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We present a mathematical analysis of the transition from temporally periodic 
rotating waves to quasi-periodic modulated waves in rotating flows with circularly 
symmetric boundary conditions, applied to the flow between concentric, rotating 
cylinders (Taylor-Couette flow). Quasi-periodic flow (modulated wavy vortex flow) 
is described by two incommensurate, fundamental, temporal frequencies in an 
arbitrary frame, but the flow is periodic in the appropriate rotating frame. The 
azimuthal wavelength of the modulation may be different to that of the underlying 
rotating wave ; hence the flow state is described by two azimuthal wavenumbers as 
well. One frequency and one wavenumber are determined by the wave state, but no 
simple physical properties have yet been associated with the parameters of the 
modulation. The current literature on modulated waves displays both conflicting 
mathematical representations and qualitatively different kinds of modulation. In  
this paper we use Floquet theory to derive the unique functional form for all 
modulated waves and show that the space-time symmetry properties follow directly. 
The flow can be written as a non-separable function of the two phases ( 8 - c l t ,  
8-c, t ) .  We show that different branches of modulated wave solutions in 
Taylor-Couette flow are distinguished not by symmetry but by the ranges of the 
numerical values of c l ,  c2 ,  and the spectral amplitudes of the solution. The azimuthal 
wavenumber associated with the modulation has a unique physical definition but is 
not directly expressed in the spatial symmetry of the modulated flow. Because 
modulated waves should occur generically in systems with rotational symmetry, this 
analysis has application beyond Taylor-Couette flow. 

1. Introduction 
The flow between concentric, differentially rotating cylinders, Taylor-Couette 

flow, exemplifies a class of problems in fluid dynamics involving rotating flows with 
circularly symmetric boundary conditions. When the outer cylinder is held fixed and 
the inner cylinder speed is increased, the flow undergoes a series of transitions (the 
‘main sequence ’ (Golubitsky &, Stewart 1986)), which are characterized by the 
change in the symmetry group that leaves the flow invariant. In particular, in such 
systems a temporally periodic rotating wave will generically bifurcate to a quasi- 
periodic modulated wavy flow. The symmetry group defining these quasi-periodic 
flows, consisting of a lattice of space-time translations which bring the flow into 
itself, was derived by Rand (1982) and confirmed in experiments of Gorman & 
Swinney (1979, 1982) on modulated wavy Taylor vortex flow (MWV). Work on this 
system has been motivated in a large part by interest in the transition to chaos, 
which has been shown in the laboratory to occur directly out of the MWV state as 



2 K .  T. Coughlin and P. S. Marcus 

the inner cylinder speed is increased (Gollub & Swinney 1975 ; Fenstermacher, 
Swinney & Gollub 1979). It was believed that this transition might be related to the 
work of Ruelle & Takens (1971), who showed that under quite general conditions a 
low-dimensional quasi-periodic flow will be unstable to a strange attractor. In a 
quasi-periodic flow, the equilibrium flow trajectory sits on an n-torus in the phaae 
space, and the dynamics can be described with a finite number (n) of incommensurate 
temporal frequencies. Thus MWV is a particular example of a quasi-periodic flow. 
However, MWV is temporally periodic when viewed in the appropriate rotating 
frame; hence the transition to chaos studied by Brandstater & Swinney (1987) is 
directly from a limit cycle to chaos. The work of Ruelle & Takens does not apply in 
this case, nor is there any other known mathematical mechanism for such a 
transition. 

We believe that a useful approach to the solution of this problem is to understand 
the nature of quasi-periodic instabilities of the rotating wave in general. This entails 
a closer look a t  the available experimental work, which reveals that the series of 
bifurcations in Taylor-Couette flow is more complicated than is suggested by the 
main sequence. At  least two modulated waves of qualitatively different character 
have been observed in the laboratory (Coughlin et al. 1991), a fact which has not been 
reconciled with existing theory. In addition, there exist two conflicting nom- 
enclatures for the MWV states which have been studied in detail, neither of which 
illuminates the physical nature of the modulated flow. Our numerical simulations of 
quasi-periodic Taylor-Couette flows, described in Part 2 (Coughlin & Marcus 1992), 
have shown that there is a simple, general framework in which all of these MWV 
states can be understood. In  this paper, we lay down the mathematical basis for this 
understanding, based on the construction of the mathematical form of the solution. 
This work should be generally useful in any situation where rotating waves and 
quasi-periodic flows are found. 

