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1. INTRODUCTION 

Probably the question most frequently asked about the Great Red Spot 
(GRS) is "What is it?," as if a single powerful word or phrase-soliton, 
Taylor column, Rossby wave, hurricane-could neatly explain its 300 
years of observation (Hook 1665, Cassini 1666) and modeling. The GRS 
is a nearly 2-dimensional vortex not attached to any topographic feature. 
Such vortices abound in Nature, but the peculiarities of the GRS, such as 
its huge size, persistent survival amid turbulence, and (most vexing from 
our point of view) why there is no terrestrial analog, are due to Jupiter's 
rapid rotation, nearly dissipationless atmosphere (no boundary layers), 
and strongly shearing east-west winds. This review argues that these three 
ingredients are essential for the formation and maintenance of the GRS, 
and that any flow having all three traits such as those found on Saturn, 
Neptune, and most other locations on Jupiter also have long-lived vortices. 

We present a tutorial in vortex dynamics to explain theoretically the 
GRS as the self-organization of vorticity in turbulence. We avoid pre­
senting models with enough free parameters to obtain a solution that 
reproduces exactly the GRS velocity and the motion of every cloud. The 
quality of the observations does not warrant it, and a misinterpretation of 
them can lead to incorrect conclusions. In the next section we list a 
number of properties of the GRS and the other Jovian vortices that are 
unambiguous from the data. The remainder of this paper develops the 
simplest possible model that explains these properties one at a time rather 
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524 MARCUS 

than in an all-encompassing planetary global circulation model in which 
they are all present together, making interpetation and analysis difficult. 
Our equations are simple enough to understand each property in a physi­
cally intuitive way or with a back-of-the-envelope calculation, yet 
sufficiently complete to make quantitative predictions based on de­
tailed numerical computations for future observations and laboratory 
experiments. 

2. THE WEATHER LAYER 

Jupiter has an equatorial radius of 71,400 km and is everywhere a fluid 
except for a small solid core (Stevenson 1 982). However, in this review we 
are concerned only with the fluid dynamics in the thin weather layer that 
contains the visible cloud tops. Above and at the top of this layer the 
atmosphere is stably stratified and acts as an impermeable lid on the 
underlying, up-welling, convecting I fluid (which creates the visible con­
densates in the clouds). This layer is the only region where we can detect 
vortices (by using cloud motions and patterns), but because the layer is at 
the interface of the convecting and stable parts of the atmosphere its 
dynamics are unique. It may be the only Jovian layer where coherent 
vortices exist. Because the convection is weak and the planet's rotation (1 
Jovian day = 9.92 h) is strong, the horizontal motions in the layer are 
approximately two-dimensional (i.e. independent of the vertical direction 
z) via the Taylor-Proudman theorem (Ghil & Childress 1987). However, 
the vertical convective velocity Vz from the underlying layer goes to zero 
in the weather layer, so lovz/ozi is big. As shown in Section 3 . 1 ,  two­
dimensionality, rapid rotation, and large lovz/ozl create strong, vortical, 
horizontal flows. 

There has been much speculation about the vertical depth and structure 
of the G RS, including a suggestion that there is a counter-rotating vortex 
beneath it (Flierl et al 1 983). The vertical scale height of the hydrogen­
helium mixture in the weather layer is 22 km (Hunt 1 983). Because numeri­
cal calculations of compressible convection indicate that coherent eddies 
usually do not extend more than one or two vertical scale heights, it is 
reasonable to assume that the depth of the Jovian vortices is 20-40 km. This 
depth is much less than the horizontal size of the GRS (26,000 x 13,000 km) 
and also less than the size of the smallest vortices resolved by Voyager 
(500 km in radius). It is this pancake-like structure of the vortices, that 
motivates our treatment of the weather layer as a thin shell rather than as 
a part of a star-like model that includes the entire planet. 

I Jupiter's internal heating is estimated to be 2/3 that of its solar heating. 
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JUPITER'S GREAT RED SPOT 525 

In addition to the vortices, the weather layer has approximately axisym­
metric east-west winds. Their mean values VLim have been calculated by 
Limaye (1986) and are shown in Figure 1. The characteristic wind velocities 
at their extrema are ± 100 m S- I .  Although they are turbulent, their mean 
values changed little during the 5 months between the Voyager 1 and 2 
encounters. The colors of the approximately axisymmetric bands around 
Jupiter change on a 1-5 year time scale, but from Earth-based studies it 
does not appear that the variability of the color is tied to that of the 
velocities. (As shown in Section 6.3, cloud tracers can be deceiving.) It 
remains controversial how the observed VLim is related to the flow beneath 
the weather layer (cf Williams 1985), but it is generally agreed that the 
radiative time scale of the underlying flow is ,...., 10 years which is long 
compared with the turnaround times of the vortices. The period of a tracer 
in the circumferential ring (Figure 2) around the GRS is much smaller and 
is 6- 10  days. Thus, although the influence (or the boundary condition 
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Figure 1 Latitudinal dependence of VUm' The circles are the mean, axisymmetric Jovian, 
east-west, zone-belt velocity VUm as determined by Limaye. The uncertainties are ± 7 m s - I. 
The solid curve is a fit with discontinuities in the latitudinal derivative at the east-going 
extrema or band boundaries described in Section 10. The equatorial flow is not fit with a 
model because it is not geostrophic. 
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Figure 2 The 1161 cloud displacements of the GRS as determined by Beebe (1991) from 
Voyager 1. Most of the velocity and vorticity is in the circumferential ring of width 
�4° "" 4600 km "" 2L,. The peak velocity is in the northern GRS and is � 120 m S-I, 
and the characteristic north-south velocity is 50 m S-I. The uncertainty in each vector is 
2- 4 m S-I. 

imposed) upon the weather layer by the underlying layer is unknown, it is 
usually assumed to be constant in time. Regions where the shear of VLim is 
cyclonic (in the same direction as the planet's rotation, or clockwise in the 
Southern hemisphere) are defined as belts and those where it is anti­
cyclonic as zones. 

The GRS at 22.SoS is the largest Jovian vortex and is an anti-cyclone. 
Figure 3 shows that it has a quiet center and that most of its velocity and 
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Figure 3 North-south velocities from Voyagers 1 and 2 of the GRS along its east-west 
axis near 22SS (two dashed curves). The difference of the two curves, taken 126 days apart, 
indicates the unsteadiness of the flow. The heavy solid curve is the velocity of a one-contour, 
uniform-q model with L, = 2500 km, and q = 7 x 10- 5 s- ' . The heavy curve shows a quiet 
vortex center with most of the w in the circumferential ring of width � 2L,-the hallmark 
of uniform-q vortices. The velocity of the two-contour model with critical value of ij 1 at the 
center as described in Section 6.2 is shown with the thin curve. 
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JUPITER'S GREAT RED SPOT 527 

vorticity are in a thin circumferential ring at the outer edge of the vortex. 
Though it is presumed that the GRS has existed continuously since its first 
observation, its cloud pattern has been as large as 40,000 km and as small 
as 14,000 km in length, so its velocity may also have changed. Mac Low 
& Ingersoll (1986) identified over 1 00 Jovian vortices from the Voyager 
images, but they saw many vortex births, deaths, and mergers during their 
58 days of observation, so it is not known how many vortices are truly 
long-lived. The major vortices other than the GRS are the three White 
Oval anti-cyclones at 33°8 (whose births were witnessed in 1938--40), the 
chain of 12 cyclones and 12 anti-cyclones at 41 °8 (Figure 4), the Little 
Red Spot and brown and white anti-cyclones at 19°N, and the elongated 
cyclonic barges at 14°N. From the Voyager images, it is apparent that the 
vortices and their interactions are very turbulent. 

The goals of the theory presented in this review are to explain how these 
vortices survive in the turbulent atmosphere, the role ofvLim in maintaining 
them, why the vortices drift to the east or west, why there are more anti­
cyclones than cyclones, where the vortices are located in latitude with 
respect to the extrema of VLim, what sets the scales for a vortex's size and 
velocity, what determines the shape of the vortices, how and why vortices 
merge together, what determines the number of vortices at a given latitude, 
why the clouds of cyclones are usually more filamentary than those of 
anti-cyclones, why the GRS is cooler at its interior than its outer edge, and 
why the GRS and the cyclonic barges have circumferential rings of high 
speed flow while the other vortices do not. This review treats these 
general questions rather than focusing on numerical simulations that try 
to reproduce the instantaneous GRS velocity determined from Voyager 
images. 

Golitsyn (1970) was the first to propose that the GRS is a free vortex 
and not attached to a topographic feature such as a mountain. Read & 
Hide ( 1 984) suggested that the GRS is strongly baroclinic, and they created 
a long-lived, anti-cyclone (accompanied by a weaker cyclone) in their 
laboratory by heating the inside and cooling the outside of a rapidly 
rotating annulus of water. However, the anti-cyclone existed only when 
the flow was laminar. Maxworthy & Redekopp (1976) examined the long­
wavelength limit of the shallow-water equations to obtain the Korteweg­
de Vries (KdV) and modified KdV equations. They proposed that the 
GRS is a soliton solution to these equations. Though they were able to 
create vortex solitons in the laboratory, the solitons did not mimic Jovian 
vortex interactions nor have the 2: I elliptical shape of the GRS. Williams 
(1985) and Nezlin (1986) independently proposed that the GRS is a solitary 
wave solution to the intermediate-geostrophic (IG) equations. Their theory 
and experiments (Antipov et al 1982) have the attractive property that 
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528 MARCUS 

c o E F 
Figure 4 Voyager image centered near 410S showing 3 cyclones (filamentary clouds at C, 
E, and G) just north of 2 anti-cyclones (bright elliptical clouds surrounded by dark rings at 
D and F). A full view at this latitude shows a Kimnan vortex street of 12 cyclones staggered 

with 12 anti-cyclones. The anti-cyclones are centered in the zone south of the belt in which 
the cyclones are centered. The cyclones overflow their belt on the pole side and anti-cyclones 

overflow on the equator side, so they are all nearly at the same latitude. The anti-cyclones 

are � 600 km long. One of the three White Ovals at 33°S (A) is shown overflowing its zone 

on the equator side. The large, band-like cyclone (8) is one of three in the belt north of the 

Ovals. The round disk near the center is the moon 10. 

anti-cyclones are preferred over cyclones, but they also predict that the 
vorticity of the GRS should be Gaussianly peaked at its center rather than 
in a circumferential ring. Ingersoll & Cuong (1981) argued that the GRS 
is quasi-geostrophic (QG) and maintains itself by merging with and absorb­
ing smaller vortices. Marcus (1988a) and Sommeria et al (1988) also 
studied QG vortices and showed that the east-west winds were essential for 
maintaining them in a turbulent flow. This review focuses on QG vortices. 
We refer the reader to the review articles by Williams (1985) for more 
complete descriptions of IG Jovian models, by Beebe et al (1989) for the 
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JUPITER'S GREAT RED SPOT 529 

observations of Jovian vortices, and by Ingersoll (1991) for more general 
discussions of the Jovian atmosphere. 

3. QUASI-GEOSTROPHIC APPROXIMATION 

Here, we sketch the physical motivation for the QG equations and list the 
assumptions under which they are valid. We also introduce a nonstandard 
decomposition for the velocity and its governing equation so that the 
reader can easily gain an intuitive understanding of QG solutions. 

3. 1 One-Layer, Shallow- Water Equations 

When considering fluid motions in a thin shell of an atmosphere whose 
vertical (with respect to the local direction of gravity) extent is much 
smaller than its horizontal, it is common to model the shell as a coupled 
set of immiscible thin layers and to ignore the remainder of the atmosphere 
above and below the shell of interest. The interactions of the fluid in the 
shell with the remainder as well as the heating from the sun and planetary 
core are modeled with artificial vertical boundary conditions. When the 
horizontal length of the region of interest is small with respect to the mean 
radius of the shell, the spherical geometry is replaced with a simpler flat 
approximation where y is the north-south and x the east-west coordinate. 
(Or in an annular geometry, polar coordinates r and ¢ as the latitude and 
longitude are used.) The simplest model has only a single layer of constant 
density with mean depth Ho and has an upper boundary that acts as a free 
surface: Waves of height h(x,y, t) deform it from its unperturbed location. 
When the density of the atmosphere increases rapidly with depth so that 
the fluid below the shell has large inertia and is not affected by the motions 
in the shell, the bottom boundary is approximated as rigid so that the 
normal component of the velocity vanishes at a depth [hb(X, y) -H 0] below 
its unperturbed free surface. Thus the single layer of fluid has a total 
thickness of H == Ho+h(x,y, t)-hb(X,y). Often the depth [hb(X,y)-Ho] 
is not the location of a physical surface, but is a parameterization of the 
influence of the underlying layer. This approximation is crude but works 
well for many atmospheric and oceanographic problems, especially when 
1. the characteristic vorticity of the flow is small compared with the angular 
velocity of the rotating planet, 2. the Eulerian time scales are of the 
same order or longer than the advective time scales, 3. the Brunt-ViiisiilHi 
frequency of the fluid in the shell is real (i.e. the fluid is stable to convection) 
and nearly independent of depth, 4. the baroclinic forces are small (i.e. the 
surfaces of constant pressure and density are nearly coincident), and 5. the 
horizontal scales are very much longer than the vertical. 2 The model is 

2 Some, but not all, of these conditions are required. For example, a layer with horizontal 
length and width of the same order is often well-approximated by the shallow-water equations 
if the flow is rapidly rotating. 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
3.

