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We analyze velocity fields of the Great Red Spot (GRS) and Oval BA that were previously extracted from Cas-
sini, Galileo, and Hubble Space Telescope images (Asay-Davis, X.S., Marcus, P.S., Wong, M., de Pater, I. [2009].
Icarus 203, 164–188). Our analyses use reduced-parameter models in which the GRS, Oval BA, and surround-
ing zonal (east–west) flows are assumed to have piece-wise-constant potential vorticity (PV), but with finite-
sized transition regions between the pieces of constant PV rather than sharp steps. The shapes of the regions
of constant PV are computed such that the flow is a steady, equilibrium solution of the 2D quasigeostrophic
equations when viewed in a frame translating uniformly in the east–west direction. All parameter values of
the models, including the magnitudes of the PV, areas of the regions with constant PV, locations of the tran-
sition regions, widths of the transition regions, and the value of the Rossby deformation radius, are found with
a genetic algorithm such that the velocity produced by the equilibrium solution is a ‘‘best-fit” to the observed
velocity fields. A Monte Carlo method is used to estimate the uncertainties in the best-fit parameter values.

The best-fit results show that there were significant changes (greater than the uncertainties) in the PV of
the GRS between Galileo in 1996 and Hubble in 2006. In particular, the shape of the PV anomaly of the
GRS became rounder, and the area of the PV anomaly of the GRS decreased by 18%, although the magnitudes
of PV in the anomaly remained constant. In contrast, neither the area nor the magnitude of the PV anomaly of
the Oval BA changed from 2000, when its cloud cover was white, to 2006, when its cloud cover was red. The
best-fit results also show that the areas of the PV anomalies of the GRS and of the Oval BA are smaller than the
areas of their corresponding cloud covers at all times. Using the best-fit values of the Rossby deformation
radius, we show that the Brunt–Väisälä frequency is 15% larger at 33�S than at 23�S. As expected (Marcus,
1993), the best-fit results show that the PV of the zonal flow has ‘‘jumps” at the latitudes of the maxima of
the eastward-going jet streams. However, a surprising result is that a large ‘‘jump” in the PV of the zonal flow
occurs at the location of a maximum of the westward going jet stream neighboring the GRS. Another surprise
is that the jumps in the PV of the zonal flow do not all have the same sign, which implies that there is not a
monotonic ‘‘staircase” of zonal PV from north to south as was anticipated (Marcus, 1993; McIntyre, 2008).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction ditions are varied until the computed solution ‘‘best-fits” the
1 In an initial-value code, in addition to the free parameters of the model, there are
also the choices of initial condition. In principle, for conservative codes, the number of
free parameters associated with the initial conditions is equal to the number of spatial
resolution elements of the code (e.g., grid points). However, since most initial-value
codes are dissipative either explicitly or implicitly by grid dissipation, there are basins
of attraction associated with the initial conditions. Thus, the effective number of
independent free parameters of the initial condition is far fewer than the number of
Some jovian features can be measured directly from satellite
images or the velocity fields derived from them, such as the
magnitudes and locations of the peak velocities of the winds
(Asay-Davis et al., 2009) of the Great Red Spot (GRS) and the area
(Simon-Miller et al., 2002) of the clouds associated with the GRS.
However properties such as the atmosphere’s vertical stratification
must be inferred indirectly by modeling and solving an ‘‘inverse
problem”. Often, the latter is done by computing solutions of an
initial-value problem that consists of (1) a model set of equations
that approximates the atmosphere’s dynamics, (2) a set of un-
known parameters that describe the mean properties of the atmo-
sphere, such as the vertical stratification, and (3) a set of initial
conditions. The values of the unknown parameters and initial con-
ll rights reserved.
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observations. Most inverse studies of the jovian atmosphere
(Dowling and Ingersoll, 1989; Cho et al., 2001; Morales-Juberı́as
et al., 2003; Morales-Juberias and Dowling, 2005; Garcı́a-Melendo
et al., 2007; Legarreta and Sánchez-Lavega, 2008), use initial-value
codes and have a dozen, or so, free parameter values for which
‘‘best-fit” values are sought.1 For a model with 11 free parameters,
resolution elements and difficult to quantify. This dissipation leads to another
disquieting aspect of using an initial-value code in a search for best-fit models.
Because the areas and magnitude of the PV of a vortex change as the flow evolves,
those values in the final flow often differ from those of the initial flow, making it
difficult to choose initial conditions that sample the parameter space without bias.
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such as the one used in this study, finding the ‘‘best-fit” values by
sampling just 3 values of each parameter would require 177,147 tri-
als of the initial-value code; whereas previous published studies
with 11 or so parameters use fewer than 100 trials. The reason for
so few trials is due to the computational expense of initial-value
codes, which usually take tens of thousands of time steps (with
wall-clock times on the order of days) to converge to an approxi-
mately steady or self-similar solution for a high spatial resolution
code. To find the ‘‘best-fit” parameters with only 100 trials requires
intuition (or luck), i.e., finding that the results are nearly indepen-
dent of some parameter combinations and highly sensitive to others
(cf., Shetty et al., 2007). In Shetty et al. (2007) we applied inverse
methods to the GRS using a ‘‘trait-matching” method with velocity
fields extracted from Voyager mosaics to solve the inverse problem.
We found that some properties (i.e., ‘‘traits”) of the GRS were sensi-
tive to the values of some parameters and nearly independent of oth-
ers, and defined the model’s ‘‘best-fit” values as those the best
reproduced the traits. Although this method was computationally
economical, there were limitations: (1) Although ‘‘trait-matching”
can be applied to other jovian vortices, there is no systematic meth-
od of extending it to find the parameter values of other jovian fea-
tures, such as stagnation points. (2) We were able to carry out a
sensitivity analysis of the derived parameters, (i.e., we determined
how a model velocity field changes as a function of small changes
in the model parameter values). However, we did not carry out an
uncertainty analysis of the derived parameters because we felt that
the poor quality and lack of published uncertainties of the velocity
vectors of the GRS that we used in that study did not warrant a more
thorough and time-consuming analysis. The velocity vectors used in
the ‘‘trait-matching” study were manually-derived from the Voyager
images and were very sparse. (3) In our ‘‘trait-matching” study, we
did not have a systematic way of sampling the parameter space to
find the ‘‘best-fit” values. (4) Two of the key parameters of the
‘‘trait-matching” model were determined by using the peak magni-
tudes of the observed velocities along the GRS’s east–west principal
axes. However, all methods for extracting the value of the local max-
ima of velocity fields from cloud images systematically underesti-
mate peak magnitudes (Asay-Davis et al., 2009), which suggests
that traits that depend on peak magnitudes should not be used. (5)
Using ‘‘trait-matching”, we discovered several degenerate couplings;
for example, the value of the peak velocities in the high-speed collar
of the GRS was only sensitive to the product of the values of two of
the unknown parameters for which we were seeking best-fit values.
Thus, we found that we could vary the value of one of the parameters
over a wide range, and as long as we chose the value of the other
parameter so that the product had the correct value, we obtained
the observed velocity field in the collar. Thus, without additional
constraints on one or both of the parameter values, it would have
been impossible to find their values. (6) Because the traits used in
the matching depended upon relatively few of the observed velocity
vectors, we were unable to exploit most of the observations to find
the ‘‘best-fit” parameter values.

To address the shortcomings of the trait-matching method, in
this paper we solve the inverse problem using a new method that
uses all of the velocity vectors in a field containing a jovian feature,
rather than just those few that are part of the trait. Instead of using
an initial-value code to compute solutions, we use a ‘‘fast-solver”,
that is, a numerical algorithm that computes steady-state (as ob-
served in a frame translating with the vortex) solutions to the
equations of motion by an iterative method. Using a fast-solver,
which finds equilibria in 20–30 iterations (with wall-clock times
on the order of minutes), we can compute quickly tens of thou-
sands, rather than a hundred, steady-state solutions with different
parameter values. We use a genetic algorithm (see Appendix) to
find systematically the ‘‘best-fit” parameters to the observed (ex-
tracted) velocity fields by minimizing a cost-function. The algo-
rithm allows us to search parameter space for ‘‘best-fit” values,
so that we can, for example, find best-fit values for 11 parameters
with on the order of 10,000 trials rather than 200,000. The cost-
functions we chose (see Section 3.2) uses the uncertainties of the
observed velocity vectors. For this reason, our input velocity fields
were created with Advection Corrected Correlation Image
Velocimetry (ACCIV) (Asay-Davis et al., 2009) or Correlation Image
Velocimetry (CIV) (Fincham et al., 1997), which are automated
velocity-extraction algorithms that not only extracts the velocities
but also their uncertainties. The fields created with ACCIV of the
GRS and Oval BA have tens to hundreds of thousands of independent
velocity vectors with uncertainties on the order of 5 m s�1.

The goal of this study is to use velocity fields extracted between
1996 and 2006 from images from Galileo, Cassini, and the Hubble
Space Telescope (HST), to determine the best-fit parameter values
for this model and to see how they vary over time. To conclude that
a parameter value changed in time, it is necessary to show that the
measured change is greater than the uncertainties of the derived
parameter values. For this reason we include an analysis of those
uncertainties using a Monte Carlo method (cf., Press et al., 1988).

