABLE 1. Summary of relations between Rand's (1982) labels and those used here 

To show that 7 is unique, it is sufficient to show that it is in fact equal to the period 
TA defined in (17) ,  which is the frame-independent modulation period observed for 
any axisymmetric flow quantity. The axisymmetric modes in (8) satisfy 

s(jal + ka2)  = 0 (27) 

for an infinite set of integers j and k .  Solutions of this equation take the form k = 
Ka,, j = -Ka,, where K is any integer. Thus, there will be peaks in a power 
spectrum of any axisymmetric flow quantity at the frequencies 

kw, = K a l w M ,  

i.e. at multiples of the frequency a, W ,  = Q,. Given the definitions of T and w,, we 
have 

QM = sa1a2(c2-c, ) .  (28) 

1201,- 1 = a,n,. (29) 

With 7 defined as in (26), (24) reduces to 

We remind the reader that n, is arbitrary, and n must be chosen such that 0 < n < 
a,. Note that n =k 0 implies that a, 8 1,  thus if we identify Rand's integer q with a,, 
(29) proves his assertion that qn is not a multiple of ml/s = a,. 

Clearly, the whole family {a, = pa, +a, ; p 2 0} for fixed a, will result in the same 
equation for n. This means that n and a, contain equivalent information ; hence if n 
is known, a, can be deduced by a process of elimination. To derive all possible 
symmetry classes for a given m,, we need only consider 1 < m2 < m, (in which case 
a2 = a,). The value of p cannot be determined from the symmetry, so (m,,n,s) are 
not sufficient to determine m,. 

Thc equation for Qw implies that 

m, c1 = a, a, - nQ,. (30) 

Recall our definition c2 = c1+wM/m2. Substituting for c, we find that 

m,c, = a,Q,-(nu,-1)-. QM 

a, 

Equation (29) guarantees that thc second term on the right-hand side will be equal 
to an integer times 0,. 
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The reverse relations can be written in a simpler way; 

and 

52, = sc, + nwM, 
52, = a,@,. 

(32) 

(33) 

We emphasize that these symmetry classes do not distinguish among flows with 
the same value of m2 (mod m,). As we show in $5 ,  the value of m2 can be given a 
precise definition if properties of the flow other than the spacetime symmetries are 
used. 

4. Experiments 
From the above analysis it is clear that the spatial symmetry of the modulated 

flow, determined by m, and m2, constitutes a wavenumber selection problem which 
is undoubtedly dependent in a complicated way on the details of the flow. These 
quantities do not distinguish among distinct branches of modulated wave solutions, 
which may occur with any values of m1 and m2. We have found numerically that, for 
the Taylor-Couette system, distinct quasi-periodic solutions can be classified 
according to (i) the numerical value of c2/c1, which is approximately independent of 
m, and m2, (ii) the characteristic amplitude of modulation, which may be crudely 
estimated as ~ ~ j a j , , ~ / ~ ~ j a , l ~  (cf. (12)), and (iii) the spatial structure of the Floquet 
eigenfunction and the modulation pattern that results from the interaction with the 
underlying WVF. I n  this section we explain our classification of the experimental 
data, deferring to  $ 5  and the Appendix a discussion of how the numerical values of 
cl, c2, etc. are determined. Because the ratio c2/c1 is nearly constant for a given type 
of quasi-periodic flow, i t  can be used to help in the experimental identification of the 
value of m2. I n  table 2 we present a summary of the experimental and numerical data 
reported here. 

In the experiments of Zhang & Swinney (1985) a Taylor-Couette system with 
radius ratio 0.883 was used. The flow state was determined by flow visualization, and 
spectra were taken from the time series of scattered light intensity. With this 
technique, there is no precise quantitative relationship between the amplitude of a 
spectral peak and the strength of the corresponding mode (Savag 1985). Zhang & 
Swinney observed a quasi-periodic flow in which the spectral peak associated with 
the modulation, which they called fsl, was frame independent and thus not 
associated with an azimuthally travelling mode. Although in general the modulation 
frequency is not well defined by spectral peaks alone, in this case only one strong 
component (plus harmonics of the wave) was present in the spectrum, so the 
identification was valid. They determined that m, = 5 and that the flow was 
stable over a large range of parameter space; approximately 4Rc < R < 9Rc and 
2.0 < h < 3.5, with some hysteresis a t  the stability boundaries. 