We use Floquet theory to deduce the functional form of instabilities of the rotating 
wave, and from this we derive the form of modulated wave solutions to the 
NavierStokes equations. The consequences of the mathematical structure of the 
flow, particularly the relation between the space-time symmetry as described by 
Rand and the form of the initial rotating wave and the Floquet mode, are discussed 
in detail. From this we are able to resolve the questions raised by current 
experimental and theoretical work. In  the process, the parameters describing the 
solution are given a physical interpretation, with a detailed discussion deferred to 
Part 2. 

To set our work in context, we present a brief review of the main sequence 
(discussion of the transition to chaos will be left to Part 2). A more complete review 
is given in DiPrima & Swinney, (1981), and a thorough discussios of the linear 
stability problem in Chandrasekhar (1961). The geometry of the apparatus is 
characterized by the radius ratio 7 = a/b ,  where a and b are the inner and outer 
cylinder radii respectively, and the aspect ratio r which is equal to the height of the 
fluid column divided by the gap width. For the work discussed here, the gap is 
narrow with 7 = 0.875. We define a Reynolds number 

R = Qa(b-a)/v, ( 1 )  
where D is the inner cylinder frequency, and v is the kinematic viscosity. We use the 
usual cylindrical coordinates ( r ,  8,  z ) ,  and non-dimensionalize by setting the gap 
width (b-a) ,  the inner cylinder velocity Qa, and the density all equal to one. 
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At low R, circular Couette flow is a stable equilibrium, with the exact solution (for 
the infinite cylinder case) v,. = v, = 0 and vo = V ( r ) ,  where 

V(r )  = A ( r - b 2 / r ) ,  (2) 

and A = --52q2/(1 - q 2 ) .  (In this paper we consider only the ‘infinite cylinder’ case, 
in which exact axial periodicity is imposed. For a justification of this assumption 
with regard to comparison with experiments see Part 2.) At R = R, this flow becomes 
centrifugally unstable to Taylor vortex flow (TVF), which is steady, axisymmetric 
and periodic in the axial direction with wavelength A. In our units, R, = 116.1 for 
q = 0875. For R just a few per cent above R,, a supercritical Hopf bifurcation leads to 
azimuthally travelling (rotating) waves on the Taylor vortices. We define the 
azimuthal wavenumber m, of wavy Taylor vortex flow (WVF) as the number of 
identical waves around the cylinder, and the fundamental frequency f, as the 
frequency with which successive wave peaks pass an observer in the lab frame. The 
phase speed c1 = film, is approximately independent of m, and R (King et al. 1982). 
For the gap widths considered here, c, is equal to roughly one third the inner cylinder 
speed. 

A t  higher R, one observes modulated wavy vortex flow which is characterized by 
the presence of a second fundamental frequency incommensurate with f, (Gollub & 
Swinney 1975; Fenstermacher et al. 1979). Just as WVF is periodic in the inertial 
frame but steady in the frame rotating at speed c , ,  MWV is quasi-periodic in the 
inertial frame and temporally periodic in the proper rotating frame. The modulation 
pattern may change the azimuthal symmetry of the flow, indicating that the new 
state must be described by two azimuthal wavenumbers as well as two temporal 
frequencies (Gorman & Swinney 1982 ; Gorman, Swinney 6 Rand 1981 ; Shaw et al. 
1982). 