The remainder of the paper is organized as follows. In Section 2,
we list the ACCIV-extracted velocity fields used in this study and
review their uncertainties. In Section 3 we review the equations
of motion, list all of the parameters for which we seek best-fit val-
ues and outline the difference between solving the inverse prob-
lem with an initial-value code and with a steady-state finding
code. In Section 4, we present the results of our search for best-
fit parameter values and their uncertainties for the GRS and Oval
BA and their neighboring jet streams. In Sections 5 and 6 we pro-
vide physical explanations of the parameter values and discuss
their temporal changes for the GRS and Oval BA, respectively. Lim-
itations of the model are discussed in Section 7 and our conclusions
are in Section 8.
2. Observations

2.1. Velocities and uncertainties

For the analyses in this paper, we use velocity fields of the GRS
(Fig. 1) and Oval BA (Fig. 2) between 1996 and 2006 that were ex-
tracted using images from Galileo, Cassini, and HST. Details of the
velocity extraction are in Asay-Davis et al. (2009). The properties of
the fields are summarized in Table 1. We do not include velocity
fields that were manually extracted from the 1979 Voyager mosa-
ics because they do not have uncertainties for the extracted veloc-
ities, and the velocity fields are sparse, containing approximately
1000 vectors (Fig. 3), making it difficult to interpolate accurately
from the vector locations to grid points. Table 1 lists the ACCIV cor-
relation uncertainties (defined in Appendix) of the extracted veloc-
ity vectors. Using a synthetic velocity field, Asay-Davis et al. (2009)
showed that the correlation uncertainty is a good measure at each
location of the actual error between the real velocity and the ex-
tracted velocity. Because the correlation uncertainty is expensive
to compute, we use the scatter uncertainties of the extracted veloc-
ities (see Appendix for the definition) for all analyses in this paper.
Analysis of synthetic velocity fields shows that the actual errors
can be up to twice as large as the scatter uncertainties. Table 1
shows that the RMS average of all of the correlation uncertainties
of all of the velocities that were extracted from the HST observa-
tions of the GRS is 5 m s�1.

In addition to the velocities of the vortices themselves, to ana-
lyze the GRS and Oval BA it is also necessary to have either the
velocity of the atmosphere at the latitudes of the vortices at all lon-
gitudes, or to make assumptions about that flow. It is commonly
assumed that the flow far from the Oval and GRS is steady in time
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Fig. 1. GRS: velocities extracted from HST 2006 observations with the automated ACCIV method. Top panel: 9124 velocity vectors sampled randomly from the full set of �2.8
million velocity vectors extracted with ACCIV (of which �140,000 are independent) (Asay-Davis et al., 2009). We plot only a small sample, containing fewer than 10% of the
velocity vectors, because it would be difficult to plot them all. Bottom panel: All of the 940 ACCIV-extracted velocity vectors (of which �50 are independent) within a
0.4� � 0.2� box centered near �21� latitude and 253.85� longitude (i.e., in the northwest part of the high-speed collar in the top panel). Note that the vectors are closely spaced
and consistent in direction and magnitude, so interpolating the velocity from the set of vectors can be easily done.
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Fig. 2. Oval BA: CIV-extracted velocities from HST 2006 observations. Nine-thousand five-hundred and thirty-seven velocity vectors sampled randomly from the full set of
�140,000 vectors (of which�63,000 are independent) (Asay-Davis et al., 2009). We plot only this small sample, containing fewer than 16% of the total number of independent
vectors because it would be difficult to plot them all.
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and purely zonal (i.e., velocities point only in the east–west direc-
tion). We write this far-field flow as u1ðyÞx̂, where x and y are the
local east–west and north–south coordinates, and x̂ is the unit vec-
tor in the east direction. Far-field velocities were first measured



Table 1
Observed velocity fields and uncertainties that are modeled in this study. All fields were extracted and uncertainties computed with the Advection Corrected Correlation Image
Velocimetry (ACCIV) method with the exception of the HST observation of the Oval BA taken on April 2006, which was extracted with Correlation Image Velocimetry (CIV). The
definition of independent vector is given in Asay-Davis et al. (2009). The scatter uncertainty and the correlation uncertainty are two separate measures of the uncertainty in the
extracted velocities (see Section 2). The entries in the table show the RMS average of the corresponding uncertainty. (In Asay-Davis et al. (2009), the RMS scatter uncertainty is
referred to as the 1r uncertainty.)

Spacecraft Date Observed vortex Number of independent vectors RMS scatter uncertainty (m s�1) RMS correlation uncertainty (m s�1)

Galileo June 1996 GRS 42,000 1.2 2
Cassini December 2000 GRS 26,000 4.5 7
HST April 2006 GRS 140,000 4.5 5
Cassini December 2000 Oval BA 4200 3.0 6.5
HST April 2006 Oval BA 63,000 5.5 9.5
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Fig. 3. GRS: velocities extracted from Voyager 2 images with a manual method. All of the 1256 velocity vectors (Beebe, R., personal communication, 1988) that were obtained
from Voyager 2 images using a manual extraction method are shown. None of the vectors shown here lie within the 0.4� � 0.2� region shown in the bottom panel of Fig. 1.
With this set of vectors there is, on average, one vector per five 0.4� � 0.2� regions, so interpolating the velocity with this set of vectors is difficult.
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from observations in 1979 (Limaye, 1986) and have since been
measured from many other spacecraft (cf., Simon and Beebe,
1996; Simon, 1999; Garcı́a-Melendo and Sánchez-Lavega, 2001;
Porco et al., 2003). The latitudes where the zonal velocities have
their extrema have remained somewhat constant over the last 30
years as have the values of the meridional shears of the zonal
velocity at the current mean latitudes of the GRS and Oval BA.2

However, the local maxima and minima of the zonal velocities have
changed over the last 30 years by �11 m s�1 (approximately 10% of
the maximum zonal velocity). Ideally, our models for each jovian
vortex would be computed with images of the vortex coupled with
images of the far-field that were taken at the same time. Unfortu-
nately, all of the required images of the far-field zonal flows do
not exist. In particular, we do not have an observed zonal flow from
2006. More significantly, using Voyager-approach images, Limaye
(1986) showed that the far-field zonal flow has weekly variability
of the same order as the decadal variability. Asay-Davis et al.
(2010) found even shorter term variability of �11 m s�1 and con-
cluded that it was not due to observational uncertainty (because
the variability was approximately twice as large as the 5 m s�1 cor-
relation uncertainty) but was due either to temporal variability over
10 h (a jovian day) or due to variability in the direction or magnitude
as a function longitude. These results cast doubts on the assumption
of a far-field, steady, purely zonal flow. Nonetheless, to make pro-
2 The shear was determined by fitting a least-squares straight line to the far-field
zonal velocity from between 23 ± 3.5�S for the GRS, and 33 ± 1�S for the Oval BA. The
shear, defined to be the negative of the line’s slope, is found to be 1.4 ± 0.1 � 10�5 s�1

for the GRS and 1.2 ± 0.2 � 10�5 s�1 for the Oval BA.
,

gress here, we make this assumption and use the zonal profile de-
rived from Voyager images (Limaye, 1986) in all our models.

3. Equations and physically-based, reduced-parameter model

3.1. Equations

The models used in this paper are steady (or time-independent)
solutions of the 2D quasigeostrophic (QG) equations (Pedlosky,
1987), when viewed in a uniformly-translating frame that has
east–west speed U with respect to System III. Thus all the vortices
computed in this paper have a constant east–west drift speed U
with respect to System III. In the following sections, for brevity, a
model is sometimes referred to as a steady-state solution, although
strictly speaking, a model is steady only in a frame translating with
the vortex, and is not steady in System III unless U = 0 for that mod-
el. The QG equations for the potential vorticity q are:

@

@t
þ v � r

� �
q ¼ 0; ð1Þ

qðx; y; tÞ � r2 � 1
L2

r

 !
gh
f0

" #
þ ghbðyÞ

L2
r f0
þ by; ð2Þ

v � ẑ� $
gh
f0
; ð3Þ

where g is reduced gravity in the weather layer, h is the free-surface
height of the upper layer, hb(y) is the height of the rigid bottom
topography, v is the weather layer’s velocity in System III, ẑ is the
local vertical unit vector, b is the local gradient of the Coriolis
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parameter f(y), f0 is the local value of f(y), and Lr is the local Rossby
deformation radius (Pedlosky, 1987). The only independent dynam-
ical variable in Eqs. (1)–(3) is the free-surface height h; q and v are
slaved to h through Eqs. (2) and (3).

Previous researchers (Dowling and Ingersoll, 1989; Marcus,
1993; Shetty et al., 2007) parameterized the influence of deep lay-
ers on the jovian weather layer with the height hb(y) of the rigid
bottom topography. However, it is more convenient (but equiva-
lent) to use the PV q1(y) of the far-field zonal flow u1ðyÞx̂. From
Eq. (2), there is a one-to-one relation between hb(y) and q1(y):

q1ðyÞ � d2

dy2 �
1
L2

r

 !
ðgh1Þ

f0
þ ghbðyÞ

f0L2
r

þ by; ð4Þ

where h1(y) is the free-surface height of the far-field zonal flow, de-
fined by:

1
f0

dðgh1Þ
dy

� �u1ðyÞ; ð5Þ

and where the integral of h1 over the computational domain is
arbitrarily defined to be zero.3 Because u1(y), b and f0 are known
for the domain of interest, and because the best-fit value of Lr is com-
puted for each of our models, we can use q1(y), rather than hb(y), in
our parameterization. The computational domains for our models of
the GRS and the Oval BA are substantially bigger than the vortices
themselves. We use a 60� longitude � 30� latitude computational
domain (with 1200 � 600 Fourier modes) for the GRS, and a 30� lon-
gitude � 30� latitude domain (with 600 � 600 Fourier modes) for the
Oval BA. The domain is sufficiently large to include the jet streams
just north and south of the GRS and Oval BA.4

3.2. Reduced-parameter model

The fast-solver that computes steady-state (in the frame trans-
lating with the vortex) solutions of the QG Eqs. (1)–(3) is an exten-
sion of the one we used in Shetty et al. (2007) and is described in
more detail in Shetty (2008). The code typically requires 20–30
iterations to converge to a steady-state solution, where each itera-
tion has the same computational expense as a single time step of
an initial-value solver of the same equations. Instead of requiring
an initial velocity field, the steady-state finder requires that we
specify: (1) u1(y); (2) the PV along the north–south line at the ex-
treme right-hand side of the computational domain; and (3) the
values of the PV along an east–west line that passes through the
vortex. For the GRS, we choose that east–west line to be the lati-
tude 23�S, and for the Oval BA, we choose it to be latitude 33�S.
(Based on observations, these latitudes are the principal east–west
axes of these two vortices.) The PV along these two lines remains
fixed as the steady-state finder is iterated. Because the north–
south line is asymptotically far from the vortex, specifying its PV
is equivalent to specifying q1(y). To simplify our choices of the
PV along these two lines, we exploit the fact that we seek models
of the Oval BA or GRS that consist of a compact region of PV
embedded in the far-field zonal flow u1(y). Numerical simulations
of the QG equations show that the velocities tend to evolve to form
3 A ‘‘gage” constant can be added to h1, hb and/or h, representing a shift in origin or
the vertical coordinate. Such a shift has no effect on the velocity or any other
observable quantity because h acts as a stream function and only its spatial derivative
enters into the dynamics. A change in gage will change the PV by a constant value. We
have arbitrarily chosen the gage for hb such that the PV along the southern boundary
of our computational domain is zero.

