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Distinct Quasiperiodic Modes with Like Symmetry in a Rotating Fluid
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We use Floquet theory, fully resolved numerical simulation, and laboratory experiment to study two
quasiperiodic modes in the Couette-Taylor system which have the same symmetry but diA'erent spatial
structure. Although each mode has been observed in previous experiments, their coexistence in the same
region of parameter space is a new numerical prediction. Because they have the same symmetry, the
modes are strongly coupled, which results in chaotic behavior.

PACS numbers: 47.20.Ky, 47.20.Tg, 47.30.+s

The study of temporally quasiperiodic fluid flows has
focused primarily on their space-time symmetries, with
less attention paid to the physical characteristics of the
unstable modes. In systems with circular symmetry,
such as Couette-Taylor flow in which fluid is confined
between concentric rotating cylinders, generically' one
finds bifurcations from temporally periodic rotating
waves to quasiperiodic modulated waves. Mathematical-
ly, the transition is characterized by the change in the
symmetry group that leaves the flow invariant. The
question of whether there may be physically diff'erent

modes that have the same symmetry has not been previ-
ously addressed. The existence of qualitatively diAerent
modes with the same space-time symmetry is common in

fluid dynamics, but is often overlooked in hydrodynamic
stability theory. This multiplicity can have important
consequences for the dynamics, and possibly the transi-
tion to chaos, in this system.

In this paper, we demonstrate the existence of two dis-
tinct quasiperiodic Couette-Taylor modes, describe their
structure, and discuss the implications of their coex-
istence over a certain parameter range. We begin by us-

ing Floquet theory to derive the unique functional form
for quasiperiodic solutions to the Navier-Stokes equa-
tions. We then present results from numerical simula-
tions illustrating the two quasiperiodic flows and results
from the experiments corroborating the numerical obser-
vations. We end with a discussion of how these modes
may be used to derive from the Navier-Stokes equation a
low-dimensional spectral truncation that can be quanti-
tatively compared with full numerical simulations.

Linearization of the Navier-Stokes equations around
the rotating-wave state gives a Floquet system, linear
equations with coefficients that are periodic in p

—c~t,
where ct is the angular phase speed of the wave. (We
nondimensionalize by setting the inner cylinder speed,
the gap width, and the density equal to 1.) If we assume
that the bifurcation to quasiperiodic flow preserves the
axial periodicity, and that axially traveling modes do not
occur, the linear Floquet modes will have the form

ij m
1 (ttt —c I t ) ikm2(p —c21 )

j,k
(2)

The parameter m2 is not uniquely defined by the form
of the solution, since any mz =m2+pm~ for integer p in

(2) reproduces the same functional form. This is con-
sistent with the work of Rand, ' which describes the sym-
metry classes for fixed values of ml and mz (modml).
There is, however, a unique and physically meaningful
definition of mq (and consequently of c2), as discussed
below. Mathematically, mz is defined such that the
coefficients alt, decay monotonically with

~ j~ and ~k~.

Despite the symmetry of (2) under 1 2, ml and m2 are
not physically equivalent. Even with the parameters m~,
c~, mz, and cz uniquely determined, the solution in (2)
leaves the radial-axial structure of the flow completely
unspecified (other than the requirement that it be axially
periodic). This allows for the existence of a variety of
physically diAerent Floquet modes, which will be dis-
tinguished not by symmetry but by the characteristic
values of the phase speeds and spatial structure of the
modulation.

We have numerically solved the Navier-Stokes equa-
tions in an axially periodic, cylindrical geometry using a
fully resolved (32 modes) pseudospectral method. '

We hold the outer cylinder fixed and vary the Reynolds
number R:—Aa(b —a)/v, where 0 is the inner cylinder
frequency, a and b are the inner and outer cylinder radii,

e' ' " f(r, P
—c~t, z), where c2 is real at onset. The

function f is defined to have the symmetry of the rotat-
ing wave; hence, it can be written as

f =gh (r, z)e' (I)
J

with ml equal to the number of waves in the base flow.
The functional form of the full solution for the velocity
past onset must be invariant with respect to the equa-
tions of motion; hence, it will consist of a sum over the
set of spectral functions closed under the action of the
nonlinear terms. It can be written as a double Fourier
sum
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long-term temporal behavior of the flow over the range
in which the ZS and GS modes coexist is as yet undeter-
mined. To generate the short-time series in Fig. 2 using
full simulation requires 1.5 Cray-YMP computer hours;
hundreds of Cray hours would be required to produce a
time series long enough for the standard diagnostics of
chaotic dynamics to be useful. This is not an e%cient
use of computer resources, nor does it make use of spa-
tial information about the flow to illuminate the physical
processes involved. These issues are discussed further
below.