For a numerical computation with h = 3, s = 5 and R = 7.5Rc we found a ZS 
modulated wave with m1 = m2 = 5 and a wave speed ratio c2/c1 = 2.13. These 
parameters are well inside the experimentally determined stability boundaries, thus 
we assume that this is the same flow seen by Zhang & Swinney. Because mz = m,, the 
frequency wM is equal to the beat frequency 5(c2 -cl) between the two fundamentals, 
which does not shift when the flow is observed in a rotating frame. Numerically we 
have found that for ZS flows, owing to the extreme weakness of the modulation, the 
beat frequency dominates the power spectrum (after f, and its harmonics have been 
removed), which is consistent with Zhang & Swinney’s observation that the largest 
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FIGURE 1. Experimental temporal power spectrum of a ZS flow at h = 2.5, R = 8.5R,, with 

m, = 4 and m2 = 12, reproduced from Coughlin et al. 1991. 

h m, m2 RIR, c,/Q Ttd c,Ic, Flow 

3.0 5 5 1.5 0.353 22.1 2.13 ZS 
2.5 4 12 8.5 0.338 10.6 2.02 ZS 
2.5 4 4 9.8 0.331 107 1.31 GS 

2.95 5 5 7.0 - 2.1 zs 
2.5 4 12 8.5 0.336 - 2.1 zs 
2.51 4 4 9.8 0.334 - 1.27 GS 

TABLE 2. Data for numerical (upper three rows) and experimental (lower three rows) (Zhang & 
Swinney 1985, figure 2; Coughlin et al. 1991) 

- 

component in their spectrum, not identifiable as a harmonic of the WVF, was frame- 
independent. Thus 

fSl = s(c2-c1), (34) 
which implies that 

(35) 
From the graphical data in Zhang & Swinney we estimate a ratio of 1.1. The lack of 
a signal on the inflow boundaries is consistent with our numerical discovery that the 
quasi-periodic Floquet mode is localized in the vortex outflow region (see Part 2). 

We have also computed a ZS flow at the parameter values h = 2.5, R = 8.5R,, with 
m, = 4 and m2 = 12, which was subsequently observed in the laboratory (Coughlin 
et al. 1991). The experimental power spectrum is shown in figure 1. Although there 
are many peaks in the spectrum, the fundamental of the wave and its harmonics are 
prominent and can be distinguished easily. If we assume that, as with the m, = 
m2 = 5 state, the largest peak not equal to a multiple of fl in this spectrum is the 
rotating-frame-independent beat frequency m2(c2 -cl), and that c2 x cl, then setting 
m2 = 12 leads to a measured value of c2/cl = 2.15, compared to the numerical value 
of 2.02. Independent confirmation of the modulation frequency oM, by taking data 
in the rotating frame, has not been done. In the laboratory the modulation appears 
as small ripples on the outflow boundary between adjacent Taylor vortices. 

The numerically computed GS modes with 7 = 0.875 are characterized by phase 
speeds with cl/O x $, c2/c1 x 9, and a weak dependence on the Reynolds number in 
agreement with the experiments of Shaw et al. Many harmonics of the modulation are 
found in the spectrum, but the problem of determining wM and m2 is simplified by the 

fsl/fl = c2/c1- 1 = 1.13. 
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fact that  m,(modm,) can be observed directly from the spatial modulation pattern. 
Note that for these flows f, = m2c2 is not the most prominent peak associated with 
the modulation (see Gorman BE Swinney 1979). 