4 The technique of embedding a flow of interest, in this case the GRS or Oval BA,
that is a small part of a much larger flow into a spatially-periodic computational
domain that is larger than the flow of interest and much smaller than the larger flow
is a well-established computational method (cf., Hawley and Balbus, 1992; Spalart,
1998).
flows with compact patches of PV. In these cases the flow is char-
acterized by the curves that mark the boundaries of the patches
and the distribution of PV within the vortices. For these reasons,
we use the model that was used for the GRS in Shetty et al.
(2007) and illustrated in Fig. 4. Here, the GRS or Oval BA is repre-
sented by two nested patches of PV: the inner and outer patches
have east–west diameters (along the east–west principal axis) of
lengths (Dx)2 and (Dx)1, respectively. The PV in the inner patch of
the vortex is qVOR

1 , and the PV in the annular region between the
outer boundary of the inner patch and the boundary of the outer
patch is qVOR

2 . More patches can be used if necessary, but two
patches were found to be sufficient to produce good fits to the ob-
served ACCIV-extracted velocities. Note that the shapes of each
patch are not free parameters but are computed by the steady-
state finding code. Our original model also included finite widths
in the jumps in the PV at the inner and outer boundaries of the
patches that make up the Oval BA and GRS. However, best-fit val-
ues of those widths turned out to be approximately zero in all of
our models, so to simplify the presentation of our results in this pa-
per we treat those jumps as infinitely-thin interfaces.

We specify the value of q1(y) by noting that observations (Read
et al., 2006) and numerical experiments (Cho and Polvani, 1996;
Marcus et al., 2000) suggest that the far-field PV q1(y) is piece-
wise constant; that is, the zonal flow is made of regions of nearly
uniform PV and interfaces where the PV varies rapidly. Thus in
each calculation of a jovian vortex, we require that the far-field
PV q1(y) of the zonal flow consist of three pieces of uniform PV.
One interface between the patches is south of the vortex center
with a jump in PV of DQE. Asymptotically far from the vortex,
the latitude of this interface is yE. Asymptotically far from the vor-
tex, the other jump is at latitude yW, north of the vortex center. Its
PV jump is DQW. It will turn out that latitudes yE and yW corre-
spond to the approximate latitudes of the peaks of the far-field
eastward-going and westward-going jet streams neighboring the
vortex. Unlike the interfaces of the PV jumps of the vortices, the
interfaces of the zonal flow at yE and yW have finite widths of dE

and dW, respectively. Thus q1 is discretized as:

q1ðyÞ � DQ E

2
tanh

y� yE

dE
þ 1

� �
þ DQW

2
tanh

y� yW

dW
þ 1

� �
: ð6Þ

Thus, our model consists of 11 parameters: Lr, (Dx)1, (Dx)2,
qVOR

1 ; qVOR
2 , yE, yW, DQW, DQE, dE, and dW. Once the 11 parameter val-

ues are specified, the fast-solver finds a uniformly translating equi-
librium solution to Eqs. (1)–(3) with those values. As mentioned in
Shetty et al. (2007), the fast-solver is not sensitive to the choice of
initial shapes of the contours, which suggests that the equilibrium
contour shapes are uniquely determined by the choice of parame-
ter values. The shapes of the interfaces are computed along with
the value of U, the rate at which the vortex drifts eastward with re-
spect to System III. Despite the fact that the model has only 11 free
parameters, the best-fit models are good fits to the observations, as
shown in the next section. The good fit is due to the facts that (1)
the models are true equilibrium solutions to the equations of mo-
tion, (2) thousands of sets of parameter values were examined to
determine the best fit, and (3) the model is physically motivated.
3.3. Computing best-fit parameters

For each of the five sets of observed, ACCIV-extracted velocities
with uncertainties given in Table 1, we searched �10,000 sets of
parameter values to find the best-fit. The search was carried out
using the genetic algorithm (GA) described in Appendix. The set
of best-fit parameter values was defined to be the one that mini-
mized a cost-function (Cvel + Carea)/2. The component Cvel of the
cost-function measures the difference between the model velocity
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Fig. 4. Schematic of the PV of the reduced model of a jovian vortex illustrating its input parameters. In our reduced model of the GRS, the PV of the vortex is compact and consists
of two nested patches of uniform PV with values qVOR

2 and qVOR
1 as shown. Different values of PV are indicated by different shades of gray. The outer boundaries of these patches

have infinitesimal widths, and the diameters of the east–west principal axes of the inner and outer patches are (Dx)2 and (Dx)1, respectively. In our models, the GRS and Oval
BA are each embedded in a zonal flow that consists of three uniform patches of PV. Far from the vortex, the zonal flow is exactly parallel to the east–west axis, and the
latitudes of the two boundaries between these three patches asymptote to yE and yW. At these two boundaries the ‘‘jumps” or changes in the values of the PV are DQE and
DQW, respectively. These boundaries have widths of dE and dW. The GRS or Oval BA, represented by the compact, nested patches of PV, deform the contours of the boundaries
between the patches of zonal PV so that they bend around the vortex. In our model, the locus of the four contours between the five patches of uniform PV are all computed
numerically and determined such that the flow (which is uniquely determined by the PV) is a steady solution to the QG equations of motion in a frame translating eastward
with velocity U (where U is uniquely determined by the equations of motion).

Table 2
The best-fit parameters for the GRS. Values are obtained with a genetic algorithm.
Uncertainties are computed using the Monte Carlo boot-strap method in Section 3.4.
The best-fit parameters for the Voyager 1 velocity field are obtained from the trait-
matching algorithm used in Shetty et al. (2007), and their uncertainties were not
computed. Quantities below the double horizontal lines are not parameters of our
model, but rather, quantities derived from it. The RMS error listed in the table is the
RMS value of the unweighted difference between the velocity of the best-fit model
and of the observed velocity field within the oval shaped domain shown in Fig. 22.
The RMS errors are small compared to the characteristic flow velocities and the best-
fit models reproduce large-scale features of the flow as shown in Figs. 5–7. Although
the RMS errors for all three datasets are similar, the value of Cvel for the Galileo
dataset is large because the uncertainties in the Galileo velocities are small owing to
the small effective resolution of the Galileo images (see Section 4.1 for details). Areas
in the Table are from the best-fit models and are defined to be the areas Amod enclosed
by the model’s outer contour of the PV, i.e., the contour with east–west diameter
(Dx)1. The aspect ratio is defined as the ratio of the east–west diameter (Dx)1 to north–
south diameter of the outer contour of PV for the vortex.

Parameter Unit Voyager 1
(1979)

Galileo
(1996)

Cassini
(2000)

HST
(2006)

(Dx)1 km 19,500 18,100 ± 170 16,400 ± 240 15,400 ± 100
(Dx)2 km 12,000 10,400 ± 850 9000 ± 990 8300 ± 530
Lr km 2400 2210 ± 120 2320 ± 160 2300 ± 70
qVOR

1
10�5 s�1 10.5 12.3 ± 2.1 12.4 ± 2.1 12.0 ± 0.7

qVOR
2

10�5 s�1 6.0 9.2 ± 1.3 8.5 ± 1.4 7.5 ± 0.5

DQE 10�5 s�1 1.9 4.1 ± 2.2 4.0 ± 0.7 3.4 ± 1.0
DQW 10�5 s�1 �5.6 �5.9 ± 2.5 � 6.3 ± 1.2 �7.0 ± 0.9
yE �S 26.0 25.9 ± 0.4 26.1 ± 0.4 25.6 ± 0.3
yW �S 20.0 19.9 ± 0.5 20.1 ± 0.3 19.9 ± 0.3
dE km 300 200 ± 200 200 ± 200 400 ± 200
dW km 1000 800 ± 200 700 ± 200 700 ± 200

Carea – – 0.1 0.1 0.1
Cvel – – 16.0 5.8 3.8
RMS error m s�1 – 15 16 14
Area 106 km2 142.3 146.7 ± 0.2 136.8 ± 0.8 120.9 ± 0.5
Aspect

ratio
– 2.2 1.9 ± 0.1 1.6 ± 0.1 1.6 ± 0.1
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vmod(x) found by the fast-solver and the observed velocity vobs(x).
To sample the flow field uniformly, we compute the difference over
N (�105) computational grid points x(i), and we weight the differ-
ence at each grid point with the value of the scatter uncertainty
dvobs(i) of the ACCIV-extracted velocity at that grid point:

Cvel �
1

2N

XN

i¼1

vmod
x ðxiÞ � vobs

x ðxiÞ
�� ��

dvobs
x ðxiÞ

þ
vmod

y ðxiÞ � vobs
y ðxiÞ

��� ���
dvobs

y ðxiÞ
: ð7Þ

We use an L1-norm in the definition of Cvel because it is less sen-
sitive to outliers in the observations (cf., Press et al., 1988),
although we obtained similar results with an L2-norm. The compu-
tational grid points used in the definition of Cvel lie within an oval
shaped region surrounding the vortex as shown in Figs. 22 and 23.
Points outside this region are not included in Cvel because they are
sufficiently far from the PV anomaly of the vortex that their veloc-
ities are insensitive to the model parameters. Note that the loca-
tions of the ACCIV-extracted velocities and the corresponding
scatter uncertainties do not necessarily coincide with the locations
of computational grid points and must therefore be interpolated
at the computational grid points to compute the cost-function.
However, because the is suggestive of extracted velocities is much
smaller than the computational grid resolution (see Figs. 1–3), the
errors introduced by interpolation are much smaller than the scat-
ter uncertainties. The procedure for interpolating the velocities and
scatter uncertainties to the computational grid is described in
Appendix. Typically, a value of Cvel � 1 distance between a good
fit to the observations. Here however, the scatter uncertainties used
in the definition of Cvel underestimate the actual uncertainties by a
factor of two as described in Section 2.1, and so a value of Cvel � 2 is
more representative of a good fit to the observations.