Our numerical work constitutes the first observation of
a ZS mode in a simulation of the Navier-Stokes equa-
tions, and the first identification of the spatial character
of the modulation. Experimental work has subsequently
confirmed these simulations. The principal experimental
results are that both the ZS and GS modes are robust
and clearly distinguished by their spatial character and
power spectra, that there is a transition between them,
and that there is a range of R in which the flow is
aperiodic over long time scales with the spectra contain-
ing features of both modes.

The experiments were conducted in a system of radius
ratio 0.876, with the height of the fluid equal to 40 times
the gap width of 0.740 cm. The ends of the annulus
were solid rings fixed to the outer cylinder. The working
fluid was water containing a 2% mixture of AQ1000
Rheoscopic Concentrate for flow visualization. The ini-
tialization procedure was chosen' so as to obtain an axi-
al wavelength of X=2.51. At R/R, =9.80, the experi-
mental GS mode with m~ =mq=4 has c~ =0.334 and
cz/ci =1.27, compared with the numerically computed
values of 0.331 and 1.31, respectively. The largest peak
in the GS spectrum in Fig. 3(a), other than mici and its
harmonics, is the m2c2 peak. (Under the conditions of
this experiment, a pure GS mode has not been obtained
for times longer than a few hundred inner-cylinder
periods. )

A pure ZS flow has been observed experimentally at
the numerically predicted value of R/R, =8.50 with

m~ =4 and m2=12. The experimental values of c~ and
c2/c1 are 0.336 and 2. 1, compared with the numerical
values of 0.338 and 2.02. Figure 3(c) shows that the
largest spectral peak (other than merci and its harmon-
ics) is the rotating-frame-independent beat frequency
mq(cq —ci). This peak is used to determine the value of
m2. The ZS mode is characterized by small-scale struc-
ture on the outflow boundary, which is absent from GS
modes. In the experiment, there is a hysteretic transition
between the ZS and GS modes, with a transition from a
ZS to a GS flow at R/R, =9.76, and a transition from a
GS to a ZS flow at R/R, =9.58. At R/R, =9.00, the
flow is temporally intermittent. The power spectrum in

Fig. 3(b) indicates that both the mqc2 GS peak and ZS
beat peak are present, consistent with the numerical re-
sults. '' From the experimental spectra, c~ =0.335, and
cq/ci =1.3 for the GS mode and 2.0 for the ZS mode.
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FIG. 3. Po'~er spectra from experimental time series of the
intensity of laser light scattered from the flow-visualization
particles. Frequencies are normalized by the inner-cylinder
frequency. ~ denotes the mlcL peaks; ~ denotes the m2c2 GS
mode; 1 denotes the frame-independent beat frequency
1117(c1—c

~
). (a) GS mode, (b) intermittent flow with both ZS

and GS components, and (c) ZS mode.

At R/R, =9.00, the numerical values are ci =0.336, and
cq/ci =1.29 for the GS mode and 2.03 for the ZS mode.

Quasiperiodic modes in the Couette-Taylor system
have historically been of interest because they are the
state that bifurcates to chaos. Quantitative laboratory
measurements have shown that the chaotic state is low
dimensional, and that the transition is continuous and
nonhysteretic. ' Given that the quasiperiodic state is of
the form (2), this implies that, relative to the correct ro-
tating frame, there is a direct bifurcation from a limit
cycle to a chaotic attractor. Because there is no known
mathematical mechanism for this type of transition, this
route to chaos is not understood. The scenario presented
above provides a framework for investigating one route
to chaos in this system in detail. If we assume that the
unstable wavy-vortex-flow (WVF) equilibrium exists
over the range of R considered here, and that the ZS and
GS modes are Floquet eigenmodes of this WVF, it is
likely that the aperiodic flow arises from mode competi-
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tion similar to what one sees at "bicritical points, "' al-
though we do not know definitely that such a point exists
here. '