31
:5

23
-5

69
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
B

er
ke

le
y 

on
 0

7/
11

/1
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



530 MARCUS 

called the one-layer, shallow-water approximation, and its asymptotic 
derivation and the assumed scalings are in standard texts (cf Ghil & 
Childress 1987). 

Using this approximation, the horizontal component of the momentum 
equation as viewed in the rotating frame of a planet is 

Dv ov 
Dt == at 

+ (V' Vv) = -gVh+f (y)v x z, (I) 

where 9 is the reduced acceleration of gravity, 3 Z is the unit vector in the 
local vertical direction, andf (y) is the coriolis parameter which is defined 
to be twice the magnitude of the planet's angular velocity component in 
the z direction. [Thus fey) is a function of latitude and is zero at the 
equator.] Note that we have assumed that horizontal velocity v is inde­
pendent of z. Equation ( 1 )  is the dissipationless Euler equation in a rotating 
frame for a two-dimensional fluid except that gVh has replaced the usual 
term of the pressure gradient divided by density, and f is not constant. 
The remaining equation that governs the dynamics is the continuity or 
mass-conservation equation. By combining it with the curl of Equation 
( 1 )  it can be written as (Ghil & Childress 1 987): 

!2(W(X,y, t)+f (Y») = 0 
Dt H ' (2) 

where w(x, y, t) == (V x v)· z is the vertical component of the vorticity. In 
this paper we define the quantity q == Ho[w(x, y, t) + f(y)]/ H as the poten­
tial vorticity, and Equation (2) shows that it is advectively conserved. 

To get some feel for Equation (2), consider an infinitesimal column of 
fluid (where the horizontal boundary of the column is defined by a sheet 
of passively advected blue dye extending from the bottom to top boun­
dary). As the column moves, the shape of its boundary and its area change. 
Let H be constant. Then, as the column changes its latitude, fey) changes, 
so w(x, y, t) must change appropriately for q to remain constant, and the 
column spins up or down. If H is not constant and if the column moves 
along a line of constant latitude but into a thicker part of the layer, then 
If+w(x,y, t)1 must increase. The classic example of this is the "drain in the 
sink effect" (of which everyone learns, but no one actually observes due 
to much greater frictional forces and uncooperative initial conditions). It 

3 The reduced 9 is the gravity multiplied by the local buoyancy of the fluid. For example, 
if the layer had constant density p and lay above one with density p + 6.p then the gravity 
would be multiplied by 6.pj p. Ifit were neutrally buoyant (Le. neutrally stable to convection) 
then 9 would be zero. 
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JUPITER'S GREAT RED SPOT 531 

occurs when a column of fluid approaches and then goes down the drain 
of a sink on a rotating Earth. As the fluid goes down the drain H rapidly 
increases, so If(y)+wl must increase. The vorticity w(x,y, t) as observed 
in the rotating frame increases in the Northern hemisphere and decreases 
in the Southern. This effect can be represented by adding the forcing term, 
(q/Ho)(ovz/oz) to the right hand side of Equation (2). The forcing can be 
large even when Vz is small compared to the horizontal velocity. 

3.2 Eulers Equation-Constant f and H 

When f and H are constant, Equation (2) reduces to the curl of Euler's 
equation 

Dw/Dt = 0, (3) 

and it is worthwhile to obtain some understanding of this equation's 
solutions such as the single point vortex of circulation r: w(x,y, t) = 
n;(x-xo)£5(y-yo). The velocity due to its vorticity is found by inverting 
the curl operator using the Biot-Savart law in a way that is completely 
analogous to the way the magnetic field is obtained from an electric 
current. In a cylindrical coordinate system with origin at the guiding 
center (xo,Yo): Vr = ° and v",(r) = r/2nr. Thus a point vortex creates an 
axisymmetric azimuthal velocity about itself with a strength that falls off 
inversely with distance. The guiding center moves with the velocity of the 
local flow, and r is conserved. For a single point vortex the velocity at the 
vortex itself is zero, so there is no self-advection, and the vortex remains 
at rest. A collection of N point vortices with 

N 
w(x,y, t) = L r;b[x- x;(t)]b[y-y;(t)] (4) 

i� I 

is also a solution to (3) where the circulations of the vortices C remain 
constant and where the guiding centers of each vortex [x;(t),y;(t)] move 
with the local velocity (Chorin 1 993). The velocity is a linear function of 
the vorticity, so it is equal to the superposition of the contributions cal­
culated from each delta function by use of the Biot-Savart law. For 
example, two point vortices of the same sign rotate about their center-of­
vorticity, while a dipolar pair of vortices with strengths ± r and separation 
d advect as a coherent unit in a direction perpendicular to the line between 
them and at a velocity of r /2nd. The N-body point vortex problem has 
no general closed-form solution, but in an unbounded flow the circulation, 
linear momenta, angular momentum, and energy of N point vortices or a 
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532 MARCUS 

continuous distribution of vorticity co (x, y, t) are all conserved in time. 
(See Section 3.5.) 

3.3 Standard QG Equations-an Advectively Linear 
Decomposition 

Of course, it is much simpler to develop an intuition for the solutions to 
Equation (3) than to the full one-layer, shallow-water Equations (1)-(2). 

In part this is because Equation (3) is advectively linear: The quantity that 
is advected, in this case co, is linearly related to v. Therefore the velocity 
due to each infinitesimal patch of vorticity can be linearly superposed even 
though Equation (3) is itself nonlinear in v due to the DIDt operator. 
Fortunately Equation (2) can be made advectively linear by using the 
standard quasi-geostrophic (QG) approximation (cf Ghil & Childress 
1987). The usual advantage of the QG approximation is that it makes 
solutions easier to find analytically or compute numerically, but here we 
employ it for pedagogical reasons: It makes the solutions easier to interpret 
physically. The QG approximation assumes the scaling: <v)/<I) <I) = 

<co)/</) = O(s), <hb)IHo S; O(s), <h)IHo S; O(s), </o-/(y)llo S; O(s), 
and <r) <v)/<I) � 0(1), where the notation < ) means "average value 
of," (r) is the characteristic Eulerian time over which h and v change, (I) 
is the characteristic horizontal length over which they change, 10 is the 
average value of fey) at the latitude of interest, and s is the Rossby 
number and assumed small. In Section II we examine the validity of this 
approximation and other scalings, such as those used in the IG equations, 
to the Jovian weather layer. 

To leading order in s, the QG momentum Equation ( 1 )  becomes the 
kinematic geostrophic balance equation: 

v = z x V(��) == Z x VV!. (5) 

So in the QG approximation (V· v) == 0, and v is derivable from the stream 
function V! == ghllo· The equation for the potential vorticity (2) becomes 

l2{co+[f(y)-/o]- hfo 
+ 

hb (X,y)fo
} 

= 

Dt Ho Ho 

�
t 
{V2V!- :; + hb(�)fo 

+[/(y)-/ol} = 0, (6) 

where we have used co = V2V! and defined the Rossby deformation radius 
as L, == (JgHo)///ol. In the QG approximation q == V2V!-(V!IL;)+ 
[hb(x, y)fo l H 0] + [fey) -fo]. 
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3.4 Decomposed QG Equations-Advectively Linear and 
Homogeneous 
Equation (6) is advectively linear but inhomogeneous. To make its solu­
tions more intuitive we recast it in a homogeneous form by breaking the 
velocity into the sum of a time-independent and x-independent zone-belt 
part v = iiiy)x and a time-dependent remainder v(x,y, t) == v(x,y, t)-v. 
The v is determined from its stream function v(y) == z x Vt/i(y) with t/i(y) 
defined by 

(7) 

where q is an arbitrary constant (and is equal to the potential vorticity of 
the flow when v = v) and where we have assumed that hb is a function only 
of y. From (7), t/i is unique up to three degrees of freedom: two integration 
constants and the choice of ij. Once these three constants are chosen and 
t{i is known, all of the other variables are defined and decomposed in 
the obvious way: vex, y, t) == z x vlj/(x, y, t), (n(y) == v2t/i(y), w(x, y, t) == 2- - N _ 2- - 2 -
V I/J(x,y, t) = W-W, and q(x,y, t) = V I/J(x,y, t)-I/J(x,y, t)/L, = q-q. 

Because ij is constant, Equation (6) becomes both advectively linear and 
homogeneous in ij: 

(8) 

This decomposition is just a mathematical trick and is always valid, but it 
is most pedagogically useful for flows on Jupiter if the mean zone-belt 
flow found by Limaye VLim(y) has roughly (to order c) uniform potential 
vorticity so that it is represented by Y. In that case, vex, y, t) represents the 
coherent vortices, the turbulent component of the flow, the departures of 
vLim(y) from Y, and the Rossby waves (which need a Vq). Or equivalently, 
the decomposition is most useful when q(x,y, t) has nontrivial values only 
in a few compact regions of the flow. Whether VLim(y) has approximately 
uniform q is discussed in Sections 10 and 11. Clearly, when v = 0 and 
L, --+ 00, Equation (8) reduces to Equation (3). When polar rather than 
Cartesian coordinates are used in the quasi-geostrophic equations we 
decompose the flow so that the zone-belt component is in the azimuthal 
direction and a function only of r. 

Equation (8), which governs the dynamics of v rather than v, has solu­
tions that are analogous to the point-vortex solutions of Euler's equation. 
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For any v and L" it is satisfied by a collection of N point potential vortices 
of strength f'i: 

(9) 

The stream function due to ij is found by inverting the Helmholtz operator 
in Equation (9): 

!/i(x, y, t) = _ � £ f'iKO{J[X-Xi(t)]2+[Y-Yi(t)L} 
2n i= J Lr 

(10) 

where Kv is the vth-order modified Bessel function bounded at (jJ (and the 
Greens function of the Helmholtz operator). The velocity v is the linear 
superposition of the velocity around each point potential vortex which is 
azimuthal around each guiding center and falls off as K1(r/Lr) where r is 
the distance from the vortex. (When Lr is infinite, Ko is replaced by -In 
in Equation 1 0.) For distances smaller than L" Ko(r/Lr) behaves like 
-In (r/Lr) and KJ(r/Lr) like Lr/r, but for distances much larger than Lr 
both Ko and KJ fall off as Cjl];')e-r/L,. Thus, just as the Debye length in 

a plasma screens a point charge so that the electric field is exponentially 

small at large distances, the Rossby deformation radius, L" screens 
a potential vortex so that the velocity is exponentially small at large 
distances. 

The guiding center of each potential vortex moves with the total velocity 
v which is the linear sum of v and the velocities produced by the N potential 
vortices. So as in the case of infinite-L" when v = 0 a single point potential 
vortex does not move, and two potential vortices with the same sign rotate 
around their center of potential vorticity while a dipolar pair advects as a 
coherent unit. 

3.5 QG Conservation Laws 

A collection of N potential point vortices as well as a flow with a continuous 
distribution of ij has several qua,ntities conserved by Equation (6). If v is 
in the x direction and if the domain is unbounded or has rigid boundaries 
in the Y direction and periodic boundaries in the x direction, then the 
conserved potential circulation is 

( 1 1 )  

The x-component of the momentum i s  conserved and is (up t o  multi­
plicative and additive constants) just the q-weighted value of y: 
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For Vx ¥- 0,  P y  is not conserved. If v is in the azimuthal direction and the 
domain is unbounded or has annular or cylindrical boundaries, then the 
angular momentum about the origin is conserved and is (up to multi­
plicative and additive constants) just the q-weighted value of r2: 

( 1 3) 

When V = 0 and when the domain is unbounded, the angular momentum 
around any point, not just the coordinate origin, is conserved. 

The conserved energy is a sum of two pieces (up to multiplicative and 
additive constants): (a) the self-energy, which is the kinetic and potential 
energy of the interaction ofl' with itself 

( 14) 

or 

1 fN - 2 Eself = - 2 q(r, t)!/J(r, t) d r ( 1 5) 

and (b) the interaction energy which is due to the interaction ofl' and v 

(16) 

where G is the Greens function: -(1j2n)Ko for finite and Ij2n In for infinite 
Lr• 

4. FINITE Lr: SLOWLY ROTATING VORTEX 
CENTERS 

Whenf = fo any steady, axisymmetric v with Vr = ° is a solution to the QG 
Equation (8). Consider a circular vortex with uniforin potential vorticity of 
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536 MARCUS 

strength ij and with potential circulation f, radius R, and v = O. In 
cylindrical coordinates with origin at the vortex center 

{f/nR2 
ij(r) = 0 

for 0 < r < R 
for R � r. 

The velocity produced by the vortex is D, = 0, 

for O < r < R 

for R � r 

and the vorticity is 

6)(r) = 

f (R) (r ) 
-� Kl - 10 -nRL, L, L, 

f (R) (r ) 
- -� I  - K -nRL, J L, 0 L, 

for O < r < R 

for R � r, 

(17) 

(18) 

(19) 

where I" is the vth-order modified Bessel function bounded at the origin. 
The velocity vrp and vorticity are both small near the origin and havc the 
same sign as g. They both increase exponentially in r with e-folding length 
L,. Their magnitudes peak at the edge of the potential vortex at r = R. For 
larger r, IVrpl exponentially decreases to zero. At r = R, 6) is discontinuous, 
increases or decreases by I q I, and changes sign. As r increases, 16) I decreases 
exponentially back to zero. 

