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A spectral method for an unbounded domain is presented. Rational basis
functions, which are algebraically mapped Legendre functions, are used for
expansion in the radial direction of polar coordinates (r, f) or (r, f, z).
They satisfy the pole condition exactly at the coordinate singularity and their
behavior as r R y is suitable for expanding smooth functions which decay
algebraically or exponentially as r R y. The method is not stiff when it
is applied to initial value problems despite the presence of the coordinate
singularity. Solenoidal vector fields are treated efficiently by the toroidal and
poloidal decomposition which reduces the number of dependent variables
from 3 to 2. Examples include the computation of vortex dynamics in two
and three dimensions. Q 1997 Academic Press
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1. INTRODUCTION

In our recent work [1] we developed a set of basis functions to expand analytic
functions on the unit disk. For the radial part of the expansion we used the orthogo-
nal polynomial eigenfunctions of a singular Sturm–Liouville equation. Here we
consider a basis function set suitable for unbounded domains where the domain of
r in polar coordinates (r, f) or (r, f, z) is 0 # r , y. We require the basis functions
to satisfy the pole condition [1] exactly at the coordinate singularity and to remain
bounded as r R y. To satisfy these requirements, rational functions are considered
instead of polynomials.

To construct a basis function set for unbounded domains, it is necessary to assume
the asymptotic behavior of the approximated functions for large r. The oscillatory
behavior was treated, for example, by Rawitscher [2]. Here we assume that the
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functions decay algebraically or exponentially for large r. One way to treat this
class of functions is to map them to a bounded domain so that standard spectral
basis functions such as the Chebyshev polynomials can be used. Grosch and Orszag
[3] investigated the exponential and algebraic mapping methods and found by
numerical experiments that the algebraic mapping gives a better result than the
exponential mapping. Boyd [4] supported their result by examining the asymptotic
behavior of the expansion coefficients of model functions by the method of
steepest descent.

In spite of these investigations, however, the algebraic mapping has not excluded
the use of exponential mapping. For example, an extra function can be included
in the basis functions to represent the far field behavior of the expanded functions
more efficiently [5, 6].

If the approximated functions decay exponentially as r R y, there are many
options for the basis functions. The sinc functions, Hermite functions, and
Laguerre functions are the basis functions suitable for expanding functions which
decay exponentially as r R y [7]. The domain truncation method, which imposes
artificial boundary conditions at a sufficiently large radius, is also an efficient
method [8–11]. The method can be made more efficient if additional
mappings are used. For these cases the error can be made exponentially small
even if the asymptotic behavior of the basis functions differs from that of
approximated functions because the approximated functions are exponentially
small for large r.

However, if approximated functions decay only algebraically, the exponentially
decaying basis functions cannot be used efficiently [7]. The domain truncation
method needs a very large truncation point to reduce the error which results from
the artificial outer boundary conditions. To treat this class of functions Boyd [12]
defined the rational Chebyshev functions TLn(r) on 0 # r , y by applying an
algebraic mapping to the Chebyshev polynomials. The rational Chebyshev functions
can expand functions which decay algebraically or exponentially for large r effi-
ciently. However, the TLn(r) are not designed to satisfy the pole condition and will
cause stiffness in time-dependent problems if they are used for expansions in the
radial direction in polar coordinates.

Basis functions presented here are algebraically mapped Legendre functions.
They satisfy the pole condition exactly at the origin, behave algebraically as
r R y, and are suitable for expanding functions which decay algebraically or
exponentially as r R y. They can be used to expand vector functions efficiently
by using the toroidal and poloidal decomposition [13–15].

One important application of our method is the computation of vortx dynamics
in an unbounded domain. For this problem, the Lagrangian vortex method [16–18]
is very popular because it naturally treats the boundary condition at infinity cor-
rectly. Our method also treats the condition correctly and is efficient because the
fast Fourier transform can be used naturally in mapping the azimuthal direction.
Thus it offers an alternative method to the vortex methods.

We develop the basis functions in Section 2. Vector fields are treated in Section
3. The application of the basis functions will be illustrated through some examples
in Section 4.
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2. RATIONAL LEGENDRE FUNCTIONS

Consider the basis functions to expand fm(r) when a Cy scalar function f(r, f)
is represented as a Fourier series in f

f(r, f) 5 Oy
m52y

fm(r)eimf , (1)

where 0 # r , y and 0 # f , 2f. The pole condition is that fm(r) R O(r um u12p)
as r R 0 for a nonnegative integer p. We shall assume that fm(r) decays as O(r2um u22p)
or faster (e.g., exponentially) as r R y. As we show in Section 4, this behavior is
appropriate for the computation of vortex dynamics in an unbounded domain.

To expand this class of functions, we consider the mapping of the associated
Legendre functions Pm

n (e) [19] by

r 5 L !1 1 e
1 2 e

(2)

or

e 5
r2 2 L2

r2 1 L2 , (3)

where L . 0 is the map parameter which can be adjusted to optimize the convergence
of the expansion. The interval 21 # e , 1 on which the Legendre functions are
orthogonal is mapped to 0 # r , y. We define the mapped function as

Pm
Ln

(r) ; Pm
n (e(r)). (4)

The behavior of Pm
Ln

(r) can be examined by applying (2) to the relation between
Pm

n (e) and P0
n(r) [19] as

Pm
Ln

(r) 5
r um uL um u

(L2 1 r2)umu G
m
n (r) , (5)

where

Gm
n (r) ; (21)m S(L2 1 r2)2

2L2r
d
drDum u

P0
Ln

(r) . (6)

The Gm
n (r) is an even function and behaves as O(1) for r R 0 and r R y. Thus a

Pm
Ln

(r) is an even (odd) function of r if m is even (odd). Equation (5) shows that
Pm

Ln
(r) behaves as

Pm
Ln

(r) 5 O(r um u), r R 0 (7)
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Pm
Ln

(r) 5 O(r2um u), r R y . (8)

Using Pm
Ln

(r), we expand fm(r) in (1) as

fm(r) 5 Oy
n5um u

f m
n Pm

Ln
(r). (9)

By (7) and (8) each basis function Pm
Ln

(r)eimf in the double sum in (1) and (9)
behaves as Cy at r 5 0 and O(r2um ueimf) or harmonically as r R y.