The second component of the cost-function is Carea � jAmod�
Aobsj=dAobs, where Amod is the area of the PV anomaly of the vortex
computed with the steady-state finder, Aobs is the area of the
anomaly from observations, and dAobs is the uncertainty in Aobs.
(See Tables 2 and 3 for how we compute Amod. See Section 5.2 for
how we compute Aobs and its uncertainty dAobs.) There was little
difference between the set of best-fit parameters found with
(Cvel + Carea)/2 and those found when Carea was excluded from the
cost-function definition. However, the genetic algorithm that used
both components required fewer trials to converge to the best-fit
parameter values.

3.4. Computing uncertainties in best-fit parameters

One approach to deriving the uncertainties in the best-fit
parameters is to artificially perturb the observed velocity field



Table 3
Best-fit values of the parameters of our models of the Oval BA listed as in Table 2. The
large value of Cvel for the Cassini data is due to the fact that the model is a poor fit to
the observations at the northern boundary of the Oval, where the observed
streamlines of the velocity are pulled north into a cusp (Asay-Davis et al., 2009).
We believe this unusual behavior along with the large value of Cvel indicate that the
Oval BA was not in a steady or uniformly-translating state in December 2000.

Parameter Unit Cassini (2000) HST (2006)

(Dx)1 km 7080 ± 140 7100 ± 90
Lr km 1860 ± 230 1900 ± 150
qVOR

1
10�5 s�1 14.2 ± 1.9 13.3 ± 1.3

DQE 10�5 s�1 1.8 ± 1.3 1.4 ± 0.5
yE �S 35.0 ± 1.1 35.3 ± 0.7
dE km 400 ± 100 400 ± 200

Carea – 0.1 0.1
Cvel – 11.0 4.0
RMS error m s�1 14 9
Area 106 km2 32.1 ± 0.4 30.8 ± 0.2
Aspect ratio – 1.2 ± 0.1 1.2 ± 0.1
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using the distribution of uncertainty at each measurement point,
and then determine how those perturbations propagate into the
best-fit parameter values. For the observed velocity fields used
in this paper, the distribution of the uncertainty at each measure-
ment point is not known. We therefore compute uncertainties
using a boot-strap Monte Carlo method (Press et al., 1988) be-
cause a boot-strap method does not require the distribution. In
this method an ensemble of new observed velocity fields is gen-
erated, not by perturbing the velocity field, but rather by uni-
formly sampling the original set of velocity vectors. Each
sample velocity field in the ensemble is a random subset of
the original field’s velocity vectors. A corresponding ensemble
of best-fit models of the sampled fields is computed. The
uncertainty in the value of a best-fit parameter, such as the
deformation radius, is defined to be the standard deviation of
the best-fit values of the deformation radius found from the
ensemble of best-fit models. For the results in this paper, an
ensemble consisting of 10 velocity fields was used to estimate
uncertainties. Adding more velocity fields to the ensemble did
not have a significant effect on the estimated uncertainties.
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Fig. 5. GRS: comparison of observed (Galileo, June 1996) velocities with model
velocities computed with the best-fit parameter values. Gray curves are the model
velocities and black curves are observed velocities. (a) North–south velocities along
the east–west principal axis of the GRS. (b) East–west velocities along the north–
south principal axis of the GRS.
4. Results: best-fit solutions and comparison with observations

4.1. GRS

Table 2 shows the best-fit parameters for the GRS and the cor-
responding values of Cvel, Carea and the value of the RMS difference
between the best-fit velocity field and the observed velocity field.
The best-fit models have Cvel = 16.0, Cvel = 5.8 and Cvel = 3.8 for the
Galileo, Cassini and HST datasets respectively. Although the value
of Cvel for the Galileo best-fit model is approximately 3 times larger
than the value of Cvel for the Cassini or HST best-fit models, the
quality of fit for all three models is similar. This is because the
uncertainties with which Cvel is weighted are approximately three
times smaller for the Galileo data than for the Cassini or HST data.
The smaller uncertainty for the Galileo data is reflective of the fact
that the Galileo images have smaller effective resolution than
either the Cassini or HST images (Asay-Davis et al., 2009). Further-
more, the (unweighted) RMS difference between the observed and
best-fit velocities for the Cassini, Galileo and HST datasets are all
approximately 15 m s�1 despite the fact that these datasets have
very different uncertainties, effective resolutions, and numbers of
independent vectors.

The values of Cvel for the best-fit models are larger than the va-
lue of Cvel � 2 that would be suggestive of a good fit. However,
most of the contribution to Cvel occurs outside the vortex where
the flow is known to contain small-scale time-dependent turbulent
features that cannot be accounted for by the 1.5-layer QG equa-
tions (we return to this point again in Section 7 when we discuss
limitations of the model). Similarly, although the 15 m s�1 RMS
error for the best-fit models is approximately 2–3 times larger than
the RMS uncertainties listed in Table 1, the RMS error is much
smaller than the characteristic velocities for these datasets and
the best-fit models do a good job of reproducing large-scale fea-
tures of the flow. This is best illustrated by plots of the velocity
along the east–west and north–south principal axes in Figs. 5–7,
which show that the best-fit models reproduce the velocity profile
of the GRS’s high-speed circumferential jet and quiescent core. We
note that the figures show larger discrepancies at the locations of
the peak velocities, where the model systematically predicts larger
velocities than are observed. However, these discrepancies can be
attributed to the fact that all methods of extracting velocities from
tie-point pairs, regardless of whether they are from automated or
manual methods, tend to systematically underestimate or ‘‘round”
the observed velocity peaks (Asay-Davis et al., 2009). The agree-
ment between the model and observed velocities at other locations
inside the GRS is similar to the agreement along the principal axes,
and the errors are consistent with the RMS error given in Table 2.
In addition, all best-fit models have Carea < 1 implying that they
capture the observed vortex area to within the observational
uncertainty.
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Fig. 6. GRS: comparison of observed (Cassini, December 2000) velocities with model
velocities computed with best-fit parameter values. Shown as in Fig. 5.
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Fig. 7. GRS: comparison of observed (HST, April 2006) velocities with model velocities
computed with best-fit parameter values. Shown as in Fig. 5.
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4.2. Oval BA

Table 3 shows the best-fit parameters for the Oval BA and cor-
responding values for Cvel and Carea. Fig. 8 compares the observed
and best-fit velocities along the principal axes of the Oval BA for
the HST data from 2006. With the exception of the western wake
of the Oval, the fit is good, and this is quantitatively confirmed
by the low cost-function Cvel = 4.0 and low RMS error of 9 m s�1.

The best-fit model to the Oval BA from Cassini data has a large
cost-function value of Cvel = 11.0 and a large RMS error of 14 m s�1.
The images used in this fit were taken in December 2000, and
Fig. 9(b) shows that the observed locations of the peak east–west
velocities along the north–south principal axis (which are near
the northern- and southern-most extremities of the PV anomaly
of the Oval BA), especially in the north, do not coincide with the
model’s locations of the peaks. The velocities extracted from the
Cassini images of the northern boundary of the Oval BA show a
prominent cusp-like feature (see Fig. 25b and e and description
in Asay-Davis et al. (2009)), which is atypical of a steady or uni-
formly-translating vortex. This cusp, along with the inability to
match the velocity to a steady-state solution to the equations of
motion, suggest that in December 2000 the Oval BA was in a tran-
sient state. Transients in the Oval BA at that time are plausible be-
cause the Oval BA was formed by the merger of Oval FA and Oval
BE in March and April 2000, so the Cassini images were taken only
8 months or �50 vortex-turn-around times of the Oval after it
formed. Numerical simulations in 2D of merging vortices of equal
PV strengths and equal areas that are embedded in a shearing zo-
nal flow show that it takes approximately 50–100 vortex-turn-
around times for a vortex to come to a steady equilibrium after it
is formed by merger (Marcus, 1993). Therefore, the velocity fields
on the northern side of Oval BA are particularly suspect, and any
quantity that is derived from them should be viewed with caution,
especially when looking for temporal changes in the Oval BA or
finding explanations for why it changed its color from white to
red in late 2005.

5. Physical results for the GRS

5.1. Changes in time

Table 2 shows that the east–west diameter (Dx)1 of the GRS’s PV
anomaly has decreased from 18,100 ± 170 km to 15,400 ± 100 km,
or 15% from 1996 to 2006. No other best-fit parameter (except for
the east–west diameter (Dx)2 of the core) has changed more than
the parameter’s uncertainties. Some quantities derived from (Dx)1

also changed more than their uncertainties: the aspect ratio be-
came rounder, decreasing from 1.9 in 1996 to 1.6 in 2006, and dur-
ing the same time interval, the area of the GRS’s PV anomaly
decreased by about 18%.