5. Scaling of spectral coefficients 
While experimentally it may be difficult to determine the value of m,, numerically 

we have found that i t  is directly expressed in the structure of the Floquet mode or, 
far beyond onset, in the spatial structure of the component of the flow associated 
with the modulation. (See figures 4 and 5 of Part 2). This implies that it must be 
possible to construct a mathematically unique definition of m2 from the solution. 
Because redefinition of m2 in (8) requires relabelling of the indices of ajk, the physical 
significance of m, must be related to the structure of this coefficient matrix. In  this 
section we show that plausible assumptions about the scaling of the spectral 
amplitudes ajk can be used to identify m2 from azimuthal power spectra of the flow. 

We first note some observations about spatial Fourier spectra. Marcus (1984a, b )  
showed that the azimuthal spectrum of rotating waves is monotonic, with an 
approximate log-linear dependence on wavenumber (see figure 25 of that paper). 
(The numerically computed axial spectrum in Taylor-Couette flow, and also in 
curved channel flow (Finlay, Keller & Ferziger 1988), shows the same relation.) 
Consequently, if we scale the flow in ( 5 )  so that b, = 1, then 

lbjl - S'j', (36) 

where 0 < 6 < 1. (Note that lb,l = IbJ.) We have found that the same holds for all 
the flows (rotating wave, modulated wave and chaotic) that we have computed. Near 
onset, this relation is simply understood in terms of amplitude expansions. The 
rotating wave disturbance has the form Gexp [iml(8-c,t)]f(r, z )  for 13 4 1. Higher 
azimuthal modes are produced by nonlinear interaction of the fundamental with 
itself, so that modes proportional to exp [ijm, 81 will scale as 831. (The j = 0 mode is of 
order unity plus G2.) As there is no direct forcing of the flow a t  a particular azimuthal 
lengthscale, with increasing R the slope of the spectrum changes owing to the larger 
amount of energy in the high j modes, but the basic scaling relation remains as in 
(36)- 

Because 8 and t are coupled in the rotating wave, the temporal and azimuthal 
power spectra are identical modulo a normalization factor. In  the laboratory, 
assuming that peak strengths are directly correlated with the physical amplitudes, 
the largest spectral peak corresponds to f,. For relatively weak modulation, as is 
observed in ZS and GS flows, f, and its lowest harmonics are still prominent in the 
MWV spectrum. Because c ,  is approximately constant, the measured value of f, 
provides a quantitative determination of m,. 

If MWV is measured in the frame rotating a t  speed c , ,  determination of wM is 
trivial. From (l l) ,  wM = f2 - (m,/ml)fl. As is illustrated in figure 1,  the large number 
of spectral peaks makes determination of the correct value f2, and therefore of m2, 
difficult without the use of additional information (even with c2 known from the 
nature of the flow). Thus spectral data alone do not provide enough information to  
deduce the value of m2. Numerically, we take advantage of the spatial information 
available to  separate directly the piece of the flow that is quasi-periodic from the 
piece that is steady in the c,-frame, as follows. 

I n  the frame rotating at speed c1 the flow is periodic, so we define the mean as the 
steady-state component which is obtained by time-averaging the flow over one 
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modulation period. We defined the quasi-periodic disturbance as the total flow minus 
the steady-state in the same frame. This definition is specific to the c,-frame and is 
chosen to ensure that, to first order in the modulation amplitude, the steady-state 
flow is equal to the unstable wave and the quasi-periodic disturbance is equal to the 
Floquet mode. This would not be true if the time-averaging were done in any other 
rotating frame in which the MWV is periodic. 

Formally, a mean flow quantity QM is defined as 

which becomes, in the language of (8), 

j--cc 

For the total velocity field u, the mean tj is thus 

V(r, 8, z )  E - r v(r ,  d, z, t )  dt, (39) 
TM 0 

and the quasi-periodic piece is 

uqP(r, 8, z, t) = u(r, 8, Z, t ) - t j (r ,  8 ,z ) .  (40) 

Note that ij always has the symmetry of the underlying rotating wave. The spatial 
periodicity of uqp is determined by s (which for the numerical solutions presented here 
is identical to ml). It is not symmetric under 8 + 8 + 27c/m2, even at onset, unless of 
course m2 = m,. 