The differential equation which the Pm
Ln

(r) satisfies can be obtained by writing
the Legendre equation in terms of r as

1
r

d
dr

r
d
dr

Pm
Ln

(r) 2
m2

r2 Pm
Ln

(r) 1
4n(n 1 1)L2

(L2 1 r2)2 Pm
Ln

(r) 5 0. (10)

Equation (10) has regular singularities at r 5 0, 6iL, and y. Because (10) is a
Sturm–Liouville equation, the set of Pm

Ln
(r) for fixed integer m and n 5 umu, umu 1

1, ..., y is complete and orthogonal with respect to the weight function

w(r) ; 4L2r
(L2 1 r2)2 . (11)

Therefore

Ey

0
Pm

Ln
(r)Pm

Ln9
(r)w(r) dr 5 E1

21
Pm

n (e)Pm
n9(e) de 5 (Nm

n )2 dnn9 , (12)

where

Nm
n 5 S 2(n 1 umu)!

(2n 1 1)(n 2 umu)!D1/2

. (13)

Note the appearance of the two-dimensional Laplacian for the mth azimuthal
Fourier component in (10)

=2
'(m) ; 1

r
d
dr

r
d
dr

2
m2

r2 . (14)

(We denote the two-dimensional Laplacian by =2
'(m) to distinguish it from the

three-dimensional Laplacian =2(m, k). See Section 3.)
The expansion coefficients in (9) can be obtained by using the orthogonality (12) as

f m
n 5

1
(Nm

n )2 Ey

0
fm(r)Pm

Ln
(r)w(r) dr. (15)

For vector functions, the procedure to obtain the expansion coefficients is slightly
more complicated and for later use we derive a formula using (10), (12), and (14) as
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TABLE I
The Rational Legendre Functions

(L 5 1)

P0
L0

(r) 5 1
P0

L1
(r) 5 (r2 2 1)/(r2 1 1)

P0
L2

(r) 5 (r4 2 4r2 1 1)/(r2 1 1)2

P0
L3

(r) 5 (r6 2 9r4 1 9r2 2 1)/(r2 1 1)3

P1
L1

(r) 5 22r/(r2 1 1)
P1

L2
(r) 5 26r(r2 2 1)/(r2 1 1)2

P1
L3

(r) 5 212r(r4 2 3r2 1 1)/(r2 1 1)3

P2
L2

(r) 5 12r2/(r2 1 1)2

P2
L3

(r) 5 60r2(r2 2 1)/(r2 1 1)3

P3
L3

(r) 5 2120r3/(r2 1 1)3

Ey

0
Pm

Ln
(r)(=2

'(m)Pm
Ln9

(r))r dr 5 2n(n 1 1)(Nm
n )2 dnn9 . (16)

In particular

Ey

0
(=2

'(0)P0
Ln

(r))r dr 5 0 (17)

because P0
L0

(r) 5 1. Note that (16) does not imply that Pm
Ln

(r) is an eigenfunction
of =2

'(m) because the weight function w(r) which appears in (12) is missing in (16).
The spectral convergence of the expansion coefficients in (15) for Cy functions

fm(r) with the property that as r R y, (d/dr)fm(r) 5 O(r2p), where p is integer
and p $ 2, can be proved by the standard method [20] by using the fact that as
r R y, (d/dr)Pm

Ln
(r) 5 O(r2p). The convergence is also spectral for Cy functions

fm(r) if fm(r) decays exponentially as r R y.
The Pm

Ln
(r) can be evaluated by the standard recurrence relations to evaluate the

associated Legendre functions [21]. Some Pm
Ln

(r) are shown in Table I. We call
these functions the ‘‘rational Legendre functions.’’

At this point a few comments are worth noting. Consider the truncated series of
(1) and (9)

fM(r, f) ; OM
m52M

f̃m(r)eimf ; OM
m52M

OM
n5um u

f m
n Pm

Ln
(r)eimf . (18)

It is easy to prove the following: If fM(r, f) is integrable (over the entire physical
domain), then f̃0(r) must decay as fast or faster than O(r24) as r R y, or equivalently,
the polynomial f̃0(r(e)) must be divisible by (1 2 e)2. Proof: The integral of
fM(r, f) is

E2f

0
Ey

0
fM(r, f) r dr df 5 2f Ey

0
f̃0r dr 5 2fL2 E1

21

f̃0(r(e))
(1 2 e)2 de. (19)
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Note that f̃0(r(e)) is a polynomial in e due to the second equality in (18), the
definition (4), and the properties of the m 5 0 associated Legendre polynomials.

In order to evaluate integrals with f̃m(r) in their integrands, we use Gaussian
quadrature where the radial collocation points hrij, 1 # i # M, are related to the
standard [21] Gauss–Lengendre abscissas ei on the interval 21 # e # 1 by Eq.
(2). However, we can reduce the work in evaluating f̃m(ri) by half by exploiting the
even and odd parity of the associated Legendre functions about e 5 0. We define

f̃1
m(ri) ; OM

n5um u
n1m even

f m
n Pm

Ln
(ri), 1 # i #

M
2

(20)

f̃2
m(ri) ; OM

n5um u11
n1m odd

f m
n Pm

Ln
(ri), 1 # i #

M
2

. (21)

Then, for even M (there are similar expressions for odd M),

f̃m(ri) 5 f̃ 1
m(ri) 1 f̃ 2

m(ri), 1 # i #
M
2

(22)

f̃m(ri) 5 f̃ 1
m(rM2i11) 2 f̃ 2

m(rM2i11),
M
2

1 1 # i # M. (23)

A similar procedure can be used to find f m
n from f̃m(ri).