In the experiments of Gorman & Swinney the modulated flow was identified with 
periodic flattening of the outflow boundaries between adjacent Taylor vortices. To 
distinguish this kind of MWV from other branches of quasi-periodic solutions we 
refer to it as ‘GS flow ’. For a given initial WVF state, a variety of azimuthal patterns 
were observed, all of which were found to be in agreement with the theoretical work 
of Rand (1982). Given an initial WVF with azimuthal wavenumber m,, Rand showed 
that for MWV flows there exist an integer n and a basic period 7 such that the flow 
in the frame rotating at the speed c1 is invariant under the transformation (8,t)+ 
(8+27cn/m,, t + 7 ) .  Defining s 1 as the fundamental azimuthal wavenumber of the 
modulated flow, the space-time symmetry of a given state is labelled by the three 
integers (m,, n, s). Rand proved that for fixed m, and s there are a finite number (less 
than m,) of modulated wavy flows with distinct labels (m,, n, s). Shaw et al. (1982) 
conjectured that the GS flow was composed of two rotating waves, characterized by 
two azimuthal wavenumbers (defined as m, and m2 respectively), and two wave 
speeds (cl and c2). Inferring m4 from thc modulation pattern, they showed that the 
experimental power spectra were consistent with an approximately constant speed 
for each wave with c2/cl x 2. No explicit connection was made between the ‘second 
wave’ parameters (m2,c2) and the (n,s,7) nomenclature of Rand, nor was the 
apparently unlimited range of m2 reconciled with Rand’s prediction of a finite 
number of observable symmetries. 

A defining characteristic of GS flow is that there is always a peak f2 = m2 c2 in the 
power spectrum whose frequency shifts when the flow is observed in a rotating frame 
by an amount proportional to the frame speed. This property implies that the 
frequency f2 is associated with a phase in 8. A modulated wave not having this 
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property was observed by Zhang & Swinney (1985). The temporal power spectra 
showed a single strong peak associated with the modulation which remained fixed 
irrespective of the frame in which the flow was measured; hence, this flow was 
designated a ‘non-travelling modulation ’. We refer to this kind of modulated wave 
as a ‘ZS flow ’. No modulation signal was detectable a t  the inflow boundaries of the 
Taylor vortices, and there was no observed flattening a t  the outflow. This flow has 
not been set into the context of Rand’s theory, which presumably must include it as 
a special case. The physical nature of the non-travelling mode, and why it is so, has 
not been explained. 

A number of theoretical descriptions of modulated waves have been proposed in 
the literatye. Swift et al. (1982) assumed the MWV to be a separable function of the 
time t and 8 F 8-c, t ,  the azimuthal coordinate with respect to the rotating frame, 
and were able to correctly identify the locations of their observed spectral peaks. 
However, such a separable function is not an allowable solution of the Navier-Stokes 
equations, nor does it correctly predict the phase of the modulated wave. Ohji, 
Shionaya & Amagai (1986) proposed a functional form in which a tingle azimuthal 
mode is both amplitude and frequency modulated by a factor sin (k0- wM t )  for some 
integer k, where wM is the observed frequency of modulation in the c,-frame. While 
i t  is possible to represent the symmetries of the flow this way, it is unphysical because 
it includes only the fundamental azimuthal mode of the wave, and again functions 
of this form are not allowable solutions to the Navier-Stokes equations. Nor is it 
clear that one gains any physical insight by separating the modulation into 
amplitude and frequency components. In contrast, the functional form we shall 
derive in this paper is based on the structure of the linear eigenmodes of the rotating 
wave, and has a direct physical interpretation. 

The rest of the paper is organized as follows : in $2 we use Floquet theory to derive 
the functional form of the solution, which is the same for all modulated rotating 
waves. The space-time symmetry properties, and the resolution of notational 
difficulties, follow directly. In  $3, we show how the symmetry classes of Rand (1982) 
can be constructed from the functional form. Section 4 contains a discussion of how 
distinct branches of modulated wave solutions can be distinguished from each other 
by spectral data, augmented by general information about ZS and GS flows obtained 
from the numerical simulations. In $5 we show that a simple scaling relation allows 
a unique definition of the parameters of a particular state. Our conclusions are 
presented in $6. In  the Appendix we describe the diagnostics used in our numerical 
computations of Taylor-Couette flow both to verify our hypotheses and to determine 
the parameters associated with the space-time structure of the flow. The code itself 
has been described by Marcus (1984a). In  Part 2 we present detailed numerical 
results for both GS and ZS flows and describe the physical features which distinguish 
them. 