At onset uqp is equal to the Floquet mode which is of the form given in (7). Our 
numerical results indicate that, consistent with the observation that spatial Fourier 
spectra of Taylor-Couette flows generically show a log-linear scaling, the spectral 
coefficients y, in the Floquet eigenfunction scale as 

IY,l - P"1, 

for some 0 < p < 1. This means that, for QF itself, the largest peaks in the azimuthal 
Fourier spectrum are yo and yo*, which multiply the modes exp ( f im, 8). Equiv- 
alently, the azimuthal power spectrum of the quasi-periodic velocity at fixed time 
should peak at  the azimuthal mode equal to m,, as is shown in Appendix A 9 A.2 and 
confirmed by numerical data for two ZS flows. Graphically, this means that in 
the frame rotating with speed c1 the Floquet eigenfunction consists of a time- 
independent function with wavelength gx/ml spatially modulated by a single 
Fourier mode proportional to exp {im,[8- (c, - c,) t ] } .  This modulating function 
'travels' in the 8-direction with angular velocity c,-c,. For Taylor-Couette flow (as 
illustrated in Part 2) plots of any component of uqp demonstrate that the value of m, 
so defined is not at  all ambiguous. 

Monotonic decay of the spectral amplitudes can also be used in the laboratory to 
verify that an estimated value of c, is really the phase speed associated with the 
Floquet mode. In the frame rotating at speed c,, a time series taken at  a fixed point 
( r ,  8, z )  will have the form 

m m  
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Setting Q = exp [ijm, 191 (x, aj,(r, z )  exp [ikm, el), we find 
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a, 

f(t) = x SeXP[-ijm,(c,-c,)tI, 
1--m 

(43) 

hence the temporal spectrum in this frame scales with the index j, and will therefore 
be monotonic. In  any other frame in which the flow looks periodic the temporal 
spectra will not have this monotonic decay for all j. 

6. Conclusion 
We have shown that the explicit functional form of quasi-periodic flow can be 

determined from simple considerations of the mathematical structure of linear 
eigenmodes of rotating waves in Taylor-Couette flow, a procedure which can be 
easily generalized to other systems having a similar class of solutions. Using an 
explicit representation for the MWV flow, we have been able to clear up a number 
of inconsistencies in notation and interpretation of experiments in existing work. We 
have also shown that the known symmetry classes of quasi-periodic flow, as 
discussed by Rand (1982), can be derived directly from the solution, and that 
physically distinct flows can have the same symmetry. With regard to  the latter, 
there are two points to  make: (i) there are distinct branches of MWV which are 
distinguished by the numerical values of the phase speed of the Floquet mode and 
the amplitude of modulation, not by symmetry; and (ii) for a given class of MWV, 
there can be flows which have the same value of m1 but different values of m,, which 
therefore have identical symmetry but are not physically equivalent. We have shown 
that a unique, well-defined, and physically meaningful value of m, can be determined 
from the scaling of amplitudes in the spectral representation of the flow, with 
numerical confirmation of the hypotheses used in the analysis. We believe that a 
clearer understanding of the mathematical representation of quasi-periodic solutions 
to the NavierStokes equations, and of the fact that there exist several branches of 
such solutions, will be of further use in both experimental work and bifurcation 
theory. 

We thank Harry L. Swinney and R. Tagg for useful discussions, and for figure 1. 
This work was supported in part by National Science Foundation Grant CTS-89- 
06343. The numerical computations were done a t  the San Diego Supercomputer 
Center. 