To better understand the resolution properties of the Pm
Ln

(r) and to see how they
relate to expansion functions used by other authors, we consider their relation to
spherical harmonics. Equation (18) is directly related to the spherical harmonic
expansion [21] in spherical coordinates (u, f) by (2), (4), and

e ; cos u (24)

as

fM(u, f) 5 OM
m52M

OM
n5um u

Ï2f Nm
n f m

n Ym
n (u, f), (25)

where

Ym
n (u, f) 5

Pm
n (cos u)

Ï2f Nm
n

eimf . (26)

The mapping from the surface of the sphere to the (r, f) plane defined by (2) and
(24) is the stereographic projection [22]. Although the domain of expansion (18) is
unbounded, the region where we can attain a reasonable resolution by the truncated
rational Legendre–Fourier series is confined near the origin. To see this, we note
that with the triangular truncation in (18), the resolution of the series (25) is uniform
over the entire spherical surface [7, 23]. Thus the resolution of the expansion (18)
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as a function of r can be estimated by the ratio of an infinitesimal area on the
sphere sin u du df to the corresponding area r dr df, that is

XL ; Usin u

r
du

drU5
4L2

(r2 1 L2)2 . (27)

Thus the resolution decreases as O(r24) as r R y. The ratio of XL to its value at
the origin is 1/4 at r 5 L and 1/25 at r 5 2L. The resolution decreases rapidly for
r . L. Because the interval 0 # r # L corresponds to the interval 21 # e # 0,
half of the collocation points (with e(ri) , 0 and ri , L) are distributed in the
high-resolution region and the other half are located in the low-resolution region
(ri . L).

If truncation other than triangular is used, the resolution property will be differ-
ently from (27). Another choice of truncation is to increase the number of radial
modes for large umu in order to obtain better resolution for r p L (i.e., instead
of triangular truncation, we can replace the sums in (25), oM

m52M oM
n5um u with

oM
m52M oM1um u

n5um u ). However, in all of the examples in this paper only triangular trunca-
tion is used. We note that mapping functions similar to the stereographic projection
have been applied to the Fourier series

g(u) 5 Oy
n50

an cos(nu) 1 Oy
n51

bn sin(nu). (28)

Cain et al. [24] considered the mapping

y 5 L
sin u

1 2 cos u
5 L cot

u

2
, (29)

where the interval 2y , y , y is mapped to 0 , u , 2f. Note that with e 5

cos u and r 5 y, (29) is equivalent to (2). They considered another mapping

y 5 L cot u (30)

for which the interval 2y , y , y is mapped to 0 , u , f. Boyd used (30) to
define the rational Chebyshev functions TBn(y) [25]. One constraint of mapping
(29) is that g(u(y)) needs to go to the same values as y R y and y R 2y because
it uses the full interval of the Fourier series. Otherwise, the series (28) has a Gibbs’
phenomenon at u 5 0 and 2f, and the exponential convergence of the series will
be lost. On the other hand, (30) does not cause this problem. For Legendre functions,
the stereographic projection does not lead to a Gibbs’ problem because of the
condition (8).

The resolution property of the rational Legendre–Fourier series presented in
this paper is similar to that of Fourier series mapped by (29) or (30). For example,
the resolution factor for mapping (29) can be defined similarly to (27) as XF ;
udu/dyu 5 2L/(L2 1 y2) because the resolution of the Fourier series (28) is uniform
in u. The resolution decreases as O(y22) as y R 6y compared to O(r24) for the
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expansion (18). The difference is due to the two-dimensional nature in the calcula-
tion of (27).

The mapping defined by (28) and (29) could be extended to two dimensions by
applying it to each direction of Cartesian coordinates. However, evaluating the
Laplace and Helmholtz operators and their inverses in this expansion is inefficient
because the operators couple the two directions together; i.e., the operators written
as matrices are not block diagonal. This cancels the advantage of the ability to use
fast Fourier transform in both directions. On the other hand, even though our
method using (18) needs a slow transform in one direction, the Laplace and Helm-
holtz operators are decoupled for each azimuthal Fourier component (i.e., block
diagonal) and the inversion of each block is fast (order M/2). Moreover, Eq. (18)
has the advantage that it is Galerkin, capturing the correct behavior at r 5 0 and
at r R y, so no boundary conditions need to be imposed. It also has the advantage
that it does not break rotational symmetry; thus the Pm

Ln
(r) are superior to the

expansions of (28) and (29) in studying transitions where symmetry is important.
Moreover our method is useful for computing the linearized perturbations of
flows where the eigenmodes are proportional to eimf which is not easy with a
Cartesian code.

3. VECTOR FIELDS

3.1. Components in Cartesian and Polar Coordinates

Because the three components of a vector field behave differently from a scalar
field, it is generally not convenient to expand the components with a rational
Legendre–Fourier series. The difficulties of treating the components in Cartesian
and polar coordinates are discussed in this section, and a general method for treating
vectors is presented. However, in axially periodic geometries, we believe the best
method is vector decomposition into toroidal and poloidal components. This will
be discussed in Section 3.2.

Consider the expansion of the components of a vector field u in Cartesian and
polar coordinates by the rational Legendre–Fourier series. We denote the Cartesian
components by ux(r, f, z), uy(r, f, z), and uz(r, f, z) and the polar components by
ur(r, f, z), uf(r, f, z), and uz(r, f, z). The x and y are related to r and f by x 5

r cos f and y 5 r sin f. The axial component uz(r, f, z) is identical in Cartesian
and polar coordinates and no distinction is made. Expansion in the axial direction
is not important here. Throughout this section we use the notation that q,m ;
(1/2f) e2f

0 q(f)e2imf df for any quantity q(f).
To be Cy at the origin, it can be shown [1, 26] that uj ,m behaves as r um u12p as

r R 0 for nonnegative integer p for j 5 x, y, and z. It can also be shown that as
r R 0

r(ur 2 iuf),m R O(rm12p) for m $ 1 (31)

r(ur 2 iuf),m R O(r um u12p12) for m # 0 (32)

r(ur 1 iuf),m R O(rm12p12) for m $ 0 (33)
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r(ur 1 iuf),m R O(r um u12p) for m # 21. (34)

Equations (31)–(34) imply that as r R 0

rur,m R O(r um u12p) for umu . 0 (35)

ruf,m R O(r um u12p) for umu . 0 (36)

rur,0 R O(r212p) (37)

ruf,0 R O(r212p). (38)

Note that Eqs. (35)–(38) do not imply (31)–(34) because they are less restrictive.
For the remainder of this paper we shall assume that the vector field decays and

is harmonic at r R y. Then as r R y, it can be shown that the Cartesian components
ux,m , uy,m , and uz,m behave as O(r2um u) and that

lim
rRy

umur um uux,m(r, z) 5 lim
rRy

im r um uuy,m(r, z). (39)