Table 2 shows that the best-fit values of yE and yW of far-field
jumps in PV occur near the latitudes of the maxima in the far-field
jet streams. The jump DQW in PV in the westward-going jet stream
is larger in magnitude than the jump DQE in the eastward-going jet
stream. These two PV jumps have opposite sign, which is consis-
tent with the results found in Shetty et al. (2007) for Voyager 1
data. However the result is surprising, because it confirms that
the far-field PV of Jupiter’s zonal flow does not decrease monoton-
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Fig. 8. Oval BA: comparison of observed (HST, April 2006) velocities with model
velocities computed with best-fit parameter values. Shown as in Fig. 5.
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Fig. 9. Oval BA: comparison of observed (Cassini, December 2000) velocities with
model velocities computed with best-fit parameter values. Shown as in Fig. 5.
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ically from north to south, contrary to expectations (Marcus, 1993).
The physical implications of this result on the GRS are explored
below.
5.1.1. Explanations for the decrease in aspect ratio of the PV anomaly
of the GRS

For a vortex with uniform PV that is a steady solution to the QG
equations and that is embedded in a shearing zonal flow with a
uniform PV, the aspect ratio (east–west diameter divided by
north–south diameter) of the vortex is a function of only two
dimensionless parameters: (1) the ratio of the average shear in
the zonal flow to the PV in the vortex and (2) the ratio of the defor-
mation radius Lr to the square root of the area of the PV anomaly of
the vortex. If the shear of the zonal flow, deformation radius, and
PV of the vortex are held fixed, while the area of the vortex de-
creases, then the aspect ratio decreases, and the vortex becomes
rounder. The physical reason that the aspect ratio decreases is
the following. The zonal shear tends to elongate the vortex in the
east–west direction. A vortex with large PV compared to the zonal
shear acts as if the shear is not present or insignificant and is there-
fore nearly round. In a QG vortex, the velocity created by a PV ele-
ment falls exponentially with the distance from the center of the
element with an e-folding length of Lr. Thus, if the average radius
of a vortex decreases, and the magnitude of the shear of the ambi-
ent zonal flow remains fixed, then the vortex becomes rounder.
Numerical simulations by Van Buskirk (1991) show that a decrease
in the area of the PV anomaly of a vortex usually makes the vortex
rounder even in cases where the PV of the vortex or the zonal flow
are not uniform and also in cases where the zonal shear is not uni-
form. This last statement is true for the GRS. That is, the GRS be-
comes rounder when the area of the GRS is decreased and all
other parameters are held fixed. Specifically, if all the parameters
in the 11-parameter model of the GRS except for the principal
diameters (Dx)1 and (Dx)2 are held fixed at their best-fit values from
1979, and the value of (Dx)1 is then decreased from its best-fit va-
lue from the 1979 observations (and the ratio (Dx)2/(Dx)1 is held
fixed) to its best-fit value in 2006, then the area of the GRS mono-
tonically decreases, and it becomes rounder. Thus a rounder GRS is
consistent with a decrease in area with no changes in the magni-
tudes of its PV, in Lr, or in the far-field zonal flow.

5.2. Clouds, maximum velocities, stagnation points, and the location of
the PV anomaly

Fig. 10 shows streamlines of the best-fit flow in a frame trans-
lating so that the GRS is steady. The heavy closed streamline is
the outer boundary of the PV anomaly computed with the best-
fit steady solution in Table 2. Superposed with the streamlines is
one of the HST images of the GRS clouds from which the velocities
used in obtaining the best-fit were extracted. The area of the GRS’s
cloud cover is significantly greater than the area of the GRS’s PV
anomaly. Fig. 11 shows two stagnation points where streamlines
cross near the GRS. One is directly north of the center of the GRS
at latitude 12.5�S, and the other directly south at latitude 32.5�S.
Fig. 10 shows that southwest of the northern stagnation point
there is a cloud filament aligned with the streamline leading from
the stagnation point. Just east of the stagnation point, clouds
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Fig. 10. Clouds and PV of the GRS. Image from HST (April 2006) of the GRS showing its cloud cover. Superposed are the streamlines of the best-fit velocity field. The thick, black
closed streamline (third contour out from the center of the GRS) is the outer contour of the PV anomaly of the GRS as computed with the best-fit model. The cloud cover is
larger (especially on the northern side) than the PV anomaly. The dark band in the cloud cover (which is bright in the IR) and which marks the southern-most extent of the
cloud cover of the GRS is not coincident with any part of the contour that marks the outermost boundary of the PV anomaly, and, in fact, is not coincident with any streamline.
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Fig. 11. Stagnation points and PV of the GRS. Streamlines for best-fit model of GRS using HST observations from April 2006, where the stagnation points north and south of the
GRS are due to the crossing streamlines indicated with thick, white lines. The value of the PV in the model is indicated with a gray-scale (and consists of five patches). The
stagnation points are far from the PV anomaly of the GRS. In contrast, the Oval BA has a stagnation point close to its PV anomaly (see Fig. 19).
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appear to be filamenting from the GRS. However, the PV anomaly
of the GRS is never closer than 7000 km to the stagnation point,
so it would require an enormous temporal fluctuation to allow
the stagnation point to interact with the PV and cause it to filament
away from the GRS. For this reason, it is highly unlikely that fila-
mentation from the stagnation point could be responsible for the
observed decrease in the area of the PV anomaly of the GRS from
1979 to 2006.

The closed curve in Fig. 12 shows the boundary of the model PV
anomaly of the GRS as in Fig. 10, but here it is superposed with a
broken closed curve that corresponds to contour along which the
observed velocity of the GRS has a local maximum. That broken
contour was computed by drawing a set of radial ‘‘spokes” outward
from the center of the GRS and then finding the location of the peak
velocity amplitude along each spoke. The broken curve in Fig. 12 is
the locus of all of the maxima. The locus of the velocity maxima
and the outer boundary of the PV anomaly are nearly the same;
however, the locus of the velocity maxima is much more jagged
due, in part, to the fact that the observed velocity field shows the
effects of small-scale temporal fluctuations, whereas the PV
boundary is the result of a steady-state calculation. The procedure
of finding local maxima along spokes amplifies noise in the data,
and this also contributes to the jaggedness of the contour. We de-
fine the area enclosed by the broken closed curved to be the ob-
served area Aobs of the GRS used in determining the cost-function
Carea. The uncertainty in the observed area dAobs is computed by
assuming that the position of the broken curve at each location
is uncertain by the effective resolution of the image. The lengths
of the east–west and north–south principal axes of the outer PV
boundary of the GRS and of the broken contour in Fig. 10 are given
in Table 2 and in Asay-Davis et al. (2009), respectively; and they
agree to within the uncertainties of (Dx)1 listed in Table 2.

5.3. Ingredients of the GRS

One way to illustrate the physics that governs the GRS is to
determine the effects on the GRS of the different PV jumps. For
example, the most striking differences between the GRS and the
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Fig. 12. Maximum velocities and PV of the GRS. Solid curves indicate the contours of
the four PV jumps in the best-fit model of the GRS using the HST observations from
April 2006. The outermost, closed, solid curve around the GRS indicates the outer
boundary of the PV anomaly of the GRS. That boundary nearly coincides with the
broken curve, which is the locus of the local maximum velocity of the GRS (see
Section 5.2 for details).
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Fig. 13. Constrained best-fit model of the GRS. Here, the model’s PV is constrained to
have no jumps in the zonal flow and only one jump for the GRS itself (i.e.,
DQE � DQW � 0 and qVOR

2 � qVOR
1 ). Top panel: PV of the constrained-best-fit model.

Middle panel: comparison of the north–south velocities of the model and
observations on the east–west principal axis. Bottom panel: Comparison of the
east–west velocities along the principal north–south axis. The observations and
model are for the HST images of April 2006. Although this constrained model
captures the locations and magnitudes of the north–south velocity peaks (middle
panel), it fails to make a hollow vortex and does not reproduce the east–west
velocity well.
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other long-lived jovian vortices, such as the Oval BA, is that the GRS
is ‘‘hollow”: its center is a local minimum, rather than a maximum,
of the absolute value of the PV (i.e., qVOR

2 < qVOR
1 ). It is this hollow-

ness that makes the velocities in the core relatively small com-
pared with the core velocities of other vortices (cf., compare
Figs. 5a and 8a). As Table 2 shows, the GRS has remained hollow
from 1979 to 2006. Most hollow vortices are unstable. They rapidly
turn themselves ‘‘inside out”, and then relax to a new equilibrium
that is not hollow (Marcus, 1993). If we constrain our steady-state
model of the GRS (using the HST observations form 1996) to have
only one PV jump, (i.e., with qVOR

2 � qVOR
1 – 0 and DQW � DQE � 0),

then we can obtain a steady solution to the QG equations that
best-fits the observations subject to the constraints of this re-
stricted model. That solution is shown in Fig. 13. This model accu-
rately captures the locations and magnitudes of the peak velocities
along the principal east–west axis, and the correct rate of the
velocity fall-off outside the GRS (i.e., in the range jxj > (Dx)1/2)
along the east–west axis. This result is consistent with the results
of trait-matching (Shetty et al., 2007), which showed that the only
ingredients needed for an equilibrium model to correctly repro-
duce the velocity fall-off rate along the east–west axis is the correct
value of Lr. (This result is also consistent with analytic solutions of
compact vortices with uniform PV, and v1 = q1 = 0. The azimuthal
velocity exterior to these vortices decays exponentially with an e-
folding length equal to Lr, Marcus, 1993.) Trait-matching showed
that, other than Lr, the only ingredients needed to match the loca-
tions and magnitudes of the velocity peaks along the east–west
axis are properly-tuned values of qVOR

1 and (Dx)1. However, because
qVOR

2 � qVOR
1 the constrained-best-fit model in Fig. 13 cannot be hol-

low, and so it fails to capture the quiet core of the GRS as the
unconstrained-best-fit model in Fig. 7 does. In addition, the ob-
served and model velocities disagree along most of the north–
south axis. If we loosen our constraints and compute the best-fit
model with two PV jumps for the GRS (i.e., with qVOR