Appendix. Numerical diagnostics 
In this Appendix we discuss the numerical diagnostics used to  verify the statements 
made in this paper about the functional form of MWV flows in the Taylor-Couette 
system. We have used a pseudospectral, initial-value code to solve the NavierStokes 
equations for incompressible flow in a cylindrical geometry (Marcus 1984a, b ;  
Coughlin & Marcus 1991). The flow is constrained to be periodic in the axial direction 
with wavelength A, and in the azimuthal direction with wavelength 25~1s. To describe 
the temporal properties of the flow we use both the phase speed c2 and the 
modulation frequency w,, the latter being directly comparable to experimentally 
measured values. The modulation period T ,  = 2x/w, is the periodicity observed in 
the c,-frame, measured in our dimensionless units. We will use the notation (m,, m,) 
to denote a modulated wave with these azimuthal wavenumbers. 



Modulated waves in Taylor-Couette $ow. Part 1 15 

A . l .  Analysis of time series 

We represent the solution using Fourier modes in the periodic directions, and 
Chebyshev polynomials for the radial coordinate. For all the computations we define 
m, = s, which reduces the number of azimuthal Fourier modes needed to represent 
the wavy vortex solution. This restricts the numerical modulated wave solutions to 
the case m2/ml = j wherej is an integer. (We have observed flows with both j = 1 and 
j + 1.) Throughout this Appendix, we will ignore the discretization in time, and 
assume that time series are taken at some fixed radial point. 

We define all variables with respect to the inertial frame. An arbitrary scalar flow 
quantity is represented as 

N-1 J-1 

Q(r ,  8, z, t )  = C fn,(r ,  t )  exp [2xinz/A] exp [ijsf?]. 
n--N+1 j--J+l 

For all our computations, the flow is adequately resolved with N < 32, J < 32, and 
33 radial modes 

Knowing the functional form of the solutions allows us to predict the temporal 
properties of both rotating waves and modulated waves. Time series of the 
coefficients of spatial Fourier modes allow us both to verify the deductions and to 
determine the time constants. For our time series, we use the modes (n = 1 ; j = 0, 
1,2,3,4) and ( j  = 1 ;  n = 2,3,4) at  a fixed radial point, as well as the torque at the 
outer cylinder, total energy, and the total angular momentum. 

For WVF, the modes b, of (5 )  and the spatial Fourier modes are related by 

b,(r, z )  exp [ -ijscl t]  = Cfn3(r ,  t )  exp [2xinz/h], (A 2) 
n 

which implies that 

where en, is a complex function of r .  
The signature of a converged rotating wave is that any axisymmetric quantity 

(such as the energy) will be steady state, while any non-axisymmetric flow variable 
will be periodic with period 2x/sc1. To determine the speed of the waves, we use the 
function 

For rotating waves this expression reduces to 

hni(r, t ,  f )  = -ijscl, (A 5 )  

which is independent of r ,  n, t and f, and linear in j. As the flow converges from the 
initial condition to WVF, ihni/js converges as expected to a constant, which is equal 
to cl. (Any dependence of hni on n would indicate the presence of waves travelling in 
the axial direction.) 

Besides being a parameter of physical interest, the wave speed cl is a useful 
numerical diagnostic for monitoring the convergence of the solution. We continue the 
computation until c1 is constant to a t  least one part in lo4. The dependence of c1 on 
the timestep St is consistent with our second-order accurate algorithm (Marcus 
1984a). A change in the spatial resolution produces a change in the wave speed of less 
than 0(10-5), which is on the order of truncation error. 
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The numerical signature of the onset of modulated waves is periodic oscillation in 
any axisymmetric quantity. For flows with m, = s, mJml = integer, the modulation 
frequency with respect to the cl-frame, w,, is equal to the modulation frequency of 
axisymmetric flow quantities. Thus the period of the energy etc., which is easily 
determined from time series, gives us uM = 2n/TM directly. 