With polar components, the harmonic condition at r R y requires that rur,m and
ruf,m behave as O(r2um u) as r R y and that

lim
rRy

umur um u11uf,m(r, z) 5 lim
rRy

im r um u11ur,m(r, z). (40)

Thus, a complete expansion for uj ,m is

uj ,m(r, z) 5 Oy
n5um u

aj
mn(z)Pm

Ln
(r) (41)

for j 5 x, y, and z subject to the constraint (39) and

ruj ,m(r, z) 5 Oy
n5um u

aj
mn(z)Pm

Ln
(r) (42)

for j 5 r and f subject to the constraints (31)–(34) and (40).
The difficulty of using either polar or Cartesian vector components as computa-

tional variables in a truncated form of (41) or (42) is that the constaints (31)–(34),
(39), and (40) involve all of the coefficients aj

nm . For example, in a pseudo-spectral
calculation the nonlinear advection term (e.g., v 3 u) is usually computed in
physical space at the collocation points, and the three components of the vector
are then transformed into rational Legendre–Fourier space so that they are repre-
sented as in (41) or (42). If there is any aliasing error or if the series in (41) or (42)
is truncated at a degree lower than that of the vector in physical space, then the
transformed vector will not obey the pole constraints (31)–(34) nor the constraints
at infinity (39) and (40) even if the nonlinear term in physical space does.

One way to avoid these difficulties is to define new variables

U 5 ur 1 iuf (43)
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V 5 ur 2 iuf . (44)

Then one can show that there is no constraint coupling U and V. The variables are
also known to simplify the vector Laplacian operator [27]. However, the toroidal
and poloidal decomposition is an even better way to handle solenoidal vector fields
because it reduces the number of variables from 3 to 2. It is described in the
next section.

3.2. Toroidal and Poloidal Components

The toroidal and poloidal decomposition of solenoidal three-dimensional vector
fields is discussed in Chandrasekhar [13] and has been applied to numerical simula-
tions in spherical geometry by Marcus [14] and Glatzmaier [15]. We apply the
decomposition in polar coordinates. For simplicity we assume that the vector fields
are periodic in the axial direction with wavelength Z and their behavior as r R y
is suited to the rational Legendre–Fourier expansion. The decomposition requires
a reference vector and the unit vector in the axial direction z is chosen. A vector
field u(r, f, z) 5 (ur , uf , uz) is written as

u 5 = 3 (cz) 1 = 3 = 3 (xz), (45)

where c(r, f, z) is the toroidal component and x (r, f, z) is the poloidal component.
The u is clearly solenoidal and it is represented by two scalars. If desired, we may
add another vector field =q(r, f, z) to make the expression complete. In fact even
if a solenoidal field is of interest, one usually has to include =q, where q(r, f, z)
satisfies =2q 5 0 for completeness and to satisfy the boundary conditions. However,
our domain has no boundary and with the assumption about the behavior of the
vector fields as r R y, no such additional behavior harmonic component is necessary.

Now note that the toroidal part = 3 (cz) contains no axial component. Thus

u ? z 5 2=2
'x. (46)

Further, the curl of the poloidal part of u contains no axial component. Thus

v ? z 5 2=2
'c, (47)

where v ; = 3 u.
The c(r, f, z) and x(r, f, z) in (45) can be expanded by the rational Legendre–

Fourier series as

c(r, f, z) 5 c0(r, f, z) 1 clPl(r) (48)

x(r, f, z) 5 x0(r, f, z) 1 xlPl(r), (49)
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where

c0(r, f, z) 5 Oy
k52y

Oy
m52y

cmk(r)eimf12fikz/Z (50)

cmk(r) 5 Oy
n5um u

cmnkPm
Ln

(r) (51)

x0(r, f, z) 5 Oy
k52y

Oy
m52y

xmk(r)eimf12fikz/Z (52)

xmk(r) 5 Oy
n5um u

xmnkPm
Ln

(r) (53)

and

Pl(r) ; ln SL2 1 r2

2L2 D . (54)

The logarithmic terms cl and xl are necessary for completeness; e.g., they account
for the behavior uf p O(1/r) as r R y and for the mean axial components of v

and u (see below). The velocity vector defined by (45) automatically satisfies the
constraints (31)–(34) at the origin and (40) at infinity.

The form of Pl(r) is particularly convenient because its derivative has a simple
relation with the rational Legendre functions, i.e.,

r
dPl(r)

dr
5 P0

L1
(r) 1 P0

L0
(r). (55)

Important relations about cl and xl can be derived by using (46), (47), and (17) as

cl 5 2
1

4fZ
EZ

0
dz E2f

0
df Ey

0
r dr v ? z (56)

xl 5 2
1

4fZ
EZ

0
dz E2f

0
df Ey

0
r dr u ? z (57)

Thus only cl and xl are related to the integration of the z-components of v and
u. On the other hand, coefficients c00k and x00k do not affect u. We use this gauge
freedom to satisfy

lim
rRy

c0(r, f, z) 5 0 (58)

lim
rRy

x0(r, f, z) 5 0. (59)

The components of u can be computed straightforwardly at each collocation
point if the expansion coefficients cmnk , xmnk , cl , and xl are given. To find the
expansion coefficients from the vector components, first we find cl by the relation
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cl 5 2
1
2

lim
rRy

ruf,00(r) (60)

(we use the notation q,mk ; (1/2fZ) eZ

0 e2f

0 q(f, z)e2imf22fikz/Z dfdz for any q(f,
z)). (Note that in many cases cl is zero, e.g., if the vector field is the nonlinear
advection term v 3 u.) Subtracting the contribution from u due to cl , we define

ũ ; = 3 (c0z) 1 = 3 = 3 (xz). (61)

Then (46), (47), and (16) show that

cmnk 5
1
cn

EZ

0
dz E2f

0
df Ey

0
r dr fm

n ? (= 3 ũ) (62)

x9mnk 5 2
1
cn

EZ

0
dz E2f

0
df Ey

0
r dr fm

n ? (= 3 = 3 ũ) (63)

or equivalently,

cmnk 5
1
cn

EZ

0
dz E2f

0
df Ey

0
r dr (= 3 fm

n ) ? ũ (64)

x9mnk 5 2
1
cn

EZ

0
dz E2f

0
df Ey

0
r dr (= 3 = 3 fm

n ) ? ũ, (65)

where

cn ; 2fZn(n 1 1)(N m
n )2 (66)

f m
n ; (PL

m
n (r)e2imf22fikz/Z)z. (67)

The x9mnk are the rational Legendre–Fourier expansion coefficients of =2x. Equa-
tions (64) and (65) follow from integration by parts and observation that the surface
term r(f m

n 3 ũ)r vanishes at infinity. In actual computation, we use (64) and (65)
rather than (62) and (63) in order to avoid any inefficiency associated with the
operations on the components of ũ (it is efficient to compute the curls of f m

n ). We
note that a similar method of using vector inner products was defined by Leonard
and Wray [28].