It has yet to be demonstrated quantitatively that a ful-
ly three-dimensional, time-dependent chaotic solution to
the Navier-Stokes equations can be accurately represent-
ed by a few specially chosen modes. The problem of how
to capture the full spatial structure of the Aow in a low-
dimensional truncation, rather than just model the tem-
poral dynamics at a single point, is poorly understood.
The chaotic Aow in the regime where the GS and ZS
Floquet modes are unstable is well suited to the study of
this problem: The unstable rotating wave and the two
complex Floquet modes represent the physically active
degrees of freedom in the Aow, and can be used as the
first five basis functions in a spectral truncation. The ZS
and GS modes are strongly coupled because they have
the same spatial symmetry (i.e., mq is a multiple of m ~).
To see this, note that both modes can be written as
Fourier sums in terms of e' ' for integer k; hence, their
nonlinear interaction will also be of this form. If both
modes have amplitude e, then the nonlinear interaction,
of order e, will be a power series in e' ' and thus act
directly back on the unstable WVF. If the ZS and GS
modes had diA'erent values of m2 (say, 4 and 11), their
interaction back on WVF would be of higher order in ~
(s ). We find numerically that a truncation of five
modes captures more than 90% of the energy and enstro-
phy in the Aow. This basis set can be expanded with ad-
ditional functions based on harmonics and cross products
of the original five modes, a procedure which is sensitive
to the choice of projection operator and requires a close
examination of the physics. The convergence rate of the
truncation (measured against the full numerical simula-
tion with 32 modes) as a function of the number of in-
cluded modes determines both how well the low-
dimensional truncation resolves the spatial structure of
the Aow and whether the chaos is truly low dimensional.
We stress that this truncation is derived from the
Navier-Stokes equations (not a model), has no arbitrary
constants, and incorporates adaptation of the basis func-
tions as the Reynolds number and other parameters
change. Hence, it should be valid over a wider range of
physical conditions than models derived on the assump-
tion that one is at a bicritical point.

In summary, we have used analysis and numerical
simulations to describe the spatial structure and tem-
poral behavior of two distinct modulated waves in
Couette-Taylor Aow. Experiments have confirmed that
the modes can be present independently or can coexist in
a temporally chaotic state. We have discussed how these
modes, considered as the active degrees of freedom in a
spectral truncation of the full equations, provide a basis

for an investigation of a low-dimensional system which
accurately captures both the spatial and temporal behav-
ior of a complex three-dimensional flow. This low-
dimensional truncation will be used in future work to in-
vestigate a mechanism for chaos in this Aow, and tested
quantitatively against full simulations.

We thank Stuart Edwards for helpful discussions. The
work at the University of California at Berkeley was sup-
ported by the National Science Foundation and
Lawrence Livermore National Laboratory, and at the
University of. Texas by the Gffice of Naval Research.
Computations were done at the San Diego Supercomput-
er Center.

~"'~Present address: Department of Physics, University of
Colorado, Denver, CO 80309.

'D. Rand, Arch. Ration. Mech. Anal. 79, 1 (1982); M. Gor-
man, H. L. Swinney, and D. Rand, Phys. Rev. Lett. 46, 992
(1981).

2M. Golubitsky and I. Stewart, SIAM J. Math. Anal. 17,
249 (1986).

For example, the physically distinct barotropic and baro-
clinic modes in planetary atmospheres. A. E. Gill,
Atmosphere Ocean -Dynamics (Academic, New York, 1982).

4K. T. Coughlin and P. S. Marcus (to be published).
5P. S. Marcus, J. Fluid Mech. 146, 45 (1984); G. P. King,

Y. Li, %. Lee, H. L. Swinney, and P. S. Marcus, J. Fluid
Mech. 141, 365 (1984).

L. H. Zhang and H. L. Swinney, Phys. Rev. A 31, 1006
(1985).

7M. Gorman and H. L. Swinney, J. Fluid Mech. 117, 123
(1982). The flow we have studied was referred to as a 4/0
state.

R. S. Shaw, C. D. Andereck, L. A. Reith, and H. L. Swin-
ney, Phys. Rev. Lett. .48, 1172 (1982).

Kalliroscope Corporation, P.O. Box 60, Groton, MA 01450.
' As is well known, the flow state is not a unique function of

the external parameters.
''At R/R, =8.50 and R/R, =9.00 the uncertainty in the

value of c2/c~ could be reduced, and at R/R, =9.00 the spec-
tral peaks could be more easily identified with the values of j
and k in Eq. (2), if measurements were done in a rotating
frame.

' A. Brandstater and H. L. Swinney, Phys. Rev. A 35, 2207
(1987); P. R. Fenstermacher, H. L. Swinney, and J. P. Gollub,
J. Fluid Mech. 94, 103 (1979).

' P. Manneville, DissIpative Structures and Weak Tur-
bulence (Academic, New York, 1990).

'4lt is possible that, by tuning another parameter (the radius
ratio or the axial wavelength), one could adjust the system so
that the eigenvalues of both the ZS and GS modes cross the
imaginary axis at the same R, and obtain a bicritical point.
However, these modes can only be computed numerically, and
such a parameter search would be prohibitively expensive.

1164