Thus a signature of a vortex with uniform potential vorticity and radius 
greater than L, is that it has a quiet center with most of its vorticity and 
velocity concentrated in a thin circumferential ring at its outer edge. The 
width of the ring is 2L,. The inner half of the ring has 6) with the same 
sign as q while the outer half has the opposite sign. Numerical solutions 
of Equation (6) with v # 0, and nonconstantf, such as those in Figure 3, 
also have this circumferential ring of width 2L, as long as the ij within the 
vortex is approximately constant and L, « Rx> where R" is the major (east­
west) semi-diameter of the vortex. Like the vortices in Equations (17)­
(19), the ratios of 16) I and I v", I at the inner edges of the ring to the values 
near the vortex centers scale roughly as eRJL,. From Equation (19) it is 
apparent that vortices with L, � Rx have nearly uniform 6) (which is equal 
to q in the limit L,/ Rx --> 00) throughout rather than concentrated at the 
edge, and they rotate as nearly solid bodies. These characteristics are 
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important because numerical simulations show that, at least to a first 
approximation, large vortices created by the merger of many small-area 
vortices have nearly uniform ij. 

The ring-like distributions of ill and circumferential velocity of QG, 
finite-L" approximate1y-uniform-ij, potential vortices have been invoked to 
understand the v and 0) in the GRS (Marcus 1 988a). The quiet center and 
concentration of velocity into a circumferential ring (at x = ± 1 0,000 km 
from the vortex center) are clearly seen in Figures 2 and 3 of the GRS. 
The vorticity is zero, to within the observational uncertainties, at the center 
of the G RS. 4 It rises to its peak value of 3 x 1 0  - 5 S - I at the inside edge of 
the circumferential ring; quickly drops to zero half-way through the ring; 
reaches its most negative value of - 3 x 1 0- 5 s- I at the outer edge of the 
ring; and then quickly decays to zero outside the GRS. The large cyclonic 
barge at 14°N also has a high speed circumferential ring (Hatzes et al 
1 98 1) .  Prior to 1 988 there had been no attempt by theorists to �xplain the 
striking and unexpected departure of the GRS and the barge from solid 
body rotation, and it was largely ignored. Even after Voyager observations 
showed that the vorticity and circumferential velocity of the GRS increased 
rapidly away from its center, its exponential dependence on distance was 
not appreciated as shown by the fact that attempts were made to fit the 
circumferential velocity with a fourth-order polynomial over distances of 
1 0Lr (Mitchell et al 1 98 1  )-an impossible task if the velocity exponen­
tiates with scale L,. A fit of the same velocity from the GRS center to the 
middle of the ring using an exponential rather than a polynomial is much 
better and gives an e-folding length of 2200 km (Marcus 1 988a). An 
estimate of Lr at the GRS based on the dominant length of the local 
waves gives Lr = 2000 km (Williams & Yamagata 1 984). The GRS has 
Rx � 13,000 km, and the barge has Rx � 3800 km. (Its local value of Lr is 
unknown.) Thus the exponential nature of the velocity in the GRS interior 
and the concentration of 0) and v into a ring in both the GRS and the 
barge are consistent with them being large (i.e. Rx » Lr) QG potential 
vortices. Turning the problem around and assuming that the GRS is 
QG, has exactly uniform q, and is north-south symmetric (the last two 
assumptions are much riskier), gives Lr � 1 300 km from a best fit to 
the observed velocity along its east-west axis (Marcus 1 988a), and gives 
Lr � 2500 km from the best fit over the entire GRS (see Figure 3). On the 
other hand by identifying the half-width of the ring of circumferential 
velocity around the GRS as L" we obtain Lr � 2300 km (Marcus & Van 
Buskirk 1 993), and since the width of a QG ring is so insensitive to all of 

4 R. F. Beebe (1993, private communication) has recently reported small positive values 
of {JJ at some locations near the center. 
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538 MARCUS 

the other parameters, we shall use this value throughout the remainder of 
the paper. 

The White Oval Be at 33°S has Rx � 5000 km and Lr � 1 600 km. (Note 
that Lr ex:. Ilf(y) if gHo is independent of latitude.) Like a QG vortex with 
Rx/Lr � 3, its vorticity is much more uniform throughout the vortex than 
the GRS and it rotates much more like a solid body. 

It should be noted that the predicted distribution of vorticity within the 
GRS is one way in which current theories of the GRS differ substantially. 
In particular, the intermediate-geostrophic (I G) theory proposed by Wil­
liams ( 1 985) and Antipov et al ( 1 982) produces soliton-like vortices that 
are always characterized by a Gaussian distribution of OJ peaked at the 
vortex center. They never have the vorticity or circumferential velocity 
peak at the outer edge like QG vortices or the GRS. Although QG and 
IG vortices differ in many ways (see Section 1 1) this is the most striking 
feature. 

5. QG VORTICES GO WITH THE FLOW 

The guiding center of a point potential QG vortex moves with the local 
velocity, and a finite-area patch of potential vorticity moves with the local 
velocity averaged over its area. To see this, define X, the local q-weighted 
average value of x, to be the vortex's location in x: 

(20) 

where the integral is over the boundary of the patch which is defined to 
be any closed contour of constant ij. The velocity of the patch in the x 
direction is 

U
x == dXldt. Differentiating (20) gives 

f ij(r)vx d2r 

U
,� fq(,)b' 

(2 1 )  

where we have used Equation (8), the fact that the boundaries o f  the 
integrals are Lagrangian contours, and the fact that (V, v) = O. An equa­
tion similar to (2 1 )  holds for the y coordinate and shows that the patch 
advects with the local ij-weighted average value of vr Equation (2 1 )  can 
also be written as 
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(22) 

(23) 

is the local q-weighted average value of vX• The surface terms in Equation 
(22) represent the advection due to the neighboring patches and the boun­
daries. If the patch is separated from other patches and the boundaries by 
distances greater than L" then the surface terms are exponentially small 
and easily approximated: They are the superposition at the patch center 
of the velocities due to the nearby patches (which are treated as point 
potential vortices) and the boundaries (which are re:placed by image point 
vortices). Thus the patch moves at a velocity U approximately equal to 
Oxx plus a small correction due to the velocity from local point potential 
vortices (found from the iff in Equation 10) .  When the flow is unbounded 
and consists of one isolated patch of q with ij = 0 outside the patch, then 
regardless of the shape of the patch U == (Jxx . To see this: Take the integrals 
in Equations (20)-(23) over thc cntire domain so that the surface integrals 
in (22) vanish. Taking the integrals in (23) over the ful l  domain is equivalent 
to taking them over just the patch. 

The observed mean velocities uobs ofthe long-lived Jovian vortices agree 
with the QG velocities predicted from Equation (21 ); U�bs � 0, and U�bs 
agrees with Ux to within the expected uncertainties. The uncertainties in 
U�bs are less than 1 m S-I; however, those in Ux are large due to the 25% 
uncertainty in measuring q(x, y, t). (See Section 11.) For the GRS, Ux can 
be found directly from Equation (2 1 )  and is - 1 ± 8 m s - 1 while 
U�bs = -3.5 m S-I. Jovian vortices other than the GRS and White Ovals 
are sufficiently small and north-south symmetric that their values of Ux 
are nearly equal to Vx at the vortex center. So, assuming vx(Y) = VLim at the 
vortex center (plus corrections that are linear or odd in y), and assuming 
that the center of the vortex is the same as the center of the clouds 
associated with it, QG theory predicts that a small vortex moves at the 
local Limaye velocity. (This reasoning is valid even if the q of VLim is not 
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uniform.) We argue that the errors in these assumptions coupled with the 
error in determining the center of the clouds is less than or equal to the 
± 7 m s- 1 uncertainty in VLim, so for small QG vortices, U = VLim ± 7 m 
s--:��I1LEontrast, IG theory predicts that vortices move west at the local 
Rossby long-wave speed of - pL; (Williams 1985) where p is the local 
gradient ofJ( y). The IG vortex speed is -4.6(L,/1000 km)2 m S-l for the 
GRS, -5.4(Lr/1000 km)2 m S-I for the Little Red Spot (an anti-cyclone 
at 19.2°N with U�bs = -2.5), and - 3.9(Lr/lOOO km)2 m S-l for the White 
Oval Be (with U�bs = +4 m s-', i.e. east not west). Thus assuming that 
Lr> 2000 km, IG theory predicts that the speed of the GRS is to the 
west and greater than 18.4 m S-I. To make IG theory consistent with 
observations, Williams & Wilson (1988) proposed that an ad hoc external, 
north-south forcing term (perhaps due to the influence of an underlying 
layer) should be added to the shallow-water momentum Equation (1). 
They determined that the term would have to produce an ageostophic 
east-west velocity of 10 m s-'-a large correction, considering the fact 
that for the small spots (v) = 10 m S-l and (U�bs) = 5 m s-'. 

It should be noted that in addition to their time-averaged, east-west 
velocities, some Jovian vortices also have slow, large amplitude, east-west 
oscillations. The GRS has both a 90 day (Smith & Hunt 1976) and a 50 
year period, and the three White Ovals also slowly oscillate. These slow 
motions are probably due to the interactions with other Jovian vortices 
via the surface terms in Equation (22) and are discussed in Section 10. 

6. BREAKING PROGRADE/ADVERSE 
DEGENERACY 

6. 1 Expulsion of Adverse Vorticity 

The potential vorticity ij and the local zone-belt shear O'(y) == - ovx/oy or 
O'(r) == r(ov,p/r)/or are defined as adverse if they have the opposite sign; 
otherwise, they are prograde. Numerical calculations show that vortices 
embedded in prograde and adverse shear behave differently. Adverse vor­
tices with I O'/iil � 0(1) at their centers are stretched by v into thin filaments 
which either fragment into many small pieces that scatter throughout the 
flow, decay if they become thinner than the dissipative length scale (in 
numerical computations of Equation 6 a dissipation is usually added), or 
are driven out of the local belt or zone. Prograde potential vortices with 
O'/ii � 00) evolve to equilibria that are approximately elliptical with their 
major axes aligned with v. Figure 5 shows an example of both effects in 
an annular geometry where v = v,p(r)1J = {- r2/6[2+(f/rn+0.48r}1J, so 
O'(r) = r/3[(f/r)3-1], where f is the latitude midway between the inner 
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Rin == 1/3 and outer Rout == 4/3 boundaries. This v crudely represents a 
cyclonic belt with B(r) > 0 for r < f, and an anti-cyclonic zone with 
B(r) < 0 for r > f. (Without loss of generality we have letf> 0.) Initially 
the belt and zone in Figure 5a each contain one prograde and one adverse 
vortex, with light regions corresponding to ij > 0, dark to ij < 0, and gray 
to ij = 0. In each case the adverse vorticity is initially expelled outward in 
a spiral from the center of its initial zone or belt (Figure 5b). Part is 
stretched to the small scales where it produces Kelvin-Helmholtz waves 
(as in the inner dark vortex in Figures 5c and 5d) and part is flung 
into the neighboring belt or zone where it suddenly, upon crossing r = f, 
becomes prograde and forms tadpole-like heads (Figures 5d and 5e). The 
two new prograde vortices settle into a quasi-stable equilibrium with the 
long spiral white tail in Figure Sf dissipating. In contrast the two initial 
prograde vortices barely change. (Eventually the two light prograde vor­
tices in Figure 5f merge.) 

To understand why adverse Ii spirals outward to the zone-belt boun­
daries, consider the schematic in Figure 6 showing a part of Figure Sa. 
The figure is in the frame of reference where the center of potential vorticity 
of the shaded vortex is at rest, so v(r) is approximately zero at its center. 
An infinitesimal piece of ij labeled A at the lower edge of the vortex moves 
with v(r, t) == v(r, t)+v(r). The Biot-Savart law gives v (shown with thin 
solid arrows); it is clockwise around the vortex, and at A, vIP � -ijR,/2 
(or less, if R, » L,) where R, is the vortex semi-radius in r. Taylor expansion 
on around the vortex center gives v; at A, v", � R,B. Thus if IB/ijl ::::: 0(1) 
(or less, if R, » L,), fluid eleJ1lent A is dragged to the right and B to the 
left (shown with broken arrows). Ti')e clockwise motion of v then pushes 
A downward and outward to the adjoining zone and B upward towards 
the annulus's boundary. If the sign of the shaded vortex were reversed so 
that it were prograde, then both v and v initially move A to the right and 
B to the left. Then the counterclockwise v would pull both A and B away 
from the boundaries toward the center of the belt. Thus for B/ij = 0(1), 

prograde Ii is drawn in towards the center of a belt or zone while adverse 
ij is expelled. 

6.2 Vortices with Uniform q 

Two-dimensional vortices with uniform ij are frequently studied because 
they are completely specified by the locations of their one-dimensional 
boundaries, and the stable, steady (in frame Ux) solutions are uniquely 
determined by the values of ij, the potential vortex area A, and the 
momentum Px' The equilibria are exactly elliptical in shape for infinite L" 
v = - Byx, and constant B. They were first calculated by Moore & Saffman 
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(a) (b) 

(c) (d) 

(1) 
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Figure 6 Schematic of Figure Sa showing how adverse ij is expelled. The dark, adverse, 

potential vortex with ij < 0 is drawn shaded, and it lies in an adverse belt with 6 > O. The 

vCr) is represented by heavy arrows. See text for details. 

(1971). For finite Lr or more general V, the shapes of the vortex boundaries 
are not known analytically and must be found numerically with contour 
dynamics (Overman & Zabusky 1982, Van Buskirk & Marcus 1993a). It 
is worthwhile to examine the dynamics of uniform-q vortices because they 
occur commonly. The GRS has nearly uniform q (Marcus 1988a, Dowling 
& Ingersoll 1989) as do vortices in numerical experiments (Marcus 1988b) 
that form from the chaotic merger of small vortices with different q (a 
proposed scenario for the formation of Jovian vortices). 