2. Functional form 
We derive the functional form of MWV beginning with the assumption that the 

rotating wave is linearly unstable to a Floquet mode. This assumption is used to 
clarify the derivation but our result does not depend on it. We shall ignore the radial 
and axial dependence of the solutions, as they are irrelevant to the discussion. We 
make reference to Taylor-Couette flow to illustrate the concepts presented. To 
simplify the notation, we denote an arbitrary scalar flow quantity in the rotating 
wave state as Qw, and such a quantity in the modulated wave state as QM. 
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2.1. Floquet theory 
We define a rotating wave as a solution to the NavierStokes equations with the 
symmetry 

with c, the non-dimensionalized wave speed. For all time, the flow is also m,-fold 
symmetric ; 

(4) 
for a positive integer m, 2 1. The 0 and t coordinates are coupled and periodic, so the 
solution must have the general form 

~ ~ ( T , e + s e , z , t )  = ~ ~ ( r , e , Z , t - - e / c , ) ,  (3) 

~ ~ ( r ,  e+2x/m1, Z, t)  = ~ ~ ( r ,  e , ~ ,  t) ,  

In WVF the azimuthal wavenumber m, is just the number of waves around the 
cylinder. In an experimental power spectrum there is a set of equally spaced peaks 
at  multiples of mlcl, thus we define thef, = mlcl as the fundamental frequency of 
the rotating wave. For WVF, the phase speed c, is positive (the wave travels in the 
direction of the inner cylinder or mean azimuthal flow). Because Taylor vortices go 
unstable to WVF via Hopf bifurcation, the eigenmodes come in complex conjugate 
pairs, and the spectral sum in (5 )  has both positive and negative temporal frequencies 
+jm, c,. The complex conjugate pairs are proportional to exp [ f ijml(e - c1 t)] ; hence 
both frequency components describe waves travelling in the positive &direction. 
Waves which travel against the direction of the mean flow are not seen, neither in 
experiments nor in numerics. When the flow is observed in a frame rotating with 
angular speed c, the locations of spectral peaks are shifted tojm,(c,-c). The flow will 
be time-independent if and only if c = cl. 

We define the new variable 
e = e-c, t, (6) 

such that Qw(r, 4, z )  is steady. The N5vierStokes equation linearized around Qw has 
coefficients which are periodic in 8 and autonomous in t ,  thus we refer to the 
eigenmodes as Floquet modes. We assume that (i) there is no change in the axial 
structure of the solution, and (ii) the flow goes through a supercritical Hopf 
bifurcation to modulated waves (numerical data presented in Part 2 support this 
hypothesis for some quasi-periodic flows). Defining the critical Reynolds number for 
onset of modulation as R,, the eigenmodes have the form 

m 

5--m 
QF(r, 4, z, t) = exp (im, 4) exp ( -  iw, t)  c yj(r, z )  exp (ijm, 4) + c.c., (7) 

where wM is real at R = R,. In  the c, frame the bifurcation is from a steady to a 
temporally periodic flow. Note that m2 need not equal m,; hence the azimuthal 
symmetry of the flow may be changed by the bifurcation. Because the solution is 
always periodic in 0 there is an integer s, defined as the greatest common factor 
GCF(ml, m2), such that the flow is symmetric under 0 + 0 + 27c/s. 

2.2. Nonlinear solution 
In order that the functional form of the fully nonlinear solution be invariant under 
the action of the NavierStokes equations, it must contain all the modes that might 
be generated as products of the eigenmode with itself or the rotating wave. Thus, 
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MWV solutions can be written as a spectral sum of these products, and will have the 
form 

m m  

Q M ( r ,  8, z, t )  = c ujk(r, z )  exp [ijm, 81 exp [ik(m, 8-fdMt)l. (8) 
j=-m k--m 

Relative to the inertial frame, the flow is quasi-periodic, and we can use (8) to  define 
two fundamental frequencies f, = m1 c1 and f2 = m2 c1 + wM. However, as is well 
known, the spectral data itself does not define uniquely the fundamental frequencies 
of a quasi-periodic signal, as any linearly independent combination (for example, 
fi+f2 and fl-f,) can be used as a basis for the entire set of peaks. In  order to 
unambiguously specify the frequency of modulation, it must be identified with some 
physical flow characteristic. Here we define wM as the modulation frequency observed 
in the frame rotating a t  speed c , ,  which we assume is known a priori. 