The time dependence of the quasi-periodic Fourier modes is most readily deduced 
from the representation in (15). The coefficients A,, are related to the f,, by 

x f n , ( r ,  t )  exp [2ninz/h] = exp [ - i s c ,  t ]  2 Ajk(r,  z )  exp [ - ikw, t ] .  (A 6) 
n k 

The time series are therefore of the form 

f n j ( T ,  t )  = exp [ - iscl t1 x 'mjk(') exp [ - ikwM t ] ,  (A 7) 
k 

where the cnlk again are complex functions of r .  
The dependence on c,  can be removed from these time series by taking the modulus 

off,,,. For converged MWV we measure the period T ,  by locating the extrema of 
I fn,l for the set of Fourier modes specified above. The accuracy in T ,  is always plus 
or minus one timestep St, which is of order &ITM - As the flow converges to a 
truly quasi-periodic state, the extrema of the time series converge to constant values. 
Transients in this system are generally on the order of a few modulation periods, 
except very close to a bifurcation. 

Given uM, the wave speed c1 can be calculated from (A 4) by setting i = TM. As 
with WVF, convergence to quasi-periodic flow can be monitored by verifying that h,, 
goes to a constant value independent of t .  Note that this procedure does not 
completely specify c l ,  as the right branch of the logarithm in (A 4) must be chosen. 
I n  practice, we guess an approximate value for c, from continuity with the WVF, and 
use (A 4) to refine the estimation. 

We have run a number of computations of (stable) MWV for several tens of 
modulation periods, and find that there is no drift in either the modulation period or 
the wave speed. On the contrary, quantities such as the amplitudes of the extrema 
of Lfnll continue to converge to constant values, implying that the time integration 
remains accurate. Equivalently, the function hn,(r, t ,  i) is independent of t to  within 
a monotonically decreasing error. I n  the maxima and minima of time series for any 
flow quantity, there is either a monotonic convergence to the equilibrium values, or 
oscillatory convergence within a monotonically decreasing envelope. 

A.2. Numerical estimates of the scaling of A,, 
I n  this section we discuss our numerical corroboration of the scaling derived in $5.  
I n  general, numerical time series are too short to produce power spectra with 
accurate peak locations and amplitudes. However, the time series themselves are 
very accurate, and because the time dependence of all Fourier modes is known 
explicitly, they can be used to isolate any particular amplitude k t j k .  These coefficients 
are functions of r and z, thus we write 

ktjk(r, z )  = x c,jk(r) exp [inznzlh]. 
n 

Note that, if a flow has shift-and-reflect symmetry, Ic,,-,,_,l = lcn,,1. 
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FIGURE 2. Azimuthal Fourier spectrum of the axial component of the quaai-periodic velocity 
(at fixed time) 

for ZS flows with (a) m, = m2 = 6, and ( b )  m, = 4, m, = 12. 

To eliminate the dependency on the axial mode and radial point, we construct the 
azimuthal spectrum of the Floquet mode itself, or its nonlinear analogue vqp. We 
define 

The azimuthal Fourier spectrum of the quasi-periodic mode a t  fixed t is then 

According to our hypothesis, the structure of the Floquet mode is exp [isa, 8- wy t ]  
times a function with a monotonically decaying azimuthal spectrum, so the spectrum 
P, should peak at  j = a,. In figure 2 we present numerically computed spectra of 
&z.vqp for the cases a2 = 1 and a, = 3, verifying this prediction. 

Errors in the evaluation of the quasi-periodic mode itself can be estimated by 
computing the spatial Fourier spectra of the residual 

I v ( r , 8 , z , t = O ) - v ( r , 0 + c 1 T m , z , t  = T,)l2. 

For perfectly converged MWV solutions, this quantity is equal to zero. An inaccurate 
value of cl, an inaccurate value of TM, or a lack of convergence to the equilibrium can 
cause finite errors. The latter effect is always dominant. The ratio of this residual to 
the spatial Fourier spectrum of the quasi-periodic mode for fixed n, j serves as an 
estimate of signal-to-noise in the flow. For all the work presented here and in Part 
2 this ratio is on the order of lo-, or less. 
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