The procedure of inverting the Laplacian to find xmnk and xl from x9mnk can be
constructed easily by using the operators defined in the Appendix. The Laplacian
has a banded structure and can be inverted inexpensively. Boundary conditions are
not necessary because the basis functions are of Galerkin type. However, depending
on the physical situations, a boundary condition can be imposed by the tau method
(e.g., xl 5 0 for nonlinear term v 3 u).

The computation of toroidal and poloidal components can be regarded as a
projection into the solenoidal component of a given vector field. It is convenient
to define this operation symbolically as
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Pu ; S c

=2x
D, (68)

where c and x are the column vectors whose elements are the rational Legendre–
Fourier expansion coefficients of c(r, f, z) and x(r, f, z) and =2 is the Laplacian
operator in matrix form.

In the actual computation of (64) and (65), we exploit fast Fourier transforms
to carry out quadratures. In terms of the original valuable e, they are

cmnk 5
1

n(n 1 1)(N m
n )2 E1

21

1
(1 2 e2) H2imP m

n (e)rũr,mk (e)

2(1 2 e2)
dP m

n (e)
de

rũf,mk (e)J de (69)

x9mnk 5 2
1

n(n 1 1)(N m
n )2 E1

21
F 1

(1 2 e2) H2ik(1 2 e2)
dP m

n (e)
de

rũr,mk (e)

(70)2mkP m
n (e)rũf,mk(e)J1 n(n 1 1)P m

n (e)ũz,mk (e)G de

for n ? 0. The x900k can be determined by (70) if we substitute m 5 0 and define
dP 0

n/de ; 0. The c00k are determined by (58).
Integrations in (69) and (70) are carried out numerically by the standard Gauss–

Legendre quadrature. The number of operations can be reduced in a way similar
to (22) and (21) by exploiting the even and odd parity of P m

n (e) and (1 2 e2)
dP m

n (e)/de. If the operations in Eqs. (69) and (70) are to be applied to many
different vectors, then for efficiency the values of P m

n (ei) should be stored at each
collocation point for ei , 0. The values of (1 2 e2

i )dP m
n (ei)/de can be computed

from the values of dP m
n (ei) inexpensively [19].

4. EXAMPLES

4.1. Two-Dimensional Quantum Harmonic Oscillator

The Schrödinger equation for a two-dimensional isotropic quantum harmonic
oscillator is given in polar coordinates by

d 2um
n (r)

dr 2 1
1
r

dum
n (r)
dr

2
m2

r 2 um
n (r) 1 (ln 2 r 2)um

n (r) 5 0, (71)

where a separation of variable in the azimuthal direction was made by the Fourier
modes. The solution is

u m
n (r) ; Ñ m

n r umu
1F1 S2

n 2 umu
2

, umu 1 1; r 2D e2r2/2, (72)

where n $ umu and n 2 umu is even. The 1F1(a, c; x) is the confluent hypergeometric
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TABLE II
The Number of Eigenvalues of Eq. (71) That Were Computed Numerically with Eq. (74)

That Are within 60.05 of Their Exact Values

M 5 10 M 5 40

L m 5 0 m 5 3 m 5 6 L m 5 0 m 5 10 m 5 20 m 5 30

1 2(6) 1(8) 0(2) 1 7(26) 2(26) 0(2) 0(2)
2 3(10) 2(12) 1(14) 2 11(42) 5(38) 1(42) 0(2)
3 4(14) 3(16) 1(14) 4 16(62) 11(62) 7(66) 2(66)
4 3(10) 1(2) 0(2) 8 18(70) 13(70) 7(66) 3(70)
6 1(2) 0(2) 0(2) 12 10(38) 6(42) 2(46) 0(2)
8 16 5(18) 1(22) 0(2) 0(2)

Note. The largest correctly predicted eigenvalue (lmax) is shown in parentheses.

function and Ñ m
n is the normalization factor [19]. The 1F1(2(n 2 umu)/2, umu 1 1;

r 2) is an even polynomial. The eigenvalue corresponding to um
n (r) is

ln 5 2(n 1 1). (73)

Although um
n (r) decays exponentially as r R y, the rational Legendre functions

can be applied to this problem very efficiently. By changing the variable from r to
e in (71) we obtain

[(1 2 e)=2
'(m) 2 L2(1 1 e)] um

n (e) 5 2ln (1 2 e) um
n (e). (74)

We solve (74) by using the expansion

um
n (e) 5 OM

p5umu
anm

p Pm
p (e). (75)

Matrix operators (1 1 e), (1 2 e), and L2(1 2 e)2s=2
' (m)(1 2 e)s (including the

relevant case with s 5 0) are given in the Appendix. The Legendre functions are
Galerkin (i.e., they are bounded for 21 # e # 1), so no boundary condition at
infinity need be explicitly imposed.

The truncated problem (74) and (75) has M 2 umu 1 1 eigenvalues. A rule of
thumb for eigenproblems solved with spectral methods is that only about half of
the eigenvalues are correct [12]. The eigenvalues were computed numerically for
M 5 10 and M 5 40 for a few choices of m and L. The number and the largest
value (lmax) of eigenvalues which are predicted within 60.05 of the exact value
tabulated in Table II. The conclusion obtained from the table is that there is an
optimum value of L for each M. To see why, note that (27) shows that the resolution
of the expansion (75) decreases rapidly for r . L. Because um

n (r) decays monotoni-
cally and rapidly for r * l1/2

n , the optimum L is expected to occur at Lopt p l1/2
max .