A similar argument shows that the azimuthal wavenumbers m, and m, are not 
uniquely defined by the formal solution. Consider a spatial Fourier spectrum of the 
flow in (8) a t  some fixed time: 

This spectrum will have peaks a t  all values of the integer I such that 

I = jm, + Icm, (10) 
for all integers j, k. All values of 1 will be multiples of s, the greatest common factor 
of m, and m,. The set of pairs (m,,m2) which reproduces this set of peaks is not 
unique. The limitation on observable MWV flow patterns bifurcating from a given 
rotating wave follows from this fact. The functional form of the solution determines 
the modulation pattern observed in the laboratory ; hence, for given m1 and m,, and 
mi = m, +pm, for integer p in (8) reproduces the same functional form and therefore 
the same spacetime symmetry. If the modulation is a weak perturbation of the 
underlying rotating wave m, can be determined visually. However, to measure m2, 
a way must be found of disentangling the ‘ background ’ m,-fold symmetry from the 
total spatial signal (analogous to  removing the background rotating wave frequency 
by transforming to the appropriate frame). While this has not yet been accomplished 
in the laboratory i t  is easy to  do numerically, and results presented in Part  2 
demonstrate the physical significance of m2. 

For now, we assume that c, ,  wM, and the wavenumbers (m,,m2) are known. The 
Floquet mode in (7) consists of a spatial eigenfunction multiplied by a complex phase 
with the functional form of a rotating wave, and a phase speed relative to the inertial 
frame 

The parameter c2 turns out to be the same as the ‘second wave speed’ deduced by 
Shaw et ul. (1982) in their study of Taylor-Couette flow, and m2 is equal to  their 
second wavenumber (modulo a multiple of m,). To avoid confusion we do not refer 
to  these parameters as descriptive of a second rotating wave, but rather as describing 
the Floquet mode associated with the modulation. 

Using (11) to replace wM, and returning to  the coordinates 6 and t in the inertial 
frame, the flow in (8) becomes 

c2 = c1 + w M / m 2 .  (11) 

c o m  

&M(r?  6, z, t ,  = c ajk(r? z, exp [gml (6-c1 t ) l  exp Likm, ( 6 - e 2  t)]* ( 12) 
5--m k--m 
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Mathematically, the flow is a doubly periodic, non-separable function of the two 
phases (8-c1 t )  and (8-c, t ) .  It is not correctly described as a pair of travelling waves, 
but there will be a doubly infinite set of peaks in the power spectra which have the 
properties of the spectra of travelling waves. There is a structural symmetry under 
1 t, 2 ,  but because the matrix ajk 4= a 

The form of the quasi-periodic solution does not depend on the assumption of a 
supercritical Hopf bifurcation, as it is equivalent to a functional form based purely 
on the observed symmetries of the flow. We define a1 and a, such that 

there is no physical equivalence. 
k: 

m, = als ,  
m2 = a,s;  

hence a1 and a, are relatively prime. Letting 1 = ja ,+ka, ,  we rewrite (8) as 
m a  

QM(r, 8, x ,  t )  = 2 c Alk(r,  z )  exp ( i d )  exp ( - iku, t ) ,  (15) 

(16) 

I--00 k--m 

- 
where Ajal+ka2,k = a j , k .  

This is the most general form for a flow which is temporally periodic when viewed in 
the c,-frame, and spatially symmetric under 8 + 8 + 2 R / s .  To have begun with this 
equation would however have obscured the real structure of the instability, as can 
be seen from the complicated relationship between the coefficients ajk and Ajk.  The 
matrix Ajk is full and has no symmetries, so there is no frame transformation which 
will simplify the space-time structure of the flow any further. 