For the steady Moore-Saffman vortices the aspect ratio A (maximum 
extent in longitude divided by extent in latitude) as a function of 6fq is 

A = (1 + �)M(6fq) (24) 

where 

Figure 5 The evolution of four initially elliptical, infinite-L" potential vortices is an annulus 

embedded in 6(r) = r/3[(f/r)3-1] at six different times. The boundaries are Rin = 1/3 and 

Rout = 4/3. The 6(r) is negative for r > f and positive for r < f, where f'" (R .. + Rout)/2. The 

light (dark) vortices have q > 0 (q < 0) and the gray has q = O. Light vortices are prograde 

in the inner half and adverse in the outer half of the annulus. The pieces of vorticity that are 
initially adverse but cross over r = f to become prograde, develop tadpole-like heads and 

survive, while the pieces left behind continue to stretch and eventually decay. See text for 

details. 
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M( ) == I +X±JI + 6X+X2 X 2+2X 
(25) 

There are two solutions (one is linearly unstable) for adverse vortices but 
only one (corresponding to the positive square root in Equation 25) for 
prograde. Because M(X) � 1 for X > 0, the A of prograde vortices increases 
almost linearly with ( 1  +ii/i}). There are no Moore-Saffman solutions for 
iJ/t} < (2}2-3) � -0. 1 7. Adverse vortices are linearly or finite-ampli­
tude unstable (see Section 8). For example, contour dynamics show that 
the boundaries of linearly stable vortices with uniform-i} embedded in 
adverse shear are unstable to the repeated shedding of very small, hair­
like filaments. This type of filamentation was first observed in uniform-iJ 
vortices with v == 0 by Dritschel ( 1 988). However, numerical calculations 
show that small-scale filamentation does not occur in prograde vortices 
with ii/i} = 0(1) (Van Buskirk & Marcus 1 993b). 

Stable vortices with nearly, but not exactly, uniform ij and vortices with 
finite Lr or which are embedded in an annular vCr) or in a v with non­
constant if have many of the same properties as the Moore-Saffman 
vortices: They are steady or nearly steady in time; they have east-west (but 
not north-south) symmetry; and they are approximately elliptically shaped 
with A increasing with ii/ij. For small values of Lr/fl there are significant 
departures from the A vs ii!iJ relation in Equation (24), and this is discussed 
in Section 9. Laboratory experiments show that prograde QG vortices are 
stable even when the surrounding fluid is very turbulent (Sommeria et al 
1 988). 

A uniform-iJ vortex as a model for the GRS was proposed by Marcus 
( 1 986, 1 988a) who found that by using the measured ellipticity (2 : 1) and 
area of the GRS as constraints, a I -parameter family of model vortices 
could be determined. For each value of iJ/ii 2 1 .5 there is a value, of Lr 
that satisfies the constraints. For example, iJ/ii = 1 .5 with an infinite Lr (a 
Moore-Saffman vortex) and iJ/ii = 1 5  with Lr = 2500 km (the model in 
Figure 3) both satisfy the constraints but have very different velocities. 
The velocities of the Moore-Saffman vortex are not in good agreement 
with the observations. The "best" uniform-ij model can be found I . if Lr 
is independently known, 2. a fit is made to the observed v (as done in 
Figure 3), or 3. iJ is measured. (From Section 4, the value of if is equal to 
the difference in the maximum and minimum values of w on the inner and 
outer edges of the circumferential ring of velocity; it is not equal to the 
average value of w in the GRS.) [Using the area and ellipticity of the 
GRS, Polvani et al ( 1990) modeled it with a non-oscillating Kida ellipse, 
apparently unaware that that solution is identical to the Moore-Saffman 
vortex, and therefore unaware that its velocities are not in good agreement 
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with the observations. They estimated ij by setting it equal to the average 
value of 6) inside the GRS.] 

Initial-value experiments of prograde vortices with nonuniform ij (and 
infinite Lr) show that they readjust their distribution of I ijl so that it 
decreases monotonically outward from the vortex center to the vortex 
edge. In many cases it can be shown that a prograde vortex with I ijl 
increasing outward from its center is linearly as well as finite-amplitude 
unstable. If the core is only slightly less rotational than the outer parts of 
the vortex, the ij in the core is pushed to the vortex edge, but if the ij of 
the core is more than � 25% weaker than the edge, the vortex violently 
breaks into pieces, many of which reassemble into a vortex with I ijl decreas­
ing outward. With small L" a stable vortex can have i q i  increase slightly 
outward from its center. 5 In general, adverse vortices with nonuniform ij 
exist only for 0 > if/q » - 1  and are linearly or finite-amplitude unstable. 

Moore-Saffman-like, steady, prograde potential vortices have been 
found to arise naturally in weakly dissipative numerical experiments with 
several types of initial conditions: 1 .  an initial patch of prograde ij adjusts 
its shape and distribution of ij until it relaxes to an approximately steady 
equilibrium, possibly with some pieces of q so stretched by v that they 
detach from the core of the vortex decreasing its area; 2. a linearly unstable 
prograde vortex layer develops a linear Kelvin-Helmholtz instability with 
wavenumber m (Marcus 1986), forms m waves, and breaks into m separate 
vortices which then merge together into one large vortex (Figure 7); and 
3. many small initial patches of prograde ij merge while the adverse patches 
disperse and decay. The second and third scenarios highlight the fact that 
prograde vortices tend to merge when their separation in latitude is less 
than the sum of their semi-minor axes. Mergers are discussed in detail in 
the next section. One surprise from these initial-value experiments is that 
at late time, prograde vortices are always approximately steady in time. 
Linearly stable, time-dependent vortices exist, such as the Kida ( 198 1 )  
ellipses whose axes oscillate, rotate, and stretch i n  time. But for if Iii = 0(1), 

; The critical gradient of ij for stability has been computed for only a few vortices. The 

best two-contour vortex fit to the GRS (i.e. two nested contours with ij, inside the inner 

contour, ij2 between the contours, and zero elsewhere) is the one with the smallest possible 

value of ij, such that the vortex is still stable (Figure 3). This figure suggests that Jovian 

vortices might have critical gradients of ij. A scenario by which Jovian vortices could develop 

critical gradients is as follows: Dissipative vortices replenish their ij by accreting vortices 

with large ij. (Vortices with small ij are passive, follow the streamlines around the GRS, 

never approach it, and so they cannot merge. Large ij vortices disrupt the streamlines so that 

they collide with the GRS's outer edge.) The GRS accumulates large ij on its boundary while 

its interior decays. Current calculations are testing whether the gradient of ij eventually 

exceeds its critical value causing an avalanche of high ij inwards, and whether the process is 

cyclic and keeps the gradient of ij near critical. 
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these solutions are unstable; the tips of the vortices shed ii which is then 
carried away from the vortex core by v. The vortices readjust their sizes 
and shapes until their major axes align with the direction of V. A vortex 
does not relax to an exactly steady state, but its residual oscillation is 
small, and its time-averaged distribution of ii is nearly equal to an exact, 
steady equilibrium (Van Buskirk & Marcus 1 993b, Marcus & Van Buskirk 
1 993). Polvani et al (1990) proposed an oscillating Kida ellipse as a model 
of the Great Dark Spot of Neptune. They did not examine the finite­
amplitude stability of their model nor did they examine how it might form 
from initial conditions. My own calculations (1990) suggest that it is 
unstable; moreover, I was not able to find plausible initial conditions from 
which it could form. This suggests that a new piece of physics is required. 

The main conclusion from numerical experiments, is that prograde 
vortices with nearly uniform ij, embedded in zone-belts with nearly uniform 
6, and with u/ij = 0(1) relax to unique stable equilibria which are analogs 
of the steady Moore-Saffman vortices. The equilibria are completely deter­
mined by <alii>, A ,  L" and Px' 

It was first argued by Marcus ( 1988a) that if the Jovian weather layer 
is QG, then all of its vortices should be prograde. Prior to 1988, most 
theories of the GRS did not consider the zone-belt flow important, and if 
they included it at all, treated it as a hindrance to overcome or a small 
perturbation (Williams & Yamagata 1 984). In support of QG theory, the 
Voyager images show that all of the Jovian vortices whose direction of 
rotation can be determined have their centers in prograde shear. In QG 
theory the planet's zone-belt flow is crucial for long-lived vortices: It not 
only expels adverse ij and attracts prograde ij but also by promoting the 
merger of prograde vortices makes them robust to large perturbations; if 
turbulence breaks them apart, the subsequent merger of the fragments 
makes them re-form. The tendency of prograde vortices to merge also 
provides (in a quantitative way-see the next section) an explanation for 
Ingersoll & Cuong's hypothesis (1981) that large Jovian vortices could be 
created by the merger of small ones [whose existence might be due to the 
(qIHo) (ovzliJz) forcing from the local Jovian weather's vertical velocity]. 

However, a drawback ofQG theory is that its cyclones and anti-cyclones 
behave similarly. Any asymmetry in their properties such as their relative 

Figure 7 Evolution of a linearly unstable potential vortex layer embedded in prograde shear, 

6(r) = r/3, and in the same annular geometry used in Figure 5. Initially, 6(i')/ij(i') = 0.28. Flow 
with ij > 0 is light and with ij = 0 is black. The layer breaks into a 3-fold symmetric eigenmode 

(the most rapidly growing for this geometry). The three vortices separate from each other, 
merge together, and eject the nearly irrotational fluid entrained near the vortex center. 
Reproduced by permission from Marcus (1986). 
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548 MARCUS 

numbers must be attributable to the asymmetry of the zones and belts in 
which they lie. So if one assumes a priori that the belts and zones are 
similar, QG theory predicts approximately equal numbers of cyclones and 
anti-cyclones. By contrast, most non-QG cyclones and anti-cyclones act 
differently. Williams & Yamagata (1984) showed that lG cyclones are 
much more unstable and less likely to form than lG anti-cyclones, and 
argued that Jovian vortices should be anti-cyclonic in agreement with Mac 
Low & Ingersoll ( 1 986) who reported that 90% of their observed Jovian 
vortices were anti-cyclones. However, most of the observed anti-cyclones 
were small with Rx < 1 300 km $; L" and Williams ( 1 985) has argued that 
the small Jovian vortices with Rx $; Lr should be QG not lG. Thus the 
preponderance of small Jovian anti-cyclones is puzzling. One possible 
explanation is that the upwelling convective plumes that produce the small 
anti-cyclones (which feed the large, observable anti-cyclones) are much 
more concentrated and intense than the downward flow which produces 
cyclones. Another explanation is that cyclones may be easily overlooked 
in the Voyager images because their clouds arc often diffuse and fila­
mentary while those of the anti-cyclones are bright and compact (see the 
next section). 6 

6.3 Cloud Morphologies 

In QG theory, Jovian cyclones and anti-cyclones behave the same; yet, in 
many cases their associated cloud patterns are different. Anti-cyclones 
have smooth, nearly elliptical clouds, while cyclones (except for those at 
14°N, which are unusual) have large, filamentary, diffuse cloud patterns 
twisted in all directions (Figure 4). Based on these patterns M. V. Nezlin 
( 1 99 1 ,  private communication) argued that cyclones could not be long­
lived and were dynamically different from anti-cyclones because their 
velocities were disorganized. Here is an alternative explanation that shows 
that the clouds and t{I are not necessarily aligned. Dissipative vortices often 
create a weak Ekman circulation: in the upper half of a Jovian vortex there 
is upwelling where wlf(y) < 0 and downwelling where wlf(y) > 0 (Flaser 
et al 1 98 1 ) .  The rising (sinking) motions in the sub-adiabatic top of the 
weather layer cool (heat) the upper vortex. The vertical velocities would 
be too small to be detectable, but the Voyager infrared measurements 
confirm that the anti-cyclonic center of the GRS is cooler than its sur­
roundings and that the centers of the cyclonic barges are warm (Hanel et 
al 1 979). Assuming that the visible condensate in the clouds advects with the 
horizontal velocity and that it is created randomly where the flow is cooled 

6 Mac Low & Ingersoll ( 1986) used images in the violet and UV bands. It is possible that 

the warmer clouds of cyclones may be more visible at other wavelengths. 
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and destroyed where it is warmed, Marcus & Graves (1993) randomly 
created small cloudlets of passive tracers in a numerical simulation of 
Jovian vortices at locations where wlf(Y) < 0 (i .e. interior to, especially 
along the vortex boundary of, the anti-cyclones and just outside the vortex 
boundary of the cyclones), and randomly destroyed them where w/f(y) > ° 
(i.e. inside the cyclones and just outside the anti-cyclones). The velocities 
of the cyclones and anti-cyclones were identical in their simulations and 
consisted of a steady-state equilibrium vortex plus weak, time-dependent, 
small-scale turbulence. The cloud patterns of the cyclones and anti­
cyclones looked very different. Tracers filled the interiors of the anti­
cyclones where the differential rotation and turbulence homogenized them. 
Tracers pushed outside the anti-cyclones were destroyed and left a cir­
cumferential ring with a tracer density lower than the ambient background 
like the dark rings around the anti-cyclones in Figure 4 at 41 oS. Cloudlets 
created outside cyclones were repeatedly sheared by v and twisted by 
the turbulence. These tracers never homogenized. Like the clouds of the 
cyclones at 410S in Figure 4, their contours of constant tracer density 
(brightness) were filamentary, diffuse, and not aligned with the mean tjJ. 