For this value of L the oscillatory part of the eigenfunction will span the high-
resolution region 0 # r # Lopt . Table II shows that indeed Lopt p 141/2 Q 3.7 for
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M 5 10 and Lopt p 701/2 Q 8.4 for M 5 40. The optimum L is nearly independent
of m, which is favorable for the unique determination of Lopt .

We note that the exact eigenfunctions are square integrable while the eigenfunc-
tions computed using (74) are not necessarily square integrable. To recast the
problem so that integrability is explicitly imposed, we define û m

n (e) so that
u m

n (e) ; (1 2 e)û m
n (e) and rewrite (74) as

[(1 2 e) ((1 2 e)21=2
'(m)(1 2 e)) 2 L2(1 1 e)] û m

n (e) 5 2ln(1 2 e)û m
n (e), (76)

where (107) in the Appendix with s 5 1 should be used for the operators in (76).
The ûm

n (e) is expanded by the Legendre functions as in (75). From (19) it is clear
the the new eigenfunctions are integrable. In Fig. 1 we show some exact and
computed integrable eigenfunctions obtained using (76) for M 5 10 and L 5 4.
There is a good agreement with the exact solutions.

4.2. Vorticity Equation in Two Dimensions

Next we consider the vorticity equations in two dimensions. Although Lagrangian
methods are used in unbounded domains [16–18], our method is Eulerian. The
equations of motion are

­g/­t 1 u ? =g 5 0 (77)

g 5 = 2
'C, (78)

where

u 5 (ur , uf) 5 (2r21­C/­f, ­C/­r), (79)

where g(t, r, f) is the vorticity and C(t, r, f) is the stream function. The vorticity
g(t, r, f) is assumed to decay sufficiently fast so that the stream function C(t, r, f)
behaves harmonically as r R y. That is, the behavior of the mth azimuthal Fourier
components of the stream function is O(1) or O(ln(r)) for m 5 0 and O(r2umu) for
m ? 0 as r R y. The O(ln(r)) behavior results if the circulation G, i.e., the integration
of vorticity over the entire plane, is not zero. We expand the stream function as

C(t, r, f) 5 C0(t, r, f) 1 Cl Pl (r) 1 F(r, f) (80)

C0 (t, r, f) 5 OM
m52M

OM
n5umu

Cm
n (t)PL

m
n (r)eimf, (81)

where Cm
n (t) and Cl are the expansion coefficients. The Cl is proportional to G and

is a constant of motion. The F(r, f) is the condition imposed on the velocity field
as r R y. For example, F(r, f) 5 Ur cos(f) is a uniform freestream velocity field
and F(r, f) 5 Ur2 cos(2f) is a uniform strain field. Here we restrict F(r, f) to

F(r, f) ; Ur cos(f). (82)
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FIG. 1. Plot of exact and computed eigenfunctions of the quantum harmonic oscillator defined in
(71). The numerical computations use (76) which enforces integrability. (a) m 5 0 and (b) m 5 3.
Computational parameters are M 5 10, L 5 4.
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Defining

g(t, r, f) ; 4L4(L2 1 r 2)22ĝ(t, r, f) (83)

with

ĝ(t, r, f) 5 OM
m52M

OM
n5umu

ĝm
n (t)Pm

Ln(r)eimf, (84)

and applying the Laplacian operator to (80), we obtain

ĝm
n (t) 5 2n(n 1 1)Cm

n (t)/L2, n ? 0 (85)

ĝ0
0(t) 5 Cl/L2, n 5 0, (86)

where we have used (10) and P 0
L0

(r) ; 1. Thus it is trivial to compute ĝm
n (t) from

Cm
n (t) and Cl . To compute the stream function from ĝ(t, r, f), we simply invert

(85) and (86) to find Cl and Cm
n (t). The indeterminate term C0

0(t) is a gauge which
can be set arbitrarily.

In terms of e and f, (77) becomes

­ĝ
­t

5 2
1 2 e

L2(1 1 e) HS(1 2 e2)
­

­e
(C0 1 F) 1 (1 1 e)ClD S­ĝ

­f
D

(87)2 S(1 2 e2)
­ĝ
­e

2 2(1 1 e)ĝD S ­

­f
(C0 1 F)DJ.

To compute the right-hand side of (87), the operators (1 2 e2)(­/­e), (1 1 e), and
­/­f are applied to C0 and ĝ in the function space (i.e., the matrix operators given
in the Appendix are applied to Cm

n and ĝm
n ), and then the results are transformed

(and possibly dealiased) from function space to physical space (i.e., evaluated at
the collocation points). The multiplication of terms within the curly brackets should
be done in physical space. The multiplication by 1/(1 1 e) on the right-hand side
of (87) should also be carried out in physical space. If the multiplication were in
function space and if the transformation from function to physical space were
dealiased, then the product would no longer be exactly divisible by (1 1 e), so the
product might no longer be integrable (see (19)). On the other hand, the multiplica-
tion by (1 2 e) on the right-hand side of (87) should be carried out last and
be done in function space after dealiasing in order to maintain the condition
­ĝ/­tur5y 5 0. This condition is important for the accurate conservation of angu-
lar momentum.

To illustrate the solution of (77) using this method, we consider an initial condition
consisting of a vortex pair

g(0, x, y) 5 2G(x 1 b/2, y) 1 G(x 2 b/2, y), (88)

where

G(x, y) ; A exp(20.5A(x2 1 y2)), (89)
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TABLE III
Induced Velocity uI of the Vortex Pair Described in Section 4.2 and the Fractional

Change of Enstrophy DEN at t 5 5

A 2r0 uI DEN

32 0.500 0.95538 21.36 3 1023

64 0.353 0.99120 26.63 3 1024

128 0.250 0.99767 21.60 3 1024

256 0.177 0.99920 23.96 3 1025

512 0.125 1.00844 21.24 3 1023

where x ; r cos f and y ; r sin f. The circulation associated with G(x, y) is G 5

2f and the vortex core radius is r0 ; (2/A)1/2. For sufficiently large A, the point
vortex approximation holds and the vortex pair descends downward with velocity
uy Q 2G/(2fb) 5 21/b. Because the vorticity is localized in two regions both at
r p b/2, the map parameter L should be chosen to maximize the resolution at r p
b/2. From (27),

­XL

­L
5

8L(r2 2 L2)
(r2 1 L2)3 (90)

so that the maximum resolution at r 5 b/2 is attained when L 5 b/2. The computa-
tional parameters are chosen as b 5 1, L 5 0.5, and M 5 42. We set U 5 1 in (82)
so that the vortex pair nearly remains at the original location. Equation (87) was
integrated with a leap frog method with time step Dt 5 0.001. No stiffness is observed
in our method despite the presence of the coordinate singularity [1]. A simplified
hyperviscosity was used to prevent the enstrophy pile up to the small scale.