2.3. Rotating frames 
The form of the solution in (12) can be used to prove that there is a doubly infinite 
family of rotating frame speeds s ~ , ~ ,  in which the modulated wave appears to be 
temporally periodic. More specifically, there is an infinite family of possible periods 
T,, and each TJ can be obtained in an infinite number of ways. 

We define the period TA as follows: 

2R T -  
A -a1a2slcz-c11' 

In any frame in which the flow is periodic, the periodicity must be a multiple of TA ; 
hence we define 

for integer J. 
TJ = JT, (18) 

J = nlal+n,a,. (19) 

Now define two integers nl,n, such that for fixed J 

The solutions to this equation define a one parameter family of integer pairs {nl, 
n2 = (J-n1a1)/aJ. 

For fixed J and nl,n, defined as above, in the frame rotating with speed 

the flow has period TJ. In this frame, the solution takes the form 
m a  

+-a k--m 
&M(r7 2 7  t ,  = I: X j k ( r ,  z, exp (ijsenlnz) exp (-ikuJ t ) 7  (21) 
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where Onlng = 0+5nln2t and wJ = 27c/IlJ. Thus, the basic functional form of quasi- 
periodic flow is preserved under this family of transformations, and c, = sl0 and 
c,  = sol are not defined uniquely as frame speeds in which the flow looks periodic. Note 
that if m, is misidentified as some value N = m, +pm, for integer p ,  and c, is thus 
defined as c, + w M / N ,  the flow will be periodic in this rotating frame, as can be proven 
by showing that c l + w M / N  can be written in the form 5n,n, above. 

3. Symmetry classes of modulated waves 
In  this section we use the functional form of the solution to re-derive Rand’s 

results regarding the allowed symmetries of MWV. Equation (8) shows explicitly 
that, given a fixed value of m,, all values of m, that  differ by a multiple of m, will 
have the same symmetry. Equivalently, for fixed m,, there are a t  most m, MWV 
states with distinct functional representations and therefore distinct modulation 
patterns. Rand (1982) proved this result, assuming that the modulation occurs as a 
Hopf bifurcation out of a rotating wave with known wavenumber m, and wave speed 
c, .  He defined the symmetry of MWV in terms of an integer n and a unique minimal 
period T such that the flow is invariant under the transformation (8, t )  --f (8+ 27cn/m,, 
t + T ) .  In experiments on Taylor-Couette flow, Gorman & Swinney (1982) identified 
T as equal to s/ml times the modulation period observed in the frame comoving with 
the first wave. 

We shall derive explicitly the relation between the spatial labels (m,, n, 5) and 
frequencies 51, and 52, used by Rand and the notation (m,, c,, m,, c,)  used in this 
paper. These relations are summarized in table 1 .  For reference we include Rand’s 
definitions 

52, = 27c/T, ( 2 2 )  
51, = s(c,  +nQ,/m,).  (23) 

We first consider the simple case where m, = m, = 5 (the same relations hold if m, 
is any multiple of m,).  In  this case, the flow must return to itself after a period T with 
no azimuthal rotation ; hence n = 0. The period T is then equal to the period observed 
in the rotating frame; hence T = 27c/wM. The fundamental frequencies are 52, = oM 
and 51, = 5c1 = m, c, .  

For n =k 0 ,  we substitute the phase shift 8 + 8 + 66, t + t + 6t into (8), from which it 
is clear that the shift in 0 can be absorbed by a compensating shift in t if and only 
if 88 is a multiple of 2x/m,. The complex phase factor acquired in the shift must be 
equal to one ; hence, 

for some integer n,. 
To simplify this expression we define 

a, = pa,  +a, 

for integers p and a?, with p 2 0 and 0 < a, < a,. This !fines p anL a, uniquely. 
Replacing m2/ml with ar/al, and absorbing p into a redefinition of n,, we find that 
wMr is equal to 27c/a, times an integer. Because T is defined as a minimal period we 
set that integer equal to unity, hence 

7 = 27c/w,a1. (26) 
(This includes the special case n = 0, for which a, = 1. )  