7.  VORTEX M ERGER 

We present a heuristic explanation for prograde vortex merger. We assume 
that the length over which ij varies is large compared to JA so that v(y) 
can be approximated by a Taylor series expansion, vxCy) � - (Jo Y, where 
(J 0 is constant; the origin is the center of potential vorticity, and we are in 
a moving frame so U = O. Consider two prograde vortices embedded in 
this v so that they are in quasi-equilibrium in the sense that if they were 
infinitely far apart they would be exact, steady equilibria with their major 
axes in the x direction. For simplicity let both vortices have the same A 
and if, and let the centers of the two vortices be at (x,y) = (±D/2, ±b/2). 
The differential velocity in v will push the two vortices together in x (even 
if initially b = 0, Vy would quickly make it non-zero). If the two vortices 
merge, we can predict a great deal about the merged vortex: 1. its value of 
if is the same as the initial two vortices because Equation (8) conserves q 
(though see below); 2. it is a steady vortex with its major axis in the x 
direction because that is the only robust solution; 3. the center of its 
potential vorticity is the origin because Px is conserved and because Ux = 0; 
4. its area is equal to 2A because circulation is conserved by Equation (11) 
(though see below); and 5. the A of the merged vortex is known because it 
is a function of ij/if (both the numerator and denominator are conserved 
in the merger) and of JAILr (for infinite L" the A of the final and initial 
vortices are the same). The energy of the initial two vortices and final 
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merged vortex will differ, and the usual energy argument used in fluid 
dynamics states that a flow will undergo a kinematically allowable tran­
sition if the energy of the final state is less than the initial. The change in 
self-energy AEself is given by (14). For infinite Lr and to leading order in 
Ry/D, it is 

(26) 

where Ry is the minor radius. For finite L" AEself must be computed 
numerically and is generally much less than Equation (26), but it always 
increases in a merger between two vortices with the same sign of ij. It does 
so for the same reason and in quantitatively the same way as the self­
energy increases when two, two-dimensional patches of electric charge 
with the same sign and finite Debye length are brought together. Thus 
AEse1f, which is the same for prograde or adverse vortex merger, always 
increases and inhibits the merger. From Equation ( 1 6) the change in the 
interaction energy is 

(27) 

For finite-Lr vortices, the integral in (27) must be computed numerically 
over the domains of the vortices, but for infinite Lr: 

(28) 

In all cases, the sign of AEint depends upon the sign of (Jo/ii. For small 
b, prograde (adverse) vortex merger decreases (increases) Eint• Thus while 
AEself inhibits merger, AEint aids prograde vortex merger and inhibits 
adverse vortex merger (for small b). It must be noted that there can be 
two important modifications to the above scenario. One is that as vortices 
merge they often entrap irrotational fluid. At late times the rotational and 
irrotational fluid become well mixed (Van Buskirk & Marcus 1993b), so 
that the effective 1 q l of the merged vortex is less than that of the original, 
and its effective area is greater than 2A . Another is that often some of the 
initial q is stripped away from the merging vortices (generally leaving it at 
values of y greater than Ry) making the final area smaller than 2A. Both 
effects decrease AEself because less q is brought close together, and for 
prograde (adverse) vortices both effects decrease (increase) I1Eint because 
both increase 11(1 J y2 d2r I) . Thus these effects reduce the inhibition to merge 
caused by Eself and accentuate the differences in I1Eint between prograde 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
3.

31
:5

23
-5

69
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
B

er
ke

le
y 

on
 0

7/
11

/1
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



JUPITER'S GREAT RED SPOT 551  

and adverse vortices. In numerical experiments with small L, and for 
mergers between vortices with unequal areas (the case for Jovian vortices), 
the entrainment of irrotational flow and the stripping of ij are less. As b 
increases, !!..Eint increases for prograde vortices (cf Equation 28). There 
exists a critical value berit such that for b > herit, the total change in energy 
(!!..Ese1f+ !!..Eint) would increase in a merger. Numerical experiments have 
confirmed to within 5% that prograde vortices with b < berit merge, and 
those with greater values do not (Marcus 1990). Generally, berit is approxi­
mately equal to the sum of the semi-diameters in the y direction of the 
merging vortices. 

Two adverse vortices with large b could in principle lower their energy 
by merging, but clearly it is necessary for the vortices to approach each 
other before they could merge. Because the vortices move with v, it is not 
obvious how they could do so and overcome their large initial separation 
in b. Therefore, it is not surprising that we know of no numerical or 
observational examples of adverse vortex merger with l a/ql > 0. 1 .  In fact, 
it is energetically favorable for a single adverse vortex to fission (leaving 
the broken pieces at the latitude of the initial vortex) which explains, in 
part, their finite-amplitude instability. 

When v == 0 (which makes !!..Eint == 0) merger is not impossible, but it is 
more difficult. For these vortices to merge they must be initially very 
close because there is no differential velocity in v to push them together 
(Overman & Zabusky 1 982). Furthermore if there are no boundaries, 
angular momentum about the center of potential vorticity (and every other 
point) is conserved so the movements of the vortices are very constrained. 
Merging vortices with v = 0 conserve their energy and angular momentum 
by shooting filaments of ij far away from the merging vortices creating a 
halo around the merged core. Thus the area of the core is always less than 
2A, and the mergers are qualitatively different from those with a/ij = 0(1). 

8 .  VORTEX SIZE 

For infinite L, and constant a, QG vortices have no characteristic size 
because Equation (8) is invariant under changes in scale s: If a vortex with 
q(x, y, t) is a solution, then so is a vortex s times larger with q(sx, sy, t). 
Spatial variations in a or finite L, break this invariance. Clearly, v can 
limit the size of a vortex. Consider a Jovian vortex in a prograde zone 
sandwiched between two adverse belts. If the vortex were to grow in size 
by merging with smaller vortices it could eventually overflow its zone into 
the surrounding belts. Because the belts tend to expel the (locally) adverse 
ij, the vortex overflows only a finite extent and is thereby limited in size. 
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This section shows how v(y) sets the size of vortices in flows with infinite 
L" and the next section shows how finite Lr changes these results. 

A potential vortex embedded in a v that is everywhere prograde has 
only closed streamlines around it, but the vortex in Figure 8 has both open 
and closed streamlines. The 6(y) south of y = yO' (dotted line) is prograde, 
and north of it the 6(y) is adverse, i .e . y = yO' is a zone-belt boundary with 
6(Y,,) = O. The center of the vortex lies in prograde shear. Moving north 
from YO', one crosses the latitude where v = 0 (dashed line), and then 
reaches the stagnation point where v = 0 (and streamlines cross). If the 
vortex is steady, then the streamlines are closed in its immediate vicinity, 
but there is a last closed streamline (LCS) that passes through the stag­
nation point. In an unbounded flow the streamlines exterior to the LCS 
are open. The boundary of the vortex which is itself a streamline could lie 
anywhere between the vortex center and the stagnation point without 
qualitatively changing Figure 8. 

Much of the dynamics that occurs in a zone-belt flow like Figure 8 can 
be illustrated with uniform-q vortices embedded in a quadratic V. The unit 
of time is chosen so that q = 1 ,  and of length so that 

(29) 

(The constant c is unimportant by Galilean invariance and is chosen to 

Figure 8 Schematic of the steady streamlines of a ij > 0 potential vortex embedded in a 
v(y) that is prograde south of Y. (dotted line where it = 0) and adverse to the north. There 
are two latitudes where v = 0 (dashed lines). The last closed streamline (heavy line) crosses 
itself at the stagnation point. If these were the streamlines of a time-averaged Jovian flow, 
then finding the stagnation point by locating where the paths of small tracer clouds diverge 
from each other is unreliable. Turbulence in the lee of the vortex could easily push a tracer 
from one time-averaged streamline to another leaving the impression that locations like B 
and C are stagnation points. 
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make Ux == 0.) Figure 9 shows the boundaries of eight, steady-state poten­
tial vortices embedded in the v of Equation (29) with (Jo = I .  Each vortex 
has its center at the origin (i.e. Px = 0) and has an infinite L" but each 
vortex has a different area A. The smallest is nearly an elliptical Moore­
Saffman vortex, but the larger ones which extend into the region of adverse 
shear north of y = I are distorted on their northern boundaries. The 
largest vortex in Figure 9 completely fills the region inside its LCS. Its 
boundary touches the stagnation point which produces a corner at its 
northernmost point. It is the limiting vortex, and it is the end of this family 
of vortices. (It is not a turning point of the family. See Section 9.) Clearly, 
a steady vortex cannot be larger than its own LCS as it would have its 
extremities outside the LCS carried away along the open streamlines. The 
vortices in Figure 9 are linearly stable, but they (and all vortices with an 
LCS, including the adverse Moore-Saffman vortices) are finite-amplitude 

6 

3 

y 0 

-3 

-6 

-6 -3 o 3 6 X 
Figure 9 Boundaries of eight different infinite-L" potential vortices all with (To = I embedded 

in the vAy) of Equation (29) and different values of A .  The largest vortex with A = 55.135 
is  the limiting solution and has a stagnation point on its boundary. The shear is  adverse for 
y >  I .  
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unstable. Numerical experiments show that the minimum distance between 
the LCS and the vortex boundary is a good measure of how large a 
perturbation is needed to disrupt the vortex (Marcus 1 990). All of the 
vortices in Figure 9 have streamlines that look qualitatively like those in 
Figure 8. 

All Jovian vortices have centers that lie in a prograde shear, but they 
are usually sandwiched between two adverse belts or zones and have 
stagnation points on both their northern and southern sides. They can be 
understood by examining the dynamics of vortices embedded in a cubic 
v(y) flow. We choose the unit of time so that ij = 1 ,  and we choose the 
origin and unit of length so that: 

(30) 

(The constant c is i rrelevant due to Galilean invariance.) Consider the 
cubic v with 110 = 1 and the family ofuniform-q potential vortices centered 
at the origin (i .e. Px = 0, and the vortices are north-south symmetric) and 
with infinite Lr• The family is illustrated with the heavy curve in Figure 1 0  

0 

-5 

- 1 0  
1\ 
E 

- 1 5 

-20 

-25 
0 5 10  1 5  20 25 30 35 40 

A 
Figure 10 Reduced energy E as a function of area A .  The heavy line from the origin to the 
+ shows the relation between E and A of the family of steady, stable, infinite-L" potential 
vortices with Px = 0, and (J 0 = I embedded in the cubic v of Equation (30). The family ends 
with the limiting vortex at the + (which is not a turning point). The limiting vortex has a 
stagnation point on its boundary. The evolutionary paths of three different initial vortices 
are shown as thin curves superposed with open circles. The dissipation monotonically 
decreases A in time, but conserves the initial values of ij. The energy is not conserved. All of 
the paths are attracted to the plus sign; their slopes dE/dA there are approximately equal to 
the slope of the heavy curve at its limiting point . 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
3.

31
:5

23
-5

69
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
B

er
ke

le
y 

on
 0

7/
11

/1
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



JUPITER'S GREAT RED SPOT 555 

which shows the reduced energy E as a function of A for the steady-state 
vortices in the family. [E is the total energy of the vortex given by the sum 
of Equation (14) and (16) minus a constant equal to the total energy of a 
non-equilibrium vortex with the same A and Px. but exactly circular in 
shape.] If a small vortex in this family slowly increases its area A by 
merging with infinitesimally small vortices with Px = 0, its evolutionary 
path in the E-A plane follows the hcavy curve in Figure 10 from the origin 
to the + where the heavy curve ends. The + corresponds to the limiting 
vortex with stagnation points on its most northern and southern boun­
daries. Any additional area added to the vortex leaks through the LCS at 
the stagnation points and is carried to infinity. 

Also shown in Figure 10 are thin lines which represent the evolutionary 
tracks in the E-A plane of three infinite-Ln north-south-symmetric vortices 
that are initially far from equilibrium, embedded in the cubic v with (fo = 1 ,  
and governed by the QG  Equation (8) with a small amount of  dissipation 
added. The vortices move along the tracks from right to left (always 
decreasing their A )  and are all attracted to the limiting vortex near the + .  
These evolutionary paths are representative of several dozen that we have 
computed in which the initial A was greater than that of the limiting 
vortex. All of the vortices arrive at the + in Figure 10 in finite time, settle 
into nearly steady states that are very close to the limiting vortex, and at 
latc times have slopes dE/dA approximately equal to the slope of the heavy 
curvc at the limiting vortex. Obviously, an explanation is required of why 
the limiting vortex is such a robust attractor. 