2 ; qVOR
1 , (Dx)1

and (Dx)2 as free parameters), but with no PV jumps in the far-field
(i.e., with DQW � DQE � 0), then the best-fit model with these
restrictions (Fig. 14) is hollow and captures the observed flow all
along the east–west principal axis. This model still fails to capture
the flow along the north–south axis. As Fig. 15 shows, to capture
the observed velocity in the southern part of the GRS along its
north–south principal axis, it is sufficient to have a best-fit model
with two PV jumps for the GRS anomaly (as in Fig. 14) and one
jump for the far-field flow (i.e., with DQE, yE and dE as free param-
eters). Figs. 7 and 11 show that to capture the observed flow along
the entire north–south axis (and, it turns out, over the entire do-
main), four PV jumps are needed, including the one characterized
by DQW, yW and dW. The best-fit models do an excellent job at find-
ing the locations of the velocity peaks along the north–south axis,
but, as noted above, the magnitudes of the observed velocity peaks
are probably too low due the inherent ‘‘rounding” in the velocity
extraction methods.
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Fig. 14. Constrained best-fit model of the GRS. As in Fig. 13, but here, the model’s PV
is constrained to have no jumps in the zonal flow and two jumps in the GRS itself
(i.e., DQE � DQW � 0). The inclusion of a second PV jump in the model captures the
hollowness of the vortex (as well as locations and magnitudes of the north–south
velocity peaks). However, the model does not reproduce the east–west velocity
well.
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Fig. 15. Constrained best-fit model of the GRS. As in Fig. 13, but here, the model’s PV
is constrained to have one jump in the zonal flow (south of the GRS) and two jumps
in the GRS itself (i.e., DQW � 0). The inclusion of a PV jump in the zonal flow south of
the GRS allows the model to capture the correct location of the eastward-going
velocity peak south of the GRS (as well as locations and magnitudes of the north–
south velocity and the hollowness of the vortex). However, the model does not
reproduce the location of the westward-going velocity peak north of the GRS. One
reason that there is only fair agreement between the observed and model values of
the magnitude of the eastward-going velocity peak south of the GRS is that the
observed velocity peaks are ‘‘rounded” by velocity extraction methods (Asay-Davis
et al., 2009).
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5.4. Vortex–zonal flow interaction

To understand the interactions between vortices and zonal
flows, it is first necessary to understand that the total PV of the
flow is not a linear superposition of the far-field zonal PV and the
PV anomaly of a vortex. For example, the total PV of our best-fit
GRS model q is shown in the top panel of Fig. 16, and it is not
the sum of the best-fit PV q1 of the far-field zonal flow (second
from top panel in Fig. 16) as defined in Eq. (4) and the best-fit PV
anomaly qGRS of the GRS (bottom panel in Fig. 16), which is due
to qVOR
2 and qVOR

1 . To understand the nonlinearity mathematically,
define the interaction PV qINT(x,y) as

qINTðx; yÞ � qðx; yÞ � q1ðyÞ þ qGRSðx; yÞ
� �

: ð8Þ

Note that qINT(x,y) is not directly defined by the 11 input param-
eter values of the model, but it is indirectly a function of all of
them. The interaction PV is found by numerically computing the
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equilibrium functions q1(y), qGRS(x,y) and q(x,y), and then using
the definition in Eq. (8). In general, equilibrium is only possible
with a non-zero qINT(x,y). To understand the PV interaction from
a physical point of view, consider the locations in latitude y of
the PV jumps DQE andDQW as functions of longitude x. These loca-
tions for the flow around the GRS are the two streamlines shown as
thick, white curves in Fig. 17. The velocity created by the PV anom-
aly of the GRS causes those streamlines to bend around the GRS,
rather than intersect it. (The outer boundary of the GRS’s PV anom-
aly is also a streamline, and streamlines cannot intersect except at
stagnation points where the velocity must be zero.) Fig. 16 shows
that qINT(x,y) is created by the bending of the PV jumps of the zonal
flow around the GRS. That is, qINT(x,y) is what needs to be added to
the straight streamlines of the far-field zonal flow (second panel
from top in Fig. 16) so that the zonal flow bends around the GRS.

Fig. 16 shows that qINT consists of two compact regions of PV
anomaly just north and south of the GRS. By definition, qINT asymp-
totes to zero far from the GRS. For the GRS, DQE > 0 and DQW < 0, so
the two patches of qINT are both anti-cyclonic (counter-clockwise)
like the GRS. The velocities created by the total PV and its three
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Fig. 17. PV of the best-fit model of the GRS as in Fig. 11, but here the thick, white streaml
bending of the curves around the GRS is a result of the nonlinear interaction between the
as a superposition of the PV of the GRS and the PV of the far-field zonal flow.
components are shown on the right-hand side of Fig. 16. The veloc-
ity created by q1 embeds the GRS in anti-cyclonic shear; however,
the velocity produced by the two anti-cyclones that make up qINT

embeds the GRS in a cyclonic shear, such that the total shear that
the GRS feels from q1 + qINT is nearly zero. If the PV of the far-field
zonal flow decreased monotonically from the north to south pole,
then DQW would be non-negative. A positive DQW together with
a positive DQE would make qINT into a dipole with an anti-cyclonic
patch south of the GRS and a cyclonic patch north of it. This dipole
would not significantly reduce the shear in which the GRS is
embedded, but rather produce a westward-going jet near the cen-
ter of the GRS, which would make the GRS drift rapidly to the west.
The consequences of the effects of the shear produced by qINT are
discussed in Section 8.
6. Physical results for the Oval BA

Table 3 shows that there were no changes in the best-fit param-
eters of Oval BA between 2000 and 2006 that were greater than
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ines indicate the locations of the PV jumps in the zonal component of the flow. The
GRS and the zonal flow and is the reason the total PV of the flow cannot be modeled
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their uncertainties. The aspect ratio of the Oval’s PV anomaly has
not changed, although the area of the PV anomaly has decreased
by a small amount. However, it must be remembered that the cal-
culations show that the Oval was probably not in equilibrium in
2000, so the area and other reported properties that are sensitive
to the shape of the northern edge of the Oval BA in 2000 may have
errors larger than the reported uncertainties. Table 3 also shows
that the far-field PV near the latitudes of the Oval BA did not
change, indicating that the bottom topography at these latitudes
did not change.

Tables 2 and 3 show that there were no temporal changes in the
Rossby deformation radius Lr that were greater than its uncertain-
ties. However, the tables do show that Lr changes in latitude h. The
deformation radius is defined as Lr � NH/[fnsin(h)], where N is the
Brunt–Väisälä frequency, fn is the Coriolis parameter at the north
pole, H � RT/gJ is the vertical pressure scale-height, T is the temper-
ature, gJ is the gravity, and R is the gas constant of the atmosphere.
All quantities are evaluated at the weather layer. Therefore,

NðhÞ ¼
fngJ sinðhÞLrðhÞ

RTðhÞ : ð9Þ

Assuming that values of T(h) and its uncertainties are the cloud-
top temperatures and uncertainties from Flasar (1986), T is the
same at 33�S and at 23�S to within its observational uncertainty
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Fig. 18. Clouds and PV of the Oval BA. Image from HST (April 2006) of the Oval BA showi
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Fig. 19. Stagnation points and PV of the Oval BA. Streamlines for best-fit model of Oval BA u
BA is due to the crossing streamlines indicated with thick white lines. The value of the PV
anomaly of the Oval BA and therefore they can interact with each other. Unlike the GRS
of ±1%. Assuming that gJ and R are independent of latitude, then
H is also independent of latitude to within 1%. If we use
H = 20 km as given in Gierasch et al. (2000) (the value of H has rel-
atively negligible uncertainty) to compute the values of N, we get
N = 0.0158 ± 0.0005 s�1 and N = 0.018 ± 0.001 s�1 at 23�S and
33�S respectively. Thus, we see that N is 15 ± 10% greater at 33�S
than it is at 23�S.
6.1. Clouds, maximum velocities, stagnation points, and the location of
the PV anomaly

Fig. 18 shows the streamlines of the best-fit flow from April
2006 in a frame translating with the Oval BA, superposed on an im-
age of the Oval’s clouds from the HST observations in Table 1. The
thick, black closed curve is the streamline that marks the outer
boundary of the Oval’s PV anomaly. Like the GRS, the Oval BA
has a PV anomaly with an area that is smaller (in fact, much smal-
ler) than the area of the corresponding cloud cover. However, un-
like the GRS, the Oval has a PV anomaly that is close to a
stagnation point (north of the Oval near 29�S – see Fig. 19). At some
locations, the streamline that feeds into this stagnation point is less
than 1000 km from the PV boundary. Therefore perturbations of
the flow could allow PV to be stripped from the Oval BA at the stag-
nation point. (See Humphreys and Marcus, 2007.) Unlike the GRS,
de
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(see Fig. 11) which has two nearby stagnation points, the Oval BA has only one.
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Fig. 20. Maximum velocities and PV of the Oval BA plotted as in Fig. 12. Unlike the
GRS, the best-fit model of the Oval BA has only two contours of PV jumps (solid
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Fig. 21. Constrained best-fit model of the Oval BA. Here, the model’s PV is constrained
to have no jumps in the zonal flow and only jump for the Oval itself (i.e.,
DQE � DQW � 0 and qVOR

2 � qVOR
1 ). As in Fig. 13, the PV of the constrained-best-fit

model is in top panel; the north–south velocities of the model and observations are
in the middle; and the east–west velocities are in the bottom. The observations and
model are for the HST images of April 2006. The constrained model captures the
locations and magnitudes of the north–south velocity peaks along the entire east–
west principal axis. Unlike the GRS, the Oval BA is not hollow; a less constrained
model with two, rather than one, PV jumps in the Oval BA does not give a better fit
to the observed north–south velocity field. That is, when qVOR

2 is not constrained to
be zero, its best-fit value is found to be very close to zero.
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the Oval BA has only one nearby stagnation point, not two. Fig. 20
shows that the boundary of the PV anomaly of Oval BA is nearly
coincident with the locus where the Oval has its local velocity
maximum.