To estimate the translation velocity of the vortex pair, we define the position of
the vortex pair ȳ as

ȳ(t) ; 1
EN

E2f

f50
Ey

r50
r sin f g2r dr df, (91)

where EN is the enstrophy

EN ; E2f

f50
Ey

r50
g2r dr df. (92)

Note that ȳ(0) 5 0. We defined the induced velocity uI in the y direction as uI ;
z 3 =F(r, f) 2 ȳ(t)/t 5 1 2 ȳ(t)/t. In Table III we show uI and the fractional change
of EN at t 5 5 for several computations with different values of A. If the vortices
were points and if there were no numerical errors, then uI would be unity for all
time. In reality, the finite-area vortices become slightly elliptical with major axes
parallel to the y-axis. However, no significant vorticity filmantation occurs and the
enstrophy is numerically approximately conserved. For smaller A the enstrophy
decay is slightly larger due to the unsteadiness before the vortices adjust to an
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elliptical shape. As r0 becomes smaller, the point vortex approximation becomes
more accurate. However, for A 5 512, the r0 is too small to be numerically resolved
properly, and the result is less accurate as indicated in the larger decay of the
enstrophy. For A # 256, the uI is smaller than the point vortex approximation and
the behavior is consistent with the calculations by Pierrehumbert [29] and Wu et
al. [30], who considered a pair of uniform vorticity regions.

4.3. Vorticity Equation in Three Dimensions

We consider the motion of vortex filaments in an unbounded domain. The equa-
tions of motion for the vortex filaments are

­u/­t 5 2v 3 u 2 =P 1 Du (93)

= ? u 5 0, (94)

where u is the velocity and v ; = 3 u is the vorticity. The Du is the linear
dissipation term to be defined later and P is the dynamic pressure. Applying the
projection operator defined in (68) to (93), we obtain

­Pu/­t 5 2P(v 3 u) 1 PDu. (95)

The linear problem is defined by

2isPu1(r) 5 P(2v(r) 3 u1(r) 1 u(r) 3 v1(r)) 1 PDu1(r) (96)

u 5 u(r) 1 u1(r)eimf1ikz2ist (97)

v 5 v(r) 1 v1(r)eimf1ikz2ist, (98)

where u(r) and v(r) are unperturbed velocity and vorticity profiles and u1(r) and
v1(r) denote their perturbations. The P and D in (96) are the operators for the
mth azimuthal Fourier component and axial wavenumber k. The toroidal and
poloidal decomposition is applied to velocity field u as described in Section 3.2.

First we consider the linear problem (96) with unperturbed velocity

u(r) 5 (0, q(1 2 e2r2
)/r, he2br2

). (99)

Recently, Mayer and Powell [11] considered the linear stability of (99) (with h 5

b 5 1) for viscous and inviscid cases by using the Chebyshev spectral method. An
eigenvalue computation result for a viscous problem (D 5 Re21=2) is shown in
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TABLE IV
Comparison of the Convergence Rate of the Eigenvalues of the Most Unstable

Eigenmode with m 5 1, k 5 0.05 of the Columnar Vortex Given by (99) with q 5

0.5 h 5 1, b 5 1, and Re 5 25

Present study
M L Eigenvalue s

10 4 20.0022047741 1 i0.00101433703
20 6 20.0022387022 1 i0.00098862812
30 7 20.0022386899 1 i0.00098851096
40 8 20.0022387038 1 i0.00098851652
50 11 20.0022387039 1 i0.00098851647
60 12 20.0022387039 1 i0.00098851644
70 13 20.0022387039 1 i0.00098851644

Mayer and Powell
M R Eigenvalue s

50 100 0.0008264638 1 i0.00391478239
75 110 20.0020054328 1 i0.00098616247

100 120 20.0022341283 1 i0.00098890815
150 140 20.0022387165 1 i0.00098851641
200 160 20.0022387036 1 i0.00098851650
250 180 20.0022387038 1 i0.00098851655
300 200 20.0022387039 1 i0.00098851643

Note. R is the radius at which Mayer and Powell imposed their outer boundary conditions. M is the
number of radial modes per variable.

Table IV to compare the efficiency of our method with that of Mayer and Powell.
The number of coefficients for each variable is M. The order of linear system is
2M for our method and 3M for that of Mayer and Powell. Clearly more accuracy
is attained in our method with a smaller value of M. The difference in efficiency
is especially clear for small axial wavenumbers for which the eigenfunctions decay
slowly for large r.

As another example application, we consider the neutrally stable oscillations of
a columnar vortex with (99), with no dissipation (D 5 0), and with perturbations
of the form (97). In the long wavelength limit, the eigenvalues can be computed
analytically by using Moore and Saffman’s asymptotic formula (Eq. (7.2) in [31]).
(See [37] for details.) The analytic expression for the eigenvalue is

sr/q 5 2(k2/2)h2ln k 2 (c 2 ln 2)/2 2 h2/2q2b
(100)

2hk/(qb 1 qb2)j/(1 1 hk/qb)

with si ; 0, where s ; sr 1 isi and c 5 0.57721566 . . . is Euler’s constant. Widnall
et al. [32] obtained a result similar to (100). However, their result does not contain
the terms with the first power of h in (100) and is less accurate when h is not zero.