To understand Figure 10 consider the non-dissipative solution to Equa­
tion (8). Although the vortex boundary changes shape in time, con­
servation of energy and potential circulation f keeps its location in the 
(E-A ) plane fixed. The early evolution of an initially circular, infinite-L, 
vortex with Px = 0, A = 30, and embedded in the cubic v of Equation (30) 
with (fo = I is shown in Figures l la,b. The a is adverse for I y l  > 1, and 
the northern and southern extremities of the vortex lie outside the initial 
LCS. The v quickly stretches the extremities into two thin tails and advects 
them towards ± 00 .  The flow never settles into a steady state. When 
dissipation-viscosity, Ekman pumping, etc-is added to the equations, 
the tails are most affected. They are carried away from the main body of 
the vortex by v and eventually decay. Numerical simulations show that 
the dynamics of the main body of the vortex (i.e. the part not in the thin 
tails) is insensitive to the exact form of dissipation. (Presumably, because 
the dissipation acts only at distances far from the main body of the vortex.) 
Because of this insensitivity, we put a model dissipation into Equation (8) 
when we compute the flows in Figures 10 and 1 1  c,d: Any part of a vortex 
tail that extends past I x l  = Xcut is cut off from the main body of the vortex, 
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F(qure 11 The evolution of the boundary of an initially circular vortex embedded in the 
cubic v of Equation (30) [corresponding to the middle evolutionary path in Figure [0 with 

initial A = 30] at four times. Figures a and b are computed with no dissipation, but c and d 

have the dissipation described in Section 8. For I y l  > 1, (j is adverse. 

and its q(x, y, t) is set to zero. For the flows in Figures l O  and 1 1 , we set 
Xcut = 9.5. All of the flows that are illustrated are stable to north-south 
asymmetric perturbations, so as the vortices evolve, any section of tail that 
is removed at positive y, has a corresponding piece removed at negative 
y. Thus P< remains zero throughout the evolution. 

This model dissipation conserves the value q and Px, but decreases the 
area A monotonically. (Note that q = 1 ,  f = A .) Thus the tracks in Figure 
10 all go frorn right to left. The E can increase or decrease with this 
dissipation. Figure 1 1  shows the evolution · of the vortex boundary cor­
responding to the middle evolutionary track in Figure 1 0. As with the 
dissipationless equations, the northern and southern extremities of the 
vortex are initially stretched by v into tails. Most of the potential circulation 
outside the last closed streamline is quickly carried far from the main body 
of the vortex and removed. (See Van Buskirk & Marcus 1 993b for details 
of this evolution.) The boundary of the main vortex becomes nearly steady 
in time. Once the vortex has shed enough potential circulation so that its 
main body lies entirely within its last closed streamline, it stops evolving: 
No ij from the main body can cross the LCS, so no significant amount of 
it can reach x = ± Xcut; the dissipation stops, and the flow stops moving 
in the (E - A )  plane. Because the main body of the vortex stops evolving 
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just after it shrinks inside its LCS, it is nearly the same as the limiting 
vortex. Thus, all of the evolutionary paths in Figure 10 are attracted to 
the limiting vortex at the + .  

In Figure 1 1  the two locations where the tails join onto the main vortex 
rotate counterclockwise around the main vortex indefinitely. However, the 
amount of potential circulation in the tails decreases exponentially in time, 
so the velocity is nearly steady. At late times, each vortex tail exterior to the 
LCS becomes coincident with one of the steady streamlines that connects a 
stagnation point to x = ± Xcut• (In Figures 1 Ie,d, the stagnation points are 
at the intersections of the y-axis and the two vortex tails.) This streamline is 
a stable attractor for the vortex tail. A consequence of this attraction is 
that the value of the stream function where the tail is cut tf;cut approaches 
the value of tf; at the stagnation point tf;stag. This fact explains why all of 
the paths in Figure 10 end with the same slope as the family of steady 
vortices: When an infinitesimal piece of potential vorticity of strength 
df = ij dA is removed at position x from a vortex with potential circulation 
f embedded in v with a total stream function tf;, then the change in the 
total energy is 

dE = - tf; (x) df. (3 1 )  

Equation (3 1 )  i s  the same expression for the energy change when an 
infinitesimal piece of electric charge of strength df = ij dA is removed 
from a charge f in an external electric field with total potential tf; .  Using 
Equation (3 1 )  and our definition of E, 

(32) 

As stated previously, if a vortex were to slowly grow by merging with other 
vortices, it would evolve along the heavy curve in Figure 10 from the origin 
to the +. It has been shown that when a vortex grows this way, all of the 
change in shape of the boundary at the end of the evolution occurs at the 
stagnation point (Van Buskirk & Marcus 1 993b). Therefore, the slope 
dE(dA of the heavy curve in Figure 1 0  at the limiting vortex is 

_ -./, + ijflim 1 (flim) 
q'!'stag 4 n , n n (33) 

where flim is the value of f of the limiting vortex. From (32) the slopes of 
the three evolutionary tracks in Figure 1 0  at any instant are 
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dE _ qf(t) (r(t)) 
dA = - q"'cut(t) +  �ln ---;- . (34) 

We have shown that at late times "'cut --+ "'stag and f(/) --+ rlim. Therefore, 
Equations (33) and (34) show the slopes dEldA of the evolutionary tracks 
at late times approach the slope of the family of solutions at the limit 
point. 

This model dissipation shows that for infinite L" a vortex with initially 
large areas evolves to a limiting vortex. It also shows that an initially small 
vortex that slowly grows in size by merging with infinitesimal area vortices 
also evolves to the limiting vortex. However, most Jovian vortices that 
overflow into adverse regions ofv are close to, but not equal to, a limiting 
vortex. We now show how the effects of finite L, accounts for this 
discrepancy. 

9.  FINITE Lr: SMALLER OVERFLOWS 

Finite-Lr prograde vortices do not overflow into regions of adverse if as 
far as their infinite-Lr counterparts. There are two reasons. One is that 
some families of vortices become linearly unstable before reaching their 
limiting solutions-we call these families corner-like. The other is that 
some families of prograde vortices never even reach the region of adverse 
shear-we call these families band-like. 

The linear instability in corner-like families is readily observed in any 
bifurcation curve, such as the E vs A curve, as a saddle-node or turning 
point. The turning points for Lr = 0. 192 and Lr = 0.385 are illustrated in 
Figure 12 which shows A(A ) for families of prograde vortices with Px = 0 
embedded in the cubic v(y) of Equation (30) with (J'o = 0.0833 . (The units 
and origin are the same as in Section 8.) The upper parts of the curves are 
linearly stable, and the bottom parts, containing the limiting vortices, are 
not. The turning and limiting points become nearly coincident in the family 
as L, --+ 00 .  We call these families corner-like because they end with limiting 
vortices that have corners (stagnation points) on their boundaries. The 
two families with Lr < 0. 1 77 are band-like. 

A vortex with Lr = 0.385 and infinitesimal area that gradually increases 
A by merging with small vortices (centered at y = 0 to keep P x = 0) evolves 
through a sequence of quasi-stationary equilibria along the curve of corner­
like vortices in Figure 12 until it reaches its turning point. Then, its 
northern and southernmost boundaries waver-a symptom of the linear 
instability. Any additional accumulated area leaks out of these wavering 
tips, joins onto the open streamlines coming from the stagnation points, 
and is carried away (similar to the flow in Figure 11). Thus for values of 
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LR = O. 1 73 

O L---�--�--�--�--�--�--�� 
o 2 

A 
3 4 

Figure 12 The aspect ratio A (maximum length divided by maximum height) as a function 
of area A for 5 families of vortices embedded in the cubic v of Equation (30) with Px = 0 

and "0 = 0.0833. The asymptotically computed value of L: from Equation (35) is 0. 177. The 

two families with L, < L: are band-like and can increase their areas indefinitely though they 

are bounded in longitude. The other families are corner-like, and their limit points correspond 

to vortices with stagnation points (corners) on their boundaries. The turning points, where 
the families become linearly unstable, approach the limit points as L, - 00 .  

Lr where the families are corner-like vortices are attracted to turning points. 
They do not fill their LeSs, are east-west symmetric, have stagnation points 
just to their north or south (or both) but not on their boundaries which 
are smooth, and do not have corners like the infinite-L, attracting vortices. 

Prograde vortices with large <To and small Lr embedded in the cubic v(y) 
of Equation (30) are members of band-like families. As Figure 1 2  shows, 
for each value of Px and <To there is a critical value L: such that families 
of vortices with Lr > L: have limiting solutions and are corner-like and 
those with Lr < L: do not and are band-like. For band-like vortices the 
shear and the screening effects of Lr are too strong for the vortices to have 
much influence on the ij at their northern and southernmost extremities. 
Therefore they are stretched in the x direction by v. Thus, as a band-like 
vortex increases its A, the additional area is not added equally to all parts 
of the vortex but preferentially to its eastern and western ends. As A 
increases, the vortex goes from an ellipse [with A, as a function of iijij given 
by equation (24)] to a flatter more eccentric shape. Asymptotically the 
growth on the northern and southern sides stops while the vortex continues 
to expand in longitude. The family of vortices asymptotes to an east-west 
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560 MARCUS 

band of ij with infinite area extending to x = ± ctJ and filling all space 
between two finite, bounding latitudes at ± Ymax' Thus band-like vortices 
grow flatter as A increases, so they never reach the region of adverse a. 
They are linearly stable (with no turning points in the family) and have no 
analog for Lr -t ctJ .  For P, = 0 (i .e. for vortices centered in the cubic zone­
belt flow), L:((Jo) has been computed numerically and is in good agreement 
with an analytically-obtained approximation derived by Marcus & Van 
Buskirk ( 1993) using an asymptotic expansion in small Lr (Pratt & Stern 
1 986). For P, = 0 this approximation in our dimensionless units is 

(35) 

The latitudes where the cubic v in equation (30) has a = 0 are 
Y == ± YeT = ± Fo, so in dimensional units L-;'I Y" = l .4[a(O)Iij] l/3 .  

The change in shape with A of a band-like family of vortices is illustrated 
in Figure 1 3  for alij = 0.5,  Px = 0, and finite Lr• Here, the vortices are em­
bedded in the simpler Moore-Saffman zone-belt: Vx = - (JoY to empha­
size the fact that the band-like shape and lack of limiting solution are not 
consequences of the cubic v(y), but are general properties of prograde 
vortices with large JAILr' For infinite L" all of the Moore-Saffman 
vortices with alij = 0.5, regardless of their values of Px or A ,  have 
the same shape (though, different size). All families of finite-Lr vortices 
embedded in Vx = - (J oy are band-like. A vortex with infinitesimal A has 
the same shape as the Moore-Saffman vortex, but as Figure 1 3  shows, its 
aspect ratio A increases with JAILr. For Vx = - (JoY, the maximum lati­
tudes ± Ymax to which a family of finite-Lr vortices (centered at the origin) 

3r-----r-----�----�-----r----�----� 

2 

y 

-2 

- 3 �----�----�----�----�----�----� 
-6 -4 -2 0 2 4 6 

X 
Figure 13 Boundaries of 20 different finite-L" potential vortices centered at the origin and 

embedded in i!.,( y) = - <1o Y, where <1o/ii = 0.5.  The family is band-like, so as A increases the 
vortices become flatter in shape and cannot extend in latitude past Ymax' From Equation (36) 

Ym.,/L, = 1 . 145. The unit of length in the figure is L,. 
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can extend as A ---+ 00 have been computed numerically as a function of 
(Jo/i} and are in good agreement with their asymptotic values (Marcus & 
Van Buskirk 1 993): 

(36) 

Equation (36) shows that for a wide range of ii/ii, the half height Ymax of 
a band-like vortex is of order Lr• 

The Jovian weather layer has finite Lr and large I ( n  so it should not be 
surprising that several Jovian vortices look band-like, particularly the anti­
cyclonic Little Red Spot at 1 9°N (which is the location of the strongest 
anti-cyclonic ii on the planet), the very elongated cyclones at 300S (Figure 
4), and the four cyclonic barges with A � 4 at 14°N. Like the vortices in 
Figure 1 3, the )" of the barges increases with their areas (Mac Low & 
Ingersoll 1 986). If the barges were Moore-Saffman vortices with A given 
by equation (24), then ii/i} would have �o be '" 3; whereas the observed 
values are '" O.4-consistent with a family of band-like vortices. Sub­
stituting the observed values of the half-heights of the barges into the left­
hand side of Equation (36) implies that Lr « 2000 km at the barges. This 
suggests that the barges, which are different in appearance from the other 
Jovian cyclones, might lie deeper in the atmosphere. At lower depths the 
atmosphere is less stably stratified, and Lr is smaller. 

Because of the screening effects of L" it should be no surprise that the 
north and south sides of a vortex can act independent of each other and 
that an asymmetric vortex can have a northern boundary that acts as a 
corner-like vortex and extends into the region of adverse shear and a 
southern boundary in prograde ii that acts as a band-like vortex, so that 
no matter how large A becomes the vortex is bounded to the south at 
y = - Ymax• We argue in the next section that many Jovian vortices lie 
asymmetrically in their local v and are hybrids of the two types of vortices. 

1 0. DIRECTION OF VORTEX OVERFLOW, v(y), AND 
MULTIPLE VORTICES 

There are many theories of how v(y) is formed; none are totally satis­
factory. Several assume that the east-west winds are rooted deep in the 
interior and not the weather layer (Ingersoll & Pollard 1 982, Busse 1 983). 
Others argue that v(y) is shallow and due to an atmospheric resonance 
(Mayr et al 1984), barotropic turbulence (Williams 1 985), or thermal 
forcing (Conrath & Gierasch 1 984). 