6.2. Ingredients of the Oval BA

The physics governing the Oval BA, like that of the GRS, can be
illustrated by the effects of the different PV jumps in the best-fit
model. Fig. 21 shows that when the models are constrained to have
one PV jump in the Oval itself and none in the zonal flow (i.e.,
qVOR

2 � qVOR
1 – 0 and DQW � DQE � 0), the best-fit of this restricted

model reproduces the observed velocity everywhere along the
east–west principal axis, including the core of the Oval. This is
due to the fact that the Oval BA, unlike the GRS, is not hollow. Add-
ing a second PV jump to the Oval BA (i.e., allowing qVOR

2 – qVOR
1 ) does

not improve the fit to the observations. Therefore, to simplify the
presentation of our results in Table 2, we reported only the results
of models that were constrained to have one PV jump for the Oval.
Best-fit models that have one PV jump for the Oval and one PV
jump for the zonal flow south of the Oval BA (i.e., qVOR

2 � qVOR
1 – 0,

DQW � 0, and DQE – 0) give a slightly better match to the observed
eastward-going jet stream along the north–south principal axis.
The effect of adding the PV jump of DQE at yE is not large because
the magnitude of DQE is not large; it is less than half of the magni-
tude of the best-fit value of DQE that we found in the analysis of the
GRS. PV and east–west velocities of this best-fit model are shown
in Figs. 19 and 8b, respectively. We attempted to find models with
two PV jumps in the zonal flow, one north of, and one south of the
Oval BA (i.e., DQE – 0 and DQW – 0), but even for small values of
DQW, our models did not converge for values of yW near the Oval
BA. The reason for this lack of convergence can be seen by compar-
ing Fig. 11 for the GRS to Fig. 19 for the Oval BA. Contours of PV
jumps must coincide with streamlines, and the streamlines of the
far-field zonal component of the flow encircle the planet, or in
our calculations are ‘‘open”, i.e., they begin on the left-hand bound-
ary of the computational domain and continue to the right-hand
boundary. Streamlines that are part of a vortex are ‘‘closed” and
encircle the vortex. For the GRS, Fig. 11 shows that there are open
or zonal streamlines both north and south of the GRS and that are
close to the GRS. A PV jump could be placed on any of those
streamlines, and the model would likely converge. In contrast,
Fig. 19 shows the effect of the nearby stagnation point on the Oval
BA. There are nearby, open, zonal streamlines south of the Oval
that could support a PV anomaly, but there are no nearby, open zo-
nal streamlines north of Oval BA. The closest open, zonal streamline
north of Oval BA is also north of the stagnation point, and placing a
PV anomaly there (several deformation radii away from the bound-
ary of the Oval) would have negligible effect on the Oval BA.

Thus, we set the best-fit value of DQW to be equal to zero, and
the best-fit model of the Oval BA reported in Table 3 has only
one jump in PV for the Oval and one jump in PV for the zonal flow.
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Fig. 22. Quality of model for the HST 2006 GRS. Each pixel (or ith grid point) is a measure of the difference between the ACCIV-extracted velocity and the best-fit model
weighted by the uncertainty. The gray shading represents the value of 0:5 jvðiÞmod

x � vðiÞobs
x j=dvobs

x ðiÞ þ jvðiÞ
mod
y � vðiÞobs

y j=dvobs
y ðiÞ

h i
, where vðiÞobs

x and vðiÞobs
y are the x and y

components of the observed velocities interpolated to the ith grid point (see Appendix), vðiÞmod
x and vðiÞmod

y are the components of the model velocity computed at the ith grid
point, and dvobs

x ðiÞ and dvobs
y ðiÞ are the components of the scatter uncertainty interpolated to the ith grid point (see Appendix). The value of Cvel in Eq. (7) is the average over the

individual pixel values within the oval shaped region shown in the figure (the black pixels in each corner of the rectangular domain demarcate the boundary of the oval
shaped region). Because the observational uncertainty can be upto two times larger than the scatter uncertainty (see Section 2.1), locations where the pixel value is less than
two indicate that the fit between model and observations is within the observational uncertainties. The four white curves are the contours of the model’s PV jumps.
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The best-fit value of DQE for the Oval BA is positive (like the value
of DQE of the GRS), indicating that the PV on the northern side of
the jump at yE is greater than that on the southern side.

7. Limitations of model

To see how the quality of the best-fit model varies within the
computational domain, Figs. 22 and 23 show the spatial distribu-
tion of Cvel for best-fit models of HST data. For the best-fit model
of the GRS, the largest discrepancies (Cvel > 5) occur near the east-
ward-going jet stream, in a region to the north–west of the GRS,
and in a small region in the interior of the GRS near its southern
boundary. For the best-fit model of the Oval BA, the largest discrep-
ancies occur outside the PV boundary of the Oval BA and are ran-
domly located within the domain. A plot of the unweighted
residual velocity vectors reveals spatial symmetries that suggest
that the discrepancies in the interior of the GRS and near the east-
ward-going jet stream can be reduced with a steady-state solution
that has a more complex PV distribution in these regions. However,
the other discrepancies outside the PV boundary of the GRS and
Oval BA do not show any spatial symmetry and are most likely
due to small-scale time-dependent turbulence that cannot be cap-
tured within a 1.5-layer steady-state QG model, no matter how
complex the distribution of piece-wise constant PV. The location
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of these discrepancies outside the vortex boundary is consistent
with known locations of time-dependence in the flow (example,
the turbulent wake to the north–west of the GRS), and with the fact
that vortices are known to suppress turbulence in their interiors. In
any event, corrections to the model with characteristic velocities
on the order of the RMS error of 15 m s�1 correspond to small per-
turbations to the PV of the best-fit equilibria, and should therefore
not affect the main physical conclusions presented in this paper.
Reduction of the discrepancy further so that Cvel � 2 will no
doubt require that we relax or remove some of the fundamental
assumptions on which the model is based. For example, because
the measured longitudinally-averaged far-field, zonal flow profile
changes on a decadal time scale, it is certainly possible that by
using different zonal profiles in the models we might obtain better
fits to the observations and different ‘‘best-fit” parameter values.
On the other hand because the 10-h/longitudinal variability of
the zonal flow is of the same order, 11 m s�1, as the decadal vari-
ability, it is also possible that the assumption of a steady, purely
zonal far-field flow is not correct and that no model that uses this
assumption will fit the observations better than the models pre-
sented here. We have not tried to include quantitatively the zonal
variability into any of our measures of the fit between the model
and observed velocities. However, based on our experiences with
‘‘trait-matching” (Shetty et al., 2007), we know that the parameter
values for the magnitudes qVOR

1 ; qVOR
2

� �
and major diameters ((Dx)1,

(Dx)2) of the PV anomalies of the GRS and Oval BA and of the Rossby
deformation radius Lr are insensitive to the far-field zonal velocity
profile. In contrast, the east–west velocities of the GRS and Oval BA
are sensitive to the far-field zonal velocity profile, and the latitudes
(yE, yW) and widths (dE, dW) of the PV jumps in our model are there-
fore sensitive to the far-field zonal velocity profile. However, the
values of the PV jumps DQE and DQW of zonal flow are not. Those
values strongly depend on the ‘‘roundness” of the GRS and Oval BA
via the vortex–zone interaction sketched in Fig. 16; the values also
depend somewhat weakly on the zonal shear averaged over all of
the latitudes spanned by the vortices, but those average values ap-
pear to be stable over time (see Section 2.1). Thus despite the zonal
variability, we are confident about our conclusion with respect to
temporal changes (and lack of changes) in the areas and PV magni-
tudes of the GRS and Oval BA, with the change in Lr with latitude,
and with the non-stair-casing of the PV jumps of the zonal flow.

The use of more complex equations that incorporate additional
physics may also help reduce Cvel, although in Shetty (2008) we
found that steady-state solutions of the Shallow-Water equations
did not significantly improve the quality of fit. This suggests that
the next level of improvement in fit will be obtained by incorporat-
ing three-dimensional effects and thermal effects that are not pres-
ent in either the QG or Shallow-Water equations. In that case, the
results presented here will help constrain feasible portions of
parameter space. Even with just the 1.5-layer QG equations, the
most accurate approach would be to let the PV for each computa-
tional grid point, the deformation radius Lr, and the bottom topog-
raphy, all be unknown parameters. However, without any way of
quickly computing equilibria for arbitrary PV distributions, we
would have to solve the initial-value problem, and the optimiza-
tion process would require a large amount of computational re-
sources as already explained in Section 1, without necessarily
providing more insight than our current model. Arguably, such
an approach would provide no insight whatsoever because there
would be no easy way to vary parameters and characterize the
resulting physical consequences.

8. Conclusions and future work

The model that we use here is a physically motivated 11-
parameter model that is a steady-state solution of the 1.5-layer
QG equations when viewed in a frame translating with the vortex.
Our algorithm for rapidly computing these models allowed us to
efficiently and robustly search parameter space for best-fit models
and their uncertainties. The models reproduce all the large-scale
features of the flow, such as the GRS’s high-speed circumferential
jet and quiescent core, with RMS errors of approximately
15 m s�1 for the GRS datasets. Reducing the error further will re-
quire a steady-state model with a more complex distribution of
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PV, effectively increasing the number of free parameters. Reducing
the error may also require a more accurate representation of the
zonal flow and/or more complex equations that capture small-
scale time-dependent effects. However, as argued earlier, we do
not expect the incorporation of a more complex PV distribution
or a more accurate zonal flow to affect the main physical results
presented in this paper. We plan to verify these hypotheses in fu-
ture work.

While almost all measured features of the vortices and zonal
flows changed over time, very few of the changes were greater
than the measured uncertainties as computed with a Monte Carlo
boot-strap method. Without a reliable measure of uncertainty, it
would have been easy to report many changes, when in fact few
may have occurred. The QG best-fits and uncertainties support
our previous conclusions (Asay-Davis et al., 2009): no dynamical
properties of the Oval BA changed from 2000 when it was white
to 2006 when it was red; the peak velocities of the GRS as well
as the magnitudes of its PV have remained the same.

The most striking temporal change of the GRS is that its PV
anomaly has become rounder (its aspect ratio has decreased by
17 ± 8%) between 1996 and 2006. This change is consistent with
our conclusion that the area of the PV anomaly of the GRS shrank
by 18 ± 4%. In stratified QG flows, vortices embedded in shearing
zonal flows become rounder when their areas decrease. The closest
stagnation point to the GRS is more than 7000 km from the outer
boundary of its PV (Fig. 10). Therefore, it is unlikely that the area
of the GRS’s PV was stripped away at the stagnation point
(although it is likely that some of the clouds covering the GRS
are stripped away there). Humphreys and Marcus (2007) showed
that the time-averaged equilibrium area of the PV anomaly of a
vortex embedded in a set of alternating zonal winds is set by a bal-
ance between the dissipation rate of PV and the rate at which PV is
appended to the vortex by mergers with smaller vortices. Thus, the
shrinkage of the GRS could be due either to an increased dissipa-
tion or to ‘‘starvation” – the GRS is not merging with as many smal-
ler vortices as it had in the past. A lack of mergers could be due to
either a lack of supply of small vortices at the latitudes of the GRS
or to an unknown dynamical effect that prevents mergers. We
think the former is more likely than the latter because upheavals
and other transient jovian behavior could easily affect the rate at
which small vortices are created, but there is no obvious mecha-
nism to prevent vortex mergers with the GRS.