We compare the eigenvalues computed with our numerical method (with D 5
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TABLE V
Comparison of the Numerically Computed Real Parts sr of the Eigenvalues (si ; 0) of

the Eigenmodes of the Columnar Vortex Described in Section 4.3 with the Asymptotic Form
Given in (100)

sr/q

No. k h/q b Lopt Numerical value Eq. (100)

1 0.4 0.0 — 10 28.970 3 1022 27.794 3 1022

2 0.2 0.0 — 11 23.441 3 1022 23.335 3 1022

3 0.1 0.0 — 12 21.189 3 1022 21.180 3 1022

4 0.05 0.0 — 13 23.824 3 1023 23.817 3 1023

5 0.025 0.0 — 15 21.171 3 1023 21.171 3 1023

6 0.025 2.0 1.0 12 25.127 3 1024 25.125 3 1024

7 0.025 1.0 1.0 13 29.865 3 1024 29.861 3 1024

8 0.025 21.0 1.0 14 21.045 3 1023 21.045 3 1023

9 0.025 22.0 1.0 13 25.832 3 1024 25.828 3 1024

10 0.025 2.0 0.5 *** 9.086 3 1025

11 0.025 1.0 0.5 14 28.081 3 1024 28.076 3 1024

12 0.025 21.0 0.5 15 29.150 3 1024 29.145 3 1024

13 0.025 22.0 0.5 *** 6.475 3 1025

14 0.025 2.0 2.0 9 28.353 3 1024 28.349 3 1024

15 0.025 1.0 2.0 11 21.078 3 1023 21.078 3 1023

16 0.025 21.0 2.0 11 21.108 3 1023 21.108 3 1023

17 0.025 22.0 2.0 9 28.835 3 1024 28.831 3 1024

Note. The *** indicates that no negative eigenvalues were obtained.

0) and (100) in Table V. In our method, M 5 59 was used and the optimum map
parameter Lopt was determined as the value at which sr is least sensitive to L. The
Lopt is about one order larger than the unperturbed vortex core radius and becomes
larger as k becomes smaller, reflecting the slower decay of the eigenfunctions for
larger r. Thus the problem becomes increasingly difficult for smaller k because the
basis functions have to resolve both the unperturbed profiles and the eigenfunctions
simultaneously. However, Table V shows a range of k where the numerical results
agree well with the asymptotic form (100). Agreement becomes better as k becomes
smaller as expected (run Nos. 1–5) and remains good even if the axial flow is
present (run Nos. 6–17).

The final example of our numerical method is the solution of the nonlinear initial
value problem (95). It illustrates the robustness of our method. To confine the
effect of dissipation to small scale, we use a hyperviscosity (D 5 2n4=

4). Equation
(95) can be rewritten as

1 ­c/­t

=2­x/­t25 2P(v 3 u) 2 n4 1=4c

=6x2 . (101)

We solve (101) by the fractional step method using the Adams–Bashforth method
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FIG. 2. Isovorticity surface of the vortex pair. ugu 5 0.75. See text for description of the initial con-
dition.
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for the nonlinear term and the backward Euler method for the dissipation term.
The toroidal and poloidal components are decoupled in the second step. The Crank–
Nicholson method can be applied for the dissipation term if more accuracy is
desired. A result is shown in Fig. 2. Two vortex filaments are positioned initially
parallel to the z-axis with a separation of six units. The computation is axially
periodic with an axially domain length of 50 units. Each vortex has the velocity
profile (99) with q 5 61 and h 5 0. The signs of q are determined so that the
vortex pair descends downward. The vortices are perturbed randomly at t 5 0 and
the initial value problem was solved until t 5 220 in 2200 time steps. A uniform
upward velocity field was imposed to keep the vortex pair in the well-resolved
computational region. Vorticity far away from the origin was removed periodically
to continue the computation stably. This causes a few percent loss of circulation
and axial momentum at the end of the computation. (When this vorticity is not
removed, these quantities are conserved exactly, but the calculation eventually
blows up.) The computation has umu # 40, n # 40, and uku # 83 in (48)–(53). Other
computational parameters are L 5 5.5 and n4 5 7 3 1024. Hyperviscosity was turned
on after t 5 80.

The vortices clearly show the long wavelength Crow instability [33] as well as a
faster growing short wavelength instability. Two filaments touch at t p 160 and the
bridging [34] associated with the reconnection is observed at t 5 200. The vortices
dissipate quickly after t 5 200.

Our method is efficient for this geometry compared to Fourier methods which
assume periodicity in the x- and y-directions [35, 36]. In those methods, domain
lengths in the x- and y-directions that are large compared to the vortex filaments’
separation must be used to avoid effects of the artificial periodic array of vortices
created by the periodic basis functions. Thus only a fraction of the collocation
points can be used actively in those computations.

APPENDIX

For a function fm(e) expanded with coefficients am
n as

fm(e) 5 Oy
n5um u

am
n Pm

n (e), (102)

we consider the function gm(e) ; L fm(e) expanded with coefficients bm
n so that

gm(e) 5 L fm(e) 5 Oy
n5um u

bm
n Pm

n (e). (103)

In the following formulas, we assume am
n ; 0 if n , umu.

If L 5 (1 2 e2)
­

­e
5r

d
dr

,
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bm
n 5 2

(n 2 1)(n 2 umu)
2n 2 1

am
n21 1

(n 1 2)(n 1 umu 1 1)
2n 1 3

am
n11 . (104)

If L 5 1 1 e 5
2r2

r2 1 L2 ,

bm
n 5

n 2 umu
2n 2 1

am
n21 1 am

n 1
n 1 umu 1 1

2n 1 3
am

n11 . (105)

If L 5 1 2 e 5
2L2

r2 1 L2 ,

bm
n 5 2

n 2 umu
2n 2 1

am
n21 1 am

n 2
n 1 umu 1 1

2n 1 3
am

n11 . (106)

If L 5 L2(1 2 e)2s=2
'(m)(1 2 e)s, where =2

'(m) is defined by (14) and s is an integer,

bm
n 5 2

(n 2 umu 2 1)(n 2 umu)(n 2 2 1 s)(n 2 1 1 s)
(2n 2 3)(2n 2 1)

am
n22

1
2n(n 2 umu)(n 2 1 1 s)

(2n 2 1)
am

n21

1
1

(2n 2 1)(2n 1 3)
h22n(n 1 1)(3n2 1 3n 2 m2 2 2)

(107)
1 2s(s 2 2)(n2 1 n 1 m2 2 1)j am

n

1
2(n 1 1)(n 1 umu 1 1)(n 1 2 2 s)

(2n 1 3)
am

n11

2
(n 1 umu 1 1)(n 1 umu 1 2)(n 1 3 2 s)(n 1 2 2 s)

(2n 1 3)(2n 1 5)
am

n12 .
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