Rhines & Young ( 1982) found that turbulent QG flows often form 
distinct domains of nearly uniform q. Here we outline our extension of 
these ideas to v because it explains the direction (pole or equator side) that 
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vortices overflow their zones or belts and also why some latitudes have 
more than one vortex. In this picture V, like the vortices, is governed by 
the shallow-water potential vorticity Equation ( 1 )  of the weather layer and 
tied only weakly to the interior velocity by hb(Y)' Experiments and 
numerical simulations (Nielsen & Schoeberl 1984) suggest that if the weather 
layer is vigorously stirred it can form axisymmetric bands of approximately 
uniform q separated by thin regions where q changes rapidly. For example 
east-west flows with either one or two approximately axisymmetric bands 
of nearly uniform q were created in a rotating tank with a nonporous lid 
(Sommeria et al 1 988, 1 989) when the flow was stirred by injecting fluid 
in and out of holes in the bottom [exploiting the (q/Ho) (8vz/8z) forcing 
discussed in Section 3 . 1 ] . Numerical calculations of flows that are stirred 
by the axisymmetric injection and withdrawal of fluid at several radial 
locations quickly produce extrema in q at those locations. There the flow 
has local instabilities (as allowed by the inflection theorem) which mix the 
flow. ff the forcing is sufficiently large the v can form distinct bands 
each with a nearly uniform q. The size, location, number, extent of the 
homogenization of q within the bands, and sharpness of the transition 
regions depend on the rate of injection, the dissipation, L" and the flow 
history. For example, when the forcing is weak it is hard to create bands 
greater than 2L, in width. This method of creating a banded v(y) could 
apply to the Jovian weather layer if the rising and falling plumes in the 
underlying convection layer inject and withdraw fluid at several different 
latitudes (Stone 1 976), and if the stably stratified overlying layer acts as a 
nonporous lid. 

To see what types of east-west winds would be created by the forcing, 
assume that v was initially zero in the Jovian weather layer. Then 
q(y) = f( y) +fohb(y)/Ho � f( Y), and q(y) decreases monotonically from 
the north to south pole. If stirring mixed the q into approximately uniform 
bands, then ij(y) would form a monotonically decreasing set of steps from 
the north to south pole. Moreover, if the average v and w of the resulting 
flow in each hemisphere remained approximately zero, then the v(y) would 
look qualitatively like the solid curve in Figure 1 :  The v(y) would be 
continuous, but dv(y)Jdy and ij would be nearly discontinuous at the band 
boundaries. [For example if within the ith band, f( y) + hb(y)fo/Ho could 
be approximated as f� + f3iy, then within each band vi( y) = Vi cosh 
[(y -yJJLr] + ki where Vi, yi, and ki are constants for each band.] The 
curve in Figure 1 fits VLim because the number of bands, their widths, values 
of q, and hb(Y) are all adjustable parameters, but despite the arbitrariness 
in selecting these values the model has important implications. Each band 
contains one anti-cyclonic zone and one cyclonic belt with the belt always 
on the equatorial side. The east-going extrema of v(y) occur at band 
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JUPITER'S GREAT RED SPOT 563 

boundaries where q(y) and O'(y) are almost discontinuous and 1 0' 1  is large. 
The west-going extrema are within the bands and have continuous q(y) 
and O'(y) with 0' = 0. 

Regardless of what physical mechanisms makes the bands (we now 
define a band as one zone/belt pair with the zone on the pole side), our 
calculations show that prograde vortices can grow by merger until they 
overflow into the neighboring belt or zone within the same band but not 
across band boundaries if at the boundary there is a very rapid change in 
q or if I O'/q l is large. The overflowing vortices are hybrids. The side near 
the band boundary stretches in the east-west direction, stops growing in 
latitude, and acts as a band-like vortex. The other side near the middle of 
the band, easily overflows the zone-belt boundary where 0' = 0, and acts 
as a corner-like vortex. Thus a characteristic of this model oE V(y) is that 
if there is vortex overflow into adverse 0', then the cyclones overflow on 
the pole side and anti-cyclones on the equator side. This characteristic is 
true for all of the long-lived Jovian vortices. It is especially obvious in the 
Voyager photographs of the GRS, the three White Ovals, and the 24 
vortices at 41 oS (Figure 4). 

A consequence is that an anti-cyclone can overlap in latitude and interact 
with the cyclones in the neighboring belt on its equatorial side (i .e. within 
the same band) but not with the cyclones on its poleward side (where their 
separations in latitude are usually greater than Lr). We can use this to 
explain how several Jovian vortices can co-exist all centered at the same 
latitude. An explanation is required because an isolated row of prograde 
QG vortices embedded in an east-west flow with approximately uniform 
q is always linearly unstable. The vortices approach each other and then 
merge together to form one large vortex, usually with SOme very small 
unmerged fragments (cfthe late-time merger of the three White Ovals into 
one vortex in the simulation by Dowling & Ingersoll 1989). Observations 
of the White Ovals show that when they begin to approach each other 
they are pushed back to their original locations with a repulsion that 
increases inversely with the square of their separations (Solberg 1 969). We 
can prevent the vortices in a row from approaching each other (thereby 
blocking merger) by introducing a second staggered row of opposite­
signed, prograde, blocking vortices as in Figure 4 or schematically as in 
Figure 1 4. 

A pair of staggered rows of opposite-signed vortices is called a Karman 
vortex street. Its eigenmodes can be found numerically, but when the vor­
tices are point potential vortices and Lr ---> 00 they can be found in closed 
form (Lamb 1 932, Marcus 1 990) and when a »  Lr they can be computed 
approximately by considering a perturbed vortex's response to v(y) and 
the v of its nearest neighbors. First consider the stability of the bottom 
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a/2 a/2 
. r v 

C 0 
----- - - - - - - --Q- - - - - - - ---- - - - - -- -Q- - - - - - - - - - - y=b/2 

... 
--�-------------------L;l-----------------�-- y=-b/2 

A 0 B 

�----------.�--------'��--------_v.---------'/ 
a a 

Figure 14 Schematic of a row of point potential vortices with circulations - f above and 

staggered with a row of vortices with circulation r (Karman vortex street). The v(y) is shown 

with heavy arrows and the v with thin. The figure is in the moving frame such that at 

equilibrium the vortices are at rest. Note that at the latitudes of the rows of vortices v # O. 

row of prograde vortices with potential circulation f in Figure 1 4  without 
the second row at y = bj2. Let vortex 0 be perturbed upward a distance 
J from its equilibrium. Neighboring vortices A and B and v move 0 to the 
left with linearized velocity [6( - bj2) + d2fjdy2]i5 where the derivative is 
evaluated at the equilibrium position of 0 and the f due to A and B is 
calculated from Equation ( 10). After vortex 0 moves to the left, it is 
advected upward by vortex A, moving it even farther from its equilibrium 
latitude. There is no restoring force, the row is unstable, and vortices 0 
and A quickly move to the same longitude where they would merge if they 
were of finite size. When the row of vortices at y = bj2 with circulations 

- f is included, the perturbed vortex 0 can move to the left or right. For 
values of the parameters relevant to Jupiter, a »  b � L" and 
1 6( ± bj2) 1 � fjnab, the perturbed velocity 6( - bj2)/j due to v dominates 
the perturbed v, so 0 still moves to the left. (fjnab is approximately the 
q of the finite-area potential vortices in Figure 4.) Then the downward Vy 
on 0 created by the close proximity of C exponentially dominates the 
influence of A, B, and D, so 0 moves downward and south of latitude 
y = - bj2 where it is then advected to the right. It then completes a 
counterclockwise orbit around its old equilibrium position. The counter­
clockwise motion is consistent with the numerically computed eigenmode, 
and the period of the orbit is consistent with the numerically computed 
neutrally stable eigenvalue. Note that for different values of the parameters 
or large initial perturbations the staggered rows of vortices can he unstable. 

Thus another characteristic of the model is that if there are N > 1 long-
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JUPITER'S GREAT RED SPOT 565 
lived prograde anti-cyclones centered at some latitude, then they must be 
part of a Karman vortex street with N blocking cyclones in the belt on the 
equatorial side (i.e. within the same band); otherwise the vortices will merge. 
Due to Jovian turbulence it is unlikely that a Jovian vortex street would 
oscillate exactly periodically in time or that its vortices would be equally 
spaced. A Jovian vortex street is clearly located at 41°S where there are 
nine welI-formed, staggered, cyclone/anti-cyclone pairs spanning 205° in 
longitude (Figure 4) and three other less distinct pairs in the remainder. 
The three White Ovals form a vortex street with the three very extended, 
weak cyclones at 300S (Figure 3). There are also striking examples of 
vortex streets in the North such as the one at 44.5°N. Vortices in these 
streets have not been observed to merge or disappear. Because the cyclones 
are usualIy located near the anti-cyclones, some observers have claimed 
that they are the wakes of anti-cyclones [i.e. passive consequences of the 
anti-cyclones rather than dynamically important blocking vortices that 
create the oscilIations observed by Solberg ( 1 969)]. However, it should be 
noted that all three of the White Ovals and two of their companion cyclones 
lie within a 1 800 span of longitude, leaving one cyclone spatially isolated 
and clearly not a wake. The observations are not sufficiently complete to 
determine whether there are blocking vortices present in alI examples 
of two or more, long-lived Jovian vortices occupying the same latitude; 
however, observations of vortex mergers are very common when there are 
no blocking vortices, cf the anti-cyclones at 35°N. 

The GRS is an example of a vortex with no companion at its latitude. 
If blocking vortices are the only way to prevent vortices at the same latitude 
from merging, then for the GRS to have a companion there would have 
to be a blocking cyclone in the belt north of 1 7°S. There is none [possibly 
because that belt has a strong 3-dimensional flow (as indicated by regions 
of intense convection) that is not conducive to robust 2-dimensional vor­
tices] . Another property of QG vortex arrays embedded in east-west flows 
with approximately uniform q is that when the two rows of point vortices 
are not staggered as in Figure 14, but directly over each other (so the 
vortices looked like dipolar modons), they are unstable. So though vortex 
dipoles are common in many geophysical flows, they should not exist on 
Jupiter. This is consistent with observations. 

Nezlin ( 1 986) has a different explanation for why some Jovian latitudes 
have more than one vortex. He has concluded that the Jovian zone-belt 
flow is linearly unstable to IG eigenmodes of the form elm"', where ¢ is the 
longitude and m is an integer and a local function of the latitude. He 
argues that the number of observed vortices at each latitude is equal to m. 
A problem with this reasoning is illustrated in Figure 7. Here the v is most 
linearly unstable to m = 3, and although the flow is initialIy dominated by 
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566 MARCUS 

the wavenumber m = 3 of the linear instability, the final number of 
vortices, in this case one, depends on how many survive the subsequent 
nonlinear mergers. Moreover as noted by Williams & Wilson ( 1 988) who 
carried out numerical simulations of IG vortices, in order to maintain 
multiple IG vortices at the same latitude there must be a delicate balance 
so that they all move at the same speed (otherwise one catches up with 
another and they merge). It would be unlikely that such a balance could 
be maintained in the turbulent Jovian atmosphere. 

1 1 . VELOCITY DATA 

Jovian veiocity vectors are derived from Voyager photographs by identi­
fying cloudlets, looking at their displacements over time r (usually a Jovian 
day), and dividing by r. This assumes that the clouds move with v, have 
accelerations small compared to <v)/r, have displacement lengths small 
compared to the flow's radius of curvature, are all at the same altitude, 
and have precisely known locations. Satellite pointing problems cause 
large uncertainties in the latter unless photographs of the cloudlet and 
planet's limb can be overlapped. Mitchell et al ( 198 1 )  and R. F. Beebe 
( 199 1 ,  private communication) have determined several thousand cloudlet 
displacements in the GRS. To reduce their noise, Dowling & Ingersoll 
( 1 989) averaged them over 3 x 3° ( "-' 3450 x 3450 km) cells (i.e. 9 x 5 cells 
over the GRS). The values of v and their first derivatives for each cell were 
found by fitting the observed velocities within each cell to a linear function 
of latitude and longitude. Their goal was to use the smoothed v and ill in 
the steady-state shallow-water equations to solve for ho(Y). To examine 
the effects of smoothing, Van Buskirk ( 199 1 )  used a thin shell, 2-dimen­
sional spline on the Beebe displacements to obtain v on a 0.39° or '" 450 
km square grid. The unsmoothed energy spectrum has an unreasonably 
large peak at the large wavenumber k Fourier modes; moreover, spatial 
derivatives (e.g. ill) of the unsmoothed v are dominated by the noise at large 
k. We smoothed v by Gaussian filtering in Fourier space, and computed v 
and ill as functions of smoothing length L. We found that v varied by 1 3 %  
and ill by 2 8  % as L was changed from 1 ° to 3°. This is not surprising when 
one considers the GRS in Figure 2 superposed with a 3 x 3° grid. The thin 
circumferential ring of high velocity of width '" 2L, (Figure 3) almost falls 
between the grid points. Inside the ring, ill exponentially increases with e­
folding length of 2° from near zero to its peak value, drops back to zero, 
reaches its most negative value, and then exponentially returns to near 
zero. When the smoothing distance is larger than the e-folding length, 
errors of 20-40% should be expected in the velocity derivatives. Functions 
of higher derivatives, such as hb as calculated by Dowling & Ingersoll 
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( 1989), which depend on the spatial variation of ro, are even more inac­
curate. For these reasons we do not believe the published values of hb that 
were derived from the 3°-averaged v. 

We can use Beebe's displacements to test the validity of the shallow­
water approximation by using a modification of a method used to reduce 
noise in experimental measurements of a flow which should be exactly 2-
dimensional and divergence-free but in which the noise causes V ·  v =/:- O. 
This noise filter finds the projection Vproj ofv onto the set of 2-dimensional, 
divergence-free fields with the same (periodic or zero normal component) 
boundary conditions as v such that the L2 norm of (vproj - v) is minimized. 
To do this we compute ro from the smoothed v, calculate t/J such that 
V2t/J == ro. We define vproj = Z x Vt/J (where V2 is inverted with appropriate 
boundary conditions). If the Beebe displacements of the GRS obey the 
shallow-water equations, we should not constrain them to be divergence­
free. Instead we compute a Vproj by projecting them onto the set of 2-
dimensional fields that exactly satisfy the steady-state, shallow-water 
momentum Equation (1) .  (In the limit / -+/0 and e -+ 0 this projection 
would be identical to the previous one: V '  Vproj = 0 with t/J = ghl/o.) The 
divergence of Equation ( 1 )  gives gh in terms of the smoothed v: 

V2gh = V ' [v x/z - (v ' V)v] (37) 

and the Laplacian is inverted to find gh. Then vproj is defined as 

, 1 vproj == z x  y [ gVh + (Vproj ' V)Vproj) (38) 

so vproj exactly satisfies the steady-state form of Equation (1). [Equation (38) 
is the analog of vproj == Z x VI/t.] Equation (38) can be solved iteratively with 
linear convergence in the Rossby number by defining the (n + 1 )st iterate: 

V;;;:;/ == z x y [9Vh + (v;roj ' V)V;;roj]' (39) 

The L2 difference between vproj and the 10 -smoothed velocity is less than 
7%, which is within the observational uncertainties, and which justifies, 
in part, the shallow-water approximation. In particular, it shows that the 
data are consistent with a steady state momentum equation in which there 
are no baroclinic terms. 

Although the Vproj and the v computed from smoothing over 1 0  are nearly 
the same, the values of V . v and hb derived from these two velocities differ 
by order unity. They are very sensitive to small changes in v .  For this 
reason we have computed hb(Y) with an alternative method. We assume 
that the potential vorticity of the Limaye velocity qLim == Ho[f(y) +  
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WLim(y)]/[Ho + hLim(y) - hb(y)] is uniform over some band, where hLim is 
defined so that it and VLim exactly satisfy the steady shallow-water momen­
tum Equation ( 1 )  or 

ghLim(Y) = - (Y DLim(y')f(y' )  dy', JyO (40) 

where y* is chosen such that (hLim)O  == 0, and where ( )0 means an average 
over the band where qLim is assumed constant. Thus 

h ( ) = h . ( ) _ L2f2 [f(y) -fo] + [WLim(Y) - (WLim)o] 
9 b Y 9 Lim Y , 0  r + ( ) , 

J O  WLim 0 
(41 )  

where we have defined hb( Y) such that (hb(Y»o == O .  There are order unity 
differences between the hb(Y) found from Equation (4 1 )  and that found by 
Dowling & Ingersoll. When the former is used in an initial-value cal­
culation that begins with Vproj, the flow remains nearly unchanged over 
time. In contrast, when Dowling & Ingersoll used the latter hb and ini­
tialized their calculation with DLim, they found that the flow was unstable 
at the latitude of the GRS: Waves formed and rolled up into vortices that 
then merged together much like the unstable vortex layer does in Figure 
7. They interpreted their numerical experiment as a scenario for the for­
mation of the GRS as well as support for their values of hb(Y). A different 
point of view is that the observed Limaye velocity should be compared 
with the final state of a numerical experiment and not just used as its initial 
state. In the experiment of Dowling & Ingersoll, the final east-west flow 
(far from the GRS) differs from VLim by as much as 20% at some latitudes. 
Moreover, if,the observed vLim(Y) (which at most locations is much farther 
than L, from the GRS and any possible stabilizing influence it might have) 
is found to be unstable with respect to some choice of hb( y) , we argue that 
that choice of hb is incorrect. 

With L, = 2300 km we have found that < I ll/Ho i >  '" 0. 1 8  (using h derived 
from Equation 37), < l hbIHol)  '" 0. 1 2  (using the hb from Equation 41) ,  and 
over most of the GRS <w/fo) is less than 0.2, all consistent with QG 
scaling. The value of Ii/Ho and its behavior can be understood by noting 
that v is nearly zero everywhere except on the circumferential ring; there­
fore, its stream function gli/fo is nearly constant inside and outside the 
GRS. By definition II � 0 outside the GRS. The ring thickness is '" 2L" 
so the maximum value of Ii is at the center of the GRS and is 2L, times 
I vIII in the ring. Equation (5) or geostrophy requires I vIII � fo l v l /g, so the 
maximum value of Ii/Ho is ", 2 <v)IL,/0. Because the latitudinal extent of 

the GRS is large, </(y) -/0)/10 can be as large as 0.34, and at the nothern­
most part of the circumferential ring I w/fo l is as large as 0.35.  These 
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difficulties are discussed below, but we note here that only two conditions 
need to be satisfied to derive the QG equations from the shallow-water 
equations: 

f 6L;(f+w)lg(Ho+ h - hb ) ':!:. f+w+g(hb - h )lfoL; 
and 

fov ':!:. gz x Vh .  

(42) 

(43) 

For the GRS, Williams & Yamagata (1 984) rejected QG in favor of IG 
theory which assumes the shallow-water approximations and the 
additional sealings: (v)/lfol (1) = ([f-follfo) 2 = (L,/(/»)2 « 1 .  They 
reasoned that L, = 2000 km and < I )  = 1 7,000 km, the latter being the 
average radius of the GRS, so (L,/(/) 2  « 1 .  However, ( I )  should be the 
characteristic distance over which h and v change (which is order L,) not 
the size of the GRS (Marcus et al 1990). 7  Williams & Yamagata argue 
that <w)lfo = [vl/lJo l (1)  and < h )/Ho = < I )  <v)/l foI L;. However, by 
identifying <I) as 1 7,000 km rather than the distance over which v changes, 
they conclude that (w)lfo = 0.02 [which is a factor of 10 smaller than the 
measured values (Dowling & Ingersoll 1 989, Van Buskirk 1991 )] and 
<h ) I Ho = 1 .4 (which is a factor of 10 too big). The Voyager data do not 
support the IG scaling. 

A valid criticism of the QG approximation for the GRS is that 
[fey) -fo]lfo and <v)/lfol < I ) can be as large as 0.35. However these prob­
lems can be overcome with a more generalized QG theory by writing the 
shallow-water potential vorticity Equation (2) 

HO� (w+f) == D 
i'j l l +

� ·1 ':!:. 
Dt H Dt h 1 +  _ 

Ho+ h - hb 
D [ w(x, y, t) hex, y, t) 

J Dt f(y)+6)(y) - Ho+ h (y)- hb(Y) 
= 0, (44) 

where i'j and ii are the q and h of V, and where ii is constructed so that it 
and v exactly satisfy the steady shallow-water Equation ( 1 ). Equation (44) 
uses the definition that ij is constant and the assumptions that 
[h/(Ho- hb +ii)] «  1 and [wl(f+ 6))] «  1 .  It does not require that 
[fey) -fo]lfo be small nor does it require that v be QG. For the GRS, 

7 The only time <,> should be identified with the size, or latitudinal extent of the GRS is 

if one estimates <1-/0> as f3<t>. 
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570 MARCUS 

I &/(f+ &) 1  and I h/(Ho - hb + Ii) 1  are everywhere less than 0.2. With these 
same assumptions, Equation ( 1 )  gives a linear, homogeneous, elliptic 
relation between hand & that is the analog of the QG relation & = V2gh/fo. 
So there is still a Greens function that relates h with ii, but it is no 
longer a Bessel function. Because the potential vorticity that is advected by 
Equation (44) is homogeneous and linear in ii, all of the techniques used 
in QG theory-point potential vortices, contour dynamics, velocities of 
patches of q, etc-also work for generalized QG theory, as do all of 
the qualitative arguments-expulsion of adverse vorticity, stability of 
staggered rows of vortices, slowly rotating centers, etc. 

1 2. CONCLUSIONS 

We have shown that Jovian vortices reflect the behavior of quasi­
geostrophic (QG) vortices embedded in an east-west wind with bands of 
uniform potential vorticity. Jovian vortices certainly have some non-QG 
components and baroc1inicity, and the bands must have some gradient of 
their potential vorticities (otherwise there would be no Rossby waves). 
These effects must be included to make quantitative comparisons between 
observation and theory. Yet this paper argues that most of the properties 
of the Jovian vortices can be easily explained and understood with QG 
theory. Many of the signatures of QG vortices are apparent in Voyager 
images. Robust QG vortices, like Jovian vortices, regardless of whether 
they are anti-cyclones or cyclones, are always prograde with respect to 
their surrounding shear ii. Potential vorticity ii is attracted to prograde 
zones and belts and is expelled from adverse shear. Many linearly stable, 
prograde QG vortices are also stable to large perturbations; if one is 
broken apart by turbulence, it often reforms because prograde vortices at 
or near the same latitudes tend to merge together. There are no (known) 
steady adverse vortices for I ii/iii � 0(1), and for small I ii/iii adverse vor­
tices are unstable to small perturbations. Continual accretion of small 
area, large I q l  vortices can maintain large, weakly dissipative vortices such 
as the GRS. The merger of two prograde vortices near the same latitude 
lowers their energy, but if the initial latitudinal separation increases beyond 
a critical value, their energy increases. Vortices tend to merge when their 
initial separation is less than the critical value. It is easier for vortices to 
merge with ii than it is without it because the differential east-west velocity 
v( y) pushes vortices together and because it breaks the angular momentum 
barrier and other kinematic constraints that prevent vortices from 
approaching each other. Because the QG equations advectively conserve 
potential vorticity, QG and Jovian vortices move with the local (q-
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weighted) v which is approximately the same as the local east-west, zone­
belt velocity. 

In numerical and laboratory experiments, QG vortices relax to approxi­
mately steady states like the Jovian vortices, rather than oscillating or 
rotating Kida ellipses. Prograde QG vortices with characteristic radii R 
much less than Lr have shapes with aspect ratios that scale with a/ij like 
the Moore-Saffman vortices, but when corner-like vortices overflow into 
regions of adverse shear their northern or southern boundaries pucker 
towards the stagnation points. For R » L" band-like vortices become very 
elongated in the longitudinal direction, like the cyclonic barges at 14°N. 
Many Jovian vortices like the GRS and the White Ovals are hybrids with 
the equatorial side of anti-cyclones acting corner-like and the pole side 
band-like. The size of QG vortices is determined by the widths of the belts 
or zones in which they lie, though the limiting mechanism-collision with 
a stagnation point, loss of stability, or flattening due to large prograde 
shear-depends on L, and whether the vortices are band-like or corner­
like. 

In numerical experiments large vortices built by the merger of many 
small ones have nearly uniform ij. The hallmark of a uniform-q, QG vortex 
with R »  Lr is that its velocity and vorticity w are concentrated in a 
circumferential ring around it leaving the interior almost irrotational. The 
v and I w l  increase exponentially outward from the center with e-folding 
length L,. The ring thickness is '" 2L,. If I ijl is not exactly uniform but 
increases outward from the vortex center with its critical gradient (for 
linear stability), the concentration of v and w in the ring is even greater. 
(It is still speculative whether accreting, dissipative vortices have critical 
gradients.) The concentration of v and w in the ring decreases as R/Lr 
decreases, and in the limit Lr -+ 00, a -+ constant, therc is no differential 
rotation within the vortex. The concentration of v into a ring is obvious 
in the GRS, and its decrease with R/Lr is apparent in the White Ovals. 
The signature of IG vortices is different; w is Gaussianly peaked at the 
vortex center. 

When approximately axisymmetric bands of nearly uniform q form in 
numerical experiments with forcing and dissipation they have an anti­
cyclonic zone on the pole side and a cyclonic belt on the equator side. 
Hybrid vortices often overflow the zone-belt boundary within the band 
but not across band boundaries, so cyclones overflow towards the pole 
and anti-cyclones like the GRS and White Ovals towards the equator. In 
the absence of contrived boundary conditions, forcing, or dissipation, and 
in the presence of turbulence, the only way now known to prevent multiple 
anti-cyclones at the same latitude from approaching and merging with 
each other is to place a staggered row of N blocking cyclones between 
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572 MARCUS 

them in a neighboring belt. If L, is of order or smaller than the width of 
the zone and if the vortices are hybrids, the cyclones and anti-cyclones 
must be within the same band and the cyclones must be on the equator 
side of the anti-cyclones. The best Jovian example of staggered rows of 
cyclones and anti-cyclones is at 41 oS. The flow on the equator side of the 
GRS is three-dimensional and turbulent. It does not support long-lived 
blocking vortices. Thus there are no other vortices at the same latitude as 
the GRS. 

Cyclones and anti-cyclones are not dynamically different in QG theory 
(unless the belts and zones differ). However, the appearance of the clouds 
in Jovian vortices (filamentary, with no relation between their edges and 
the stream function for many cyclones, or smooth ellipses surrounded by 
a cloud-free ring for anti-cyclones) can be better explained by changing 
the locations where clouds are created or destroyed (which is different for 
cyclones and anti-cyclones due to Ekman pumping) rather than by any . 
intrinsic differences between the velocities of cyclones and anti-cyclones. 

Clearly, all of the properties of Jovian vortices cannot be derived from 
just the QG or any other model equations. The number of vortices that 
survive merger within each band is very sensitive to initial conditions. 
Moreover, the Jovian weather layer is much more turbulent with fewer 
vortices in the north than it is in the south, and this must be due either to 
a physical asymmetry of the boundary or initial conditions. Some of the 
results presented here are still speculative, and more work needs to be 
done, especially in developing a self-consistent model that accounts for 
both the east-west winds and the vortices. Unlike the time-reversible 
shallow-water and QG equations, the model should include the effects of 
thermal convection, Rossby radiation, etc, so that the simulated Jovian 
flows are a dynamic equilibrium of the forces and dissipation. 
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