Our results confirm for the first time in jovian vortices the well-
established relation in laboratory vortices that the outer PV bound-
ary coincides with the maximum circumferential velocities around
the vortex. The best-fits results show that the outer boundaries of
the PV anomalies in the GRS and Oval BA are nearly coincident
with their maximum velocity loci. Therefore to a good approxima-
tion, the locations of the velocity extrema in Figs. 5–9 correspond
to the outer boundaries of the PV anomalies of these jovian
vortices.

Our analyses of the HST observations show that the Brunt–
Väisälä frequency, which in the QG approximation is proportional
to the average of the square root of the vertical stratification of en-
tropy, is 15 ± 10% greater at 33�S than it is at 23�S. The uncertainty
of this measurement is large, so it would be useful to verify this re-
sult in future work.

Some of the physical results from the best-fit analyses, which
are difficult to establish with any other methodology, challenge
our understanding of jovian atmospheric dynamics. For example,
QG simulations on a b-plane with small-scale forcing show that
alternating zonal flows are created by inverse cascades (Vallis
and Maltrud, 1993). In those simulations the PV of the far-field zo-
nal flow is piece-wise constant with jumps in PV only at the max-
ima of the eastward-going jet streams. Moreover, the PV
monotonically decreases from north to south. Consistent with
these results, the best-fit analyses show that there are jumps in
the PV at the eastward-going jet streams near the GRS and Oval
BA. Both of the PV jumps show a decrease in PV from north to
south. In addition, the westward-going jet stream that bends
around the northern side of the Oval BA has no PV jump in our
best-fit model. However, in contrast to expectations, the best-fit
models show that the westward-going jet stream that bends
around the northern side of the GRS has a large PV jump, and the
sign of that jump shows an increase in PV from north to south.
How this PV jump in the westward-going jet stream was created
needs to be explained. In the future, it would be useful to analyze
other jovian vortices to determine the magnitudes and signs of the
PV jumps of other jet streams, especially of the westward going jet
streams to determine whether the unexpected PV jump of the
westward-going jet stream nearest to the GRS is unique.

Our best-fit analyses showed that the GRS was hollow with a PV
minimum near its center, but that the Oval BA is not hollow. Future
best-fit analyses should be carried out to determine whether there
are other non-hollow jovian vortices. Our analysis shows that the
tandem bending of the eastward-going jet stream and the west-
ward-going jet stream with its PV with the unexpected sign around
the GRS reduces the zonal shear at the vortex center. We have
speculated (Shetty, 2008) that a reduction in zonal shear is neces-
sary to stabilize hollow vortices. Therefore, if more hollow jovian
vortices are found, it would be particularly important to determine
if they are accompanied by westward jet streams with PV jumps
and if so, what signs the PV jumps have.

Another interesting result from the modeling is that Figs. 11 and
19 show that in 2006 that the streamline and stagnation-point
topology of the GRS and Oval BA differ. North of the GRS, there is
an unimpeded westward-going flow arbitrarily close to the GRS.
For the Oval BA, the stagnation point north of the Oval impedes
the westward-going flow (that enters on the right-hand side of
Fig. 19 between latitudes �33� and �31�). This flow cannot pass
north of the Oval BA and is turned around to become an east-
ward-gong flow (that exits on the right-hand side of Fig. 19 be-
tween latitudes �31� and �28�). Whether the streamline
topologies of the GRS or Oval BA change in time between the con-
figurations shown in Figs. 11 and 19 is not known and should be
pursued in future observations and modeling.
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Appendix A. Velocity uncertainties

A velocity vector is typically extracted from a tie-point pair in
which a passively advecting feature (part of a cloud) is located in
a first image (or mosaic) and then again at some time T later in a
second image. To calculate the correlation uncertainty of a vector,
all of the pixels of the first image are numerically advected with
high precision forward for a time T using the extracted velocity
field to create a synthetic second image. If the all of the vectors that
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make up the velocity fields were exact, then the second image and
synthetic second image would overlap exactly. In practice, there
will be a displacement between the locations of a feature in the
second image and the same feature in the synthetic second image.
We define this displacement as the correlation displacement of the
tie-point feature, and we define the velocity vector’s correlation
uncertainty to be the correlation displacement divided by T.

The ACCIV velocity field is interpolated to the computational
grid points by computing a smooth surface that approximates
the ACCIV velocity field in a least-squares sense as described in
Asay-Davis et al. (2009). The scatter uncertainties are defined to
be the difference between the approximating smooth surface and
the ACCIV velocity field at the measurement locations. The scatter
uncertainties are interpolated to the computational grid by taking
the RMS average of all scatter uncertainties that lie within a dis-
tance r from the grid points. To determine an appropriate value
for r, we increment r by small amounts until dvobs converges in
an L2-norm sense. In other words, we choose the smallest value
of r required for statistical robustness. For all datasets, the value
of r required for convergence was no greater than twice the effec-
tive resolution, and the average number of vectors in the RMS sum
for each grid point was approximately 100.

Appendix B. Genetic algorithm

The genetic algorithm that we use to compute best-fit models is
from Zohdi (2003) and consists of the following steps:

(1) Initialize a population of N models by generating parameter
sets at random from a uniform distribution on the parameter
space of interest. Compute a model for each set of parameter
values using the steady-state finding code.

(2) Compute the cost-function for each model in the population.
Sort models according to their cost.

(3) Take the 2P fittest models, that is, the 2P models with the
smallest cost and call them parents. Take the first two parent
models and breed them to produce two child models. Then
breed the next two parent models to produce two more child
models and so on. Parameters of a child model are obtained
by choosing a point at random between the parameter val-
ues of each parent. So if P1 and P2 are the parameter sets
for two parents, then the ith parameter of a child is
ti(P1)i + (1 � ti)(P2)i, where ti is drawn uniformly at random
from the interval [0,1].

(4) Generate N � 4P new random models or mutants (which
help to remove false minima).

(5) Initialize a new population of models composed of the 2P
parents from the previous generation, their 2P children,
and the N � 4P mutants. This step marks the end of a gener-
ation. Return to Step 2.

We benchmarked the performance of the genetic algorithm
using noisy synthetic velocity fields that were generated from
the equilibrium-finding code for various choices of model parame-
ters. In the benchmark runs, the genetic algorithm always con-
verged to the model from which the velocity field was generated,
which suggests that the best-fit model is unique. The uniqueness
of the best-fit model as determined by the GA would be consistent
with our ‘‘trait-matching” analysis (Shetty et al., 2007), where we
showed that the model parameters could be determined uniquely
from specific ‘‘traits” of the velocity field. For example, we found
that the location of peak north–south velocity along the principal
east–west axis uniquely determined the value of the east–west
diameter (Dx)1 of the vortex.

For runs of the GA that used an ACCIV-extracted velocity field,
to reduce the likelihood of convergence to false minimum, we al-
ways run the GA for at least G generations, where G is the average
number of generations that the GA required to converge to the
minimum during benchmarking runs. After G generations have
elapsed, we terminate the genetic algorithm as soon as the fittest
model remains unchanged for 10 generations. After termination,
we check that the fittest model is a true minimum using a star-
search (Acton, 1990). The star-search is a derivative-free method
for determining a local minimum by evaluating the cost-function
at a cluster of points in parameter space, and then moving to the
point where the cost-function is least. The cluster here consists
of the starting point and two additional points for each coordinate
axis, one on the positive and one on the negative side of the start-
ing point. In cases where the fittest model was not a minimum, a
couple of iterations of the star-search with small perturbations
along each coordinate axis were sufficient to push the model to
the minimum.

For the analysis of the GRS using the HST data, we chose N, the
population size per generation, to be 48; the number of parents 2P
to be 12, and the number of generations G to be 32. The bounds on
the search were: 15,150 km6 (Dx)16 15,650 km, 7000 km6 (Dx)26

10,000 km, 1500 km6 Lr6 2500 km, 9:0� 10�5 s�1
6 qVOR

1 6 15:0�
10�5 s�1; 5:0� 10�5 s�1

6 qVOR
2 6 10:0� 10�5 s�1, 0.06 DQE6 10.0�

10�5 s�1, �10.0 � 10�5 s�1
6 DQW 6 0.0, �27� 6 yE 6 �25�, �21� 6

yW 6 �19�, 56 km 6 dE 6 560 km, and 560 km 6 dW 6 1120 km.
For the analysis of the Oval BA using the HST data, we chose
N = 24, 2P = 6, and G = 32. The bounds on the search were:
6800 km 6 (Dx)1 6 7200 km, 1000 km 6 Lr 6 2500 km, 5:0� 10�5

s�1
6 qVOR

1 6 2:0� 10�4 s�1, 0.0 6 DQE 6 10.0 � 10�5 s�1, �38� 6
yE 6 �34�, and 58 km 6 dE 6 580 km. The GA runs for the bounds
given above sampled approximately 2000 models to determine
the best-fit model. However, to check for the presence of multiple
minima, we also ran cases with larger bounds on the parameters,
or in different regions of parameter space, and the total number
of models sampled over all these runs was on the order of 10,000.

For the best-fit model of the GRS using the HST 2006 velocities,
Fig. 25 shows how the cost-function (Cvel + Carea)/2 varies for the
models in the first generation. The total number of models in the
histogram is less than N because not every set of parameter values
produces a steady-state model like the one shown in Fig. 4. Fig. 26
shows a histogram of how the cost-function varies for the models
computed over all generations. Fig. 24 shows the evolution of
(Cvel + Carea)/2 for the fittest model in each generation. A plot in
the 11-dimensional parameter space of the locations of the models
that had values of C close to the minimum value shows that there
is a unique location, rather than multiple locations, where the
points are clustered. The size of the scatter of the points in the
11-dimensional space is approximately equal to the uncertainties
in the parameter values found by the Monte Carlo boot-strap
method listed in Tables 2 and 3